PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1201880)

Clipboard (0)
None

Related Articles

1.  Klinefelter’s Syndrome, 47,XXY, in Male Systemic Lupus Erythematosus Supports a Gene Dose Effect from the X Chromosome 
Arthritis and rheumatism  2008;58(8):2511-2517.
Background
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that predominantly affects women. Despite Klinefelter's syndrome (47,XXY) and SLE coexisting in isolated cases, no association has been established with SLE or any other autoimmune disease. Methods: Sex chromosome genotyping was performed in 981 SLE patients (213 were men). A first group of 843 SLE patients from 378 multiplex families and a second group of 138 men with non-familial SLE were evaluated. Fluorescent in situ hybridization (FISH) and karyotyping in transformed B cell lines enumerated chromosomes for selected cases.
Results
Of 213 men with SLE, five had Klinefelter's syndrome (or 1 in 43). Four of them were heterozygous at X markers. FISH and karyotyping confirmed Klinefelter’s syndrome in the fifth. An overall rate of 235 47,XXY per 10,000 male SLE patients (95%CI: 77 to 539) was found, a dramatic increase over the known prevalence of Klinefelter's syndrome in an unselected population (17 per 10,000 live male births). Asking men with SLE about fertility was highly sensitive (100%) for Klinefelter’s syndrome. All 768 SLE women were heterozygous at X.
Conclusions
47,XXY Klinefelter's syndrome, often subclinical, is increased in men with SLE by ~14-fold, compared to its prevalence in men without SLE. Diagnostic vigilance for 47,XXY males in SLE is warranted. These data are the first to associate Klinefelter's syndrome with an autoimmune disease found predominantly in women. The risk of SLE in Klinefelter's syndrome is predicted to be similar to the risk in normal 46,XX women and ~14-fold higher than in 46,XY men, consistent with SLE susceptibility being partly explained by a X chromosome gene dose effect.
doi:10.1002/art.23701
PMCID: PMC2824898  PMID: 18668569
2.  Sex chromosome Aneuploides among Men with Systemic Lupus Erythematosus 
Journal of Autoimmunity  2011;38(2-3):J129-J134.
About 90% of patients with systemic lupus erythematosus (SLE) are female. We hypothesize that the number of X chromosomes, not sex, is a determinate of risk of SLE. Number of X chromosomes was determined by single nucleotide typing and then confirmed by karyotype or fluorescent in situ hybridization in a large group of men with SLE. Presence of an sry gene was assessed by rtPCR. We calculated 96% confidence intervals using the Adjusted Wald method, and used Bayes’ theorem to estimate the prevalence of SLE among 47,XXY and 46,XX men. Among 316 men with SLE, 7 had 47,XXY and 1 had 46,XX. The rate of Klinefelter’s syndrome (47,XXY) was statistically different from that found in control men and from the known prevalence in the population. The 46,XX man had an sry gene, which encodes the testes determining factor, on an X chromosome as a result of an abnormal crossover during meiosis. In the case of 46,XX, 1 of 316 was statistically different from the known population prevalence of 1 in 20,000 live male births. A previously reported 46,XX man with SLE had a different molecular mechanism in which there were no common gene copy number abnormalities with our patient. Thus, men with SLE are enriched for conditions with additional X chromosomes. Especially since 46,XX men are generally normal males, except for infertility, these data suggest the number of X chromosomes, not phenotypic sex, is responsible for the sex bias of SLE.
doi:10.1016/j.jaut.2011.10.004
PMCID: PMC3309073  PMID: 22154021
Systemic lupus erythematosus; Klinefelter’s syndrome; male 46; XX; female bias; X chromosome
3.  Autoimmunity and Klinefelter’s syndrome: when men have two X chromosomes 
Journal of autoimmunity  2009;33(1):31-34.
Similar to other autoimmune diseases, systemic lupus erythematosus (SLE) predominately affects women. Recent reports demonstrate excess Klinefelter’s among men with SLE and a possible under-representation of Turner’s syndrome among women with SLE as well as a case report of a 46,XX boy with SLE. These data suggest that risk of SLE is related to a gene dose effect for the X chromosome. Such an effect could be mediated by abnormal inactivation of genes on the X chromosome as has been demonstrated for CD40L, or by genetic polymorphism as has been demonstrated for Xq28. On the other hand, a gene dose effect could also be mediated by a gene without an SLE-associated polymorphism in that a gene that avoids X inactivation will have a higher level of expression in persons with two X chromosomes.
doi:10.1016/j.jaut.2009.03.006
PMCID: PMC2885450  PMID: 19464849
Systemic lupus erythematosus; Genetics; X chromosome
4.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
5.  Detection of Catalase as a major protein target of the lipid peroxidation product 4-HNE and the lack of its genetic association as a risk factor in SLE 
BMC Medical Genetics  2008;9:62.
Background
Systemic lupus erythematosus (SLE) is a multifactorial disorder characterized by the presence of autoantibodies. We and others have implicated free radical mediated peroxidative damage in the pathogenesis of SLE. Since harmful free radical products are formed during this oxidative process, including 4-hydroxy 2-nonenol (4-HNE) and malondialdehyde (MDA), we hypothesized that specific HNE-protein adducts would be present in SLE red blood cell (RBC) membranes. Catalase is located on chromosome 11p13 where linkage analysis has revealed a marker in the same region of the genome among families with thrombocytopenia, a clinical manifestation associated with severe lupus in SLE affected pedigrees. Moreover, SLE afflicts African-Americans three times more frequently than their European-American counterparts. Hence we investigated the effects of a genetic polymorphism of catalase on risk and severity of SLE in 48 pedigrees with African American ancestry.
Methods
Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis was used to identify the protein modified by HNE, following Coomassie staining to visualize the bands on the acrylamide gels. Genotyping analysis for the C → T, -262 bp polymorphism in the promoter region of catalase was performed by PCR-RFLP and direct PCR-sequencing. We used a "pedigree disequilibrium test" for the family based association analysis, implemented in the PDT program to analyze the genotyping results.
Results
We found two proteins to be HNE-modified, migrating around 80 and 50 kD respectively. Tryptic digestion followed by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis of the Coomassie stained 80 kD band revealed that the target of HNE modification was catalase, a protein shown to associate with RBC membrane proteins. All the test statistics carried out on the genotyping analysis for the C → T, -262 bp polymorphism in the promoter region of catalase were non-significant (p > 0.05) in our data, which suggested that this SNP is not associated with SLE.
Conclusion
Our results indicate that catalase is one of the proteins modified due to oxidative stress. However, catalase may not be a susceptibility gene for SLE. Nonetheless, catalase is oxidatively modified among SLE patients. This suggests a possible role between oxidative modification of catalase and its affects on enzymatic activity in SLE. An oxidatively modified catalase could be one of the reasons for lower enzymatic activity among SLE subjects, which in turn could favor the accumulation of deleterious hydrogen peroxide. Furthermore, HNE-products are potential neoantigens and could be involved in the pathogenesis of SLE. Decrease in catalase activity could affect the oxidant-antioxidant balance. Chronic disturbance of this balance in patients with SLE may work favorably for the premature onset of atherogenesis with severe vascular effect.
doi:10.1186/1471-2350-9-62
PMCID: PMC2474584  PMID: 18606005
6.  Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFβ gene variants 
BMC Immunology  2009;10:5.
Background
CD4+CD25+ regulatory T cells play an essential role in maintaining immune homeostasis and preventing autoimmunity. Therefore, defects in Treg development, maintenance or function have been associated with several human autoimmune diseases including Systemic Lupus Erythematosus (SLE), a systemic autoimmune disease characterized by loss of tolerance to nuclear components and significantly more frequent in females.
Results
To investigate the involvement of Treg in SLE pathogenesis, we determined the frequency of CD4+CD25+CD45RO+ T cells, which encompass the majority of Treg activity, in the PBMC of 148 SLE patients (76 patients were part of 54 families), 166 relatives and 117 controls. SLE patients and their relatives were recruited in several Portuguese hospitals and through the Portuguese Lupus Association. Control individuals were blood donors recruited from several regional blood donor centers. Treg frequency was significantly lower in SLE patients than healthy controls (z = -6.161, P < 0.00001) and intermediate in the relatives' group. Remarkably, this T cell subset was also lower in females, most strikingly in the control population (z = 4.121, P < 0.001). We further ascertained that the decreased frequency of Treg in SLE patients resulted from the specific reduction of bona fide FOXP3+CD4+CD25+ Treg. Treg frequency was negatively correlated with SLE activity index (SLEDAI) and titers of serum anti-dsDNA antibodies. Both Treg frequency and disease activity were modulated by IVIg treatment in a documented SLE case. The segregation of Treg frequency within the SLE families was indicative of a genetic trait. Candidate gene analysis revealed that specific variants of CTLA4 and TGFβ were associated with the decreased frequency of Treg in PBMC, while FOXP3 gene variants were associated with affection status, but not with Treg frequency.
Conclusion
SLE patients have impaired Treg production or maintenance, a trait strongly associated with SLE disease activity and autoantibody titers, and possibly resulting from the inability to convert FOXP3+CD25- into FOXP3+CD25+ T cells. Treg frequency is highly heritable within SLE families, with specific variants of the CTLA4 and TGFβ genes contributing to this trait, while FOXP3 contributes to SLE through mechanisms not involving a modulation of Treg frequency. These findings establish that the genetic components in SLE pathogenesis include genes related to Treg generation or maintenance.
doi:10.1186/1471-2172-10-5
PMCID: PMC2656467  PMID: 19173720
7.  Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression 
PLoS Genetics  2013;9(10):e1003870.
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Author Summary
Systemic lupus erythematosus (SLE), a debilitating autoimmune disease characterized by the production of pathogenic autoantibodies, has a strong genetic basis. Variants of the IL10 gene, which encodes cytokine interleukin-10 (IL-10) with known function of promoting B cell hyperactivity and autoantibody production, are associated with SLE and other autoimmune diseases, and serum IL-10 levels are elevated in SLE patients correlating with increased disease activity. In this study, to discover SLE-predisposing causal variant(s), we assessed variants within the genomic region containing IL10 and its gene family member IL19, IL20 and IL24 for association with SLE in case and control subjects from diverse ancestries. We identified SLE-associated SNP rs3122605 located at 9.2 kb upstream of IL10 as the most likely causal variant in subjects of European ancestry. The SLE-risk allele of rs3122605 was dose-dependently associated with elevated IL10 expression at both mRNA and protein levels in peripheral blood samples from SLE patients and controls, which could be explained, at least in part, by its preferential binding to Elk-1, a transcription factor activated in B cells during active disease of SLE patients. Elk-1-mediated IL-10 overexpression could be downregulated by inhibiting activation of mitogen-activated protein kinases, suggesting a potential therapeutic target for SLE.
doi:10.1371/journal.pgen.1003870
PMCID: PMC3794920  PMID: 24130510
8.  High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions 
PLoS Genetics  2009;5(10):e1000696.
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
Author Summary
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and involvement of multiple organ systems. Although the cause of SLE remains unknown, several lines of evidence underscore the importance of genetic factors. As is true for most autoimmune diseases, a substantial genetic contribution to disease risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6. This region of the genome contains a large number of genes that participate in the immune response. However, the full contribution of this genomic region to SLE risk has not yet been defined. In the current study we characterize a large number of SLE patients and family members for approximately 2,000 MHC region variants to identify the specific genes that influence disease risk. Our results, for the first time, implicate four different MHC regions in SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
doi:10.1371/journal.pgen.1000696
PMCID: PMC2758598  PMID: 19851445
9.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production 
PLoS Genetics  2011;7(3):e1001323.
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can involve virtually any organ system. SLE patients produce antibodies that bind to their own cells and proteins (autoantibodies) which can cause irreversible organ damage. One particular SLE–related autoantibody directed at double-stranded DNA (anti–dsDNA) is associated with kidney involvement and more severe disease. Previous genome-wide association studies (GWAS) in SLE have studied SLE itself, not particular SLE manifestations. Therefore, we conducted this GWAS of anti–dsDNA autoantibody production to identify genetic associations with this clinically important autoantibody. We found that many previously identified SLE–associated genes are more strongly associated with anti–dsDNA autoantibody production than SLE itself, and they may be more accurately described as autoantibody propensity genes. No strong genetic associations were observed for SLE patients who do not produce anti–dsDNA autoantibodies, suggesting that other factors may have more influence in developing this type of SLE. Further investigation of these autoantibody propensity genes may lead to greater insight into the causes of autoantibody production and organ damage in SLE.
doi:10.1371/journal.pgen.1001323
PMCID: PMC3048371  PMID: 21408207
10.  Selective Involvement of the Amygdala in Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e499.
Background
Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE). The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE.
Methods and Findings
We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE), 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI). In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC) was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 × 10−6 mm2/s; p = 0.006 and 949 × 10−6 mm2/s; p = 0.019, respectively) was lower than in healthy control participants (1152 × 10−6 mm2/s). Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 × 10−6 mm2/s) was lower (p = 0.029) than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 × 10−6 mm2/s) and also lower (p = 0.001) than in healthy control participants.
Conclusions
This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies.
Patients with SLE who also had antibodies against the NMDA receptor had more severe damage in the amygdala as compared with patients with SLE without these antibodies.
Editors' Summary
Background.
The human body is continually attacked by viruses, bacteria, fungi, and parasites, but the immune system usually prevents these pathogens from causing disease. To be effective, the immune system has to respond rapidly to foreign antigens (bits of proteins that are unique to the pathogen) but ignore self-antigens. In autoimmune diseases, this ability to discriminate between self and nonself fails for unknown reasons, and the immune system begins to destroy human tissues. In the chronic autoimmune disease systemic lupus erythematosus (SLE or lupus), the immune system attacks the skin, joints, nervous system, and many other organs. Patients with SLE make numerous “autoantibodies” (antibodies are molecules made by the immune system that recognize and attack antigens; autoantibodies attack self-antigens). These autoantibodies start the attack on the body; then other parts of the immune system join in, causing inflammation and forming deposits of immune cells, both of which damage tissues. Common symptoms of SLE include skin rashes and arthritis, but some patients develop NP-SLE, a form of SLE that includes neuropsychiatric symptoms such as amnesia, dementia, mood disorders, strokes, and seizures. There is no cure for SLE, but mild cases are controlled with ibuprofen and other non-steroidal anti-inflammatory drugs; severe cases are kept in check with corticosteroids and other powerful immunosuppressants.
Why Was This Study Done?
In most of the tissues affected by SLE, the damage done by autoantibodies and immune cells can be seen when the tissues are examined with a microscope. But there is little microscopic damage visible in the brains of patients with NP-SLE. More generally, it is unclear how or even whether the immune system affects mental functions and emotion. In this study, researchers used magnetic resonance imaging (MRI) to investigate whether there are any structural changes in the brains of patients with NP-SLE that could explain their neuropsychiatric symptoms. They have also examined whether any changes in the brain can be linked to the presence of autoantibodies that recognize a protein called the NMDA receptor (anti-NMDAR antibodies) that is present on brain cells.
What Did the Researchers Do and Find?
The researchers used an MRI technique called diffusion weighted imaging to examine the brains of several patients with NP-SLE or SLE and the brains of several healthy individuals. Using this technique, it is possible to quantify the amount of structural damage in different regions of the brain. The researchers found no differences in most areas of the brain between the two groups of patients and the healthy controls. However, there were clear signs of damage in the amygdala (the part of the brain that regulates emotions and triggers responses to danger) in the patients with SLE or NP-SLE when compared to the control individuals. The researchers also found that the damage was more severe in the patients who had anti-NMDAR autoantibodies than in those that did not have these autoantibodies.
What Do These Findings Mean?
These findings suggest that autoantibodies produced by patients with SLE specifically damage the amygdala, a discovery that helps to explain some of the neuropsychiatric symptoms of this condition. Previous work has shown that the treatment of mice with anti-NMDAR antibodies and epinephrine, a stress hormone that causes leaks in the blood-brain barrier (antibodies can't usually get into the brain because of this barrier), results in damage to the amygdala and a deficient response to dangerous stimuli. The researchers suggest that a similar series of events might happen in SLE—patients often mention that a period of major stress precedes the development of symptoms. To provide stronger evidence for such a scenario, a detailed study of how stress relates to neuropsychiatric symptoms is needed. The damage to the amygdala (and the lack of damage elsewhere in the brain) and the possible association between brain damage and anti-NMDAR antibodies seen in this small study also need to be confirmed in more patients. Nevertheless, these findings provide an intriguing glimpse into the interplay between the immune system and the brain and into how stress might lead to physical damage in the brain.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030499.
MedlinePlus encyclopedia pages on autoimmunity and on systemic lupus erythematosus
US National Institute of Arthritis and Musculoskeletal and Skin Diseases booklet for patients with SLE
American College of Rheumatology information for patients on SLE
NHS Direct Online Health Encyclopedia pages on SLE
The Lupus Foundation of America information and support for patients with SLE
doi:10.1371/journal.pmed.0030499
PMCID: PMC1702559  PMID: 17177602
11.  Male only Systemic Lupus 
The Journal of rheumatology  2010;37(7):1480-1487.
Systemic lupus erythematosus (SLE) is more common among women than men with a ratio of about 10 to 1. We undertook this study to describe familial male SLE within a large cohort of familial SLE. SLE families (two or more patients) were obtained from the Lupus Multiplex Registry and Repository. Genomic DNA and blood samples were obtained using standard methods. Autoantibodies were determined by multiple methods. Medical records were abstracted for SLE clinical data. Fluorescent in situ hybridization (FISH) was performed with X and Y centromere specific probes, and a probe specific for the toll-like receptor 7 gene on the X chromosome. Among 523 SLE families, we found five families in which all the SLE patients were male. FISH found no yaa gene equivalent in these families. SLE-unaffected primary female relatives from the five families with only-male SLE patients had a statistically increased rate of positive ANA compared to SLE-unaffected female relatives in other families. White men with SLE were 5 times more likely to have an offspring with SLE than were White women with SLE but there was no difference in this likelihood among Black men. These data suggest genetic susceptibility factors that act only in men.
doi:10.3899/jrheum.090726
PMCID: PMC2978923  PMID: 20472921
Systemic lupus erythematosus; men; autoantibodies; genetics
12.  Elevated Serum Levels of Interferon-Regulated Chemokines Are Biomarkers for Active Human Systemic Lupus Erythematosus 
PLoS Medicine  2006;3(12):e491.
Background
Systemic lupus erythematosus (SLE) is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN) in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.
Methods and Findings
We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.
Conclusions
These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.
A comprehensive survey of the serologic proteome in human SLE suggests that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed.
Editors' Summary
Background.
The term “lupus,” meaning wolf in Latin, is often used as an abbreviation for the disease systemic lupus erythematosus (SLE). The name may have been given because some people with SLE have a rash that slightly resembles a wolf's face. The condition affects around 50 to 100 people per 100,000, and is much more common in women than men. SLE is a complicated disease that comes about when antibodies inappropriately attack the body's own connective tissues, although it is not known why this happens. Symptoms vary between different people; the disease may get better and then worse, without explanation; and can affect many different organs including the skin, joints, kidneys, blood cells, and brain and nervous system. SLE is difficult for doctors to diagnose. Although the disease cannot be cured, patients who are diagnosed with SLE can be treated for their symptoms, and the right management can slow progress of the disease. One area of SLE research focuses on finding “molecular markers” (e.g., proteins or other compounds) that could be tested for in the blood. Researchers hope this would help doctors to more accurately diagnose SLE initially, and then also help to track progress in a patient's condition.
Why Was This Study Done?
“Gene expression” is a term meaning the process by which a gene's DNA sequence is converted into the structures and functions of a cell. These investigators had found in previous studies that certain genes were more “highly expressed” in the blood cells of patients with SLE. Some of these genes were already known to be regulated by interferons (a group of proteins, produced by certain blood cells, that are important in helping to defend against viral infections). The investigators performing this study wanted to understand more clearly the role of interferon in SLE and to see whether the genes that are more highly expressed in patients with SLE go on to produce higher levels of protein, which might then provide useful markers for monitoring the condition.
What Did the Researchers Do and Find?
This research project was a “case-control” study, in which the researchers compared the levels of certain proteins in the blood of people who had SLE with the levels in people who did not have the condition. Thirty people were recruited as cases, from a group of patients with SLE who have been under evaluation at Johns Hopkins School of Medicine since 1987. Fifteen controls were recruited from a group of healthy people of similar age and sex as the patients with SLE; everyone involved in the study gave their consent to take part. Blood samples were taken from each individual, and the serum (liquid component of blood) was separated out. The serum levels of 160 different blood proteins were then measured. When comparing levels of blood proteins between the groups, the researchers found that 30 specific proteins were present at higher or lower levels in the SLE-affected patients. Many of these proteins are cytokines, which are regulated by interferons and are involved in the process of “signaling” within the immune system. A few proteins were found at lower levels. Levels of the interferon-regulated proteins were, on average, seen at higher levels in people whose condition was more severe.
What Do These Findings Mean?
These results suggest that patients with SLE are likely to have a very different pattern of regulation of certain proteins within the blood, particularly the proteins involved in signaling within the immune system. The authors propose that these proteins may be involved in the progression of the disease. There is also the possibility that some of these proteins may prove useful in diagnostic tests, or in tests for monitoring how the disease progresses. However, before any such tests could be used in clinical practice, they would need to be further developed and then thoroughly tested in clinical trials.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030491
Patient information from the UK National Health Service on systemic lupus erythematosus
Patient handout from the US National Institutes of Health
MedlinePLUS encyclopedia entry on lupus
Information on lupus from the UK Arthritis Research Campaign
doi:10.1371/journal.pmed.0030491
PMCID: PMC1702557  PMID: 17177599
13.  Genetic basis of systemic lupus erythematosus: a review of the unique genetic contributions in African Americans. 
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving critical genetic and environmental risk factors. SLE is a relatively common disease among African American women, affecting as many as one in 250. A collection of more than 250 African American and European American pedigrees multiplex for SLE have been collected in Oklahoma over the past decade for the purpose of identifying the genetic risk factors involved in the pathogenesis of SLE. A genome scan has been performed, and interestingly, the linkage results usually dominate in families from one or the other of these ethnicities. For example, the linkage effect at 1q21-22 near FcgammaRIIA is much stronger in the African American pedigrees than in the European American pedigrees. On the other hand, a gene near the top of chromosome4 (at 4p l6-15) contributes to SLE in the European American pedigrees, but not in the African American pedigrees. The racially-specific results lead to the tentative conclusion of genetic differences associated with SLE in African Americans and European Americans. The identification of the genes responsible for the observed linkage effects will provide fundamental knowledge concerning SLE and may even provide new targets for therapy and strategies to defeat this enigmatic and difficult disease.
PMCID: PMC2594259  PMID: 12152922
14.  Identification of Two Independent Risk Factors for Lupus within the MHC in United Kingdom Families 
PLoS Genetics  2007;3(11):e192.
The association of the major histocompatibility complex (MHC) with SLE is well established yet the causal variants arising from this region remain to be identified, largely due to inadequate study design and the strong linkage disequilibrium demonstrated by genes across this locus. The majority of studies thus far have identified strong association with classical class II alleles, in particular HLA-DRB1*0301 and HLA-DRB1*1501. Additional associations have been reported with class III alleles; specifically, complement C4 null alleles and a tumor necrosis factor promoter SNP (TNF-308G/A). However, the relative effects of these class II and class III variants have not been determined. We have thus used a family-based approach to map association signals across the MHC class II and class III regions in a cohort of 314 complete United Kingdom Caucasian SLE trios by typing tagging SNPs together with classical typing of the HLA-DRB1 locus. Using TDT and conditional regression analyses, we have demonstrated the presence of two distinct and independent association signals in SLE: HLA-DRB1*0301 (nominal p = 4.9 × 10−8, permuted p < 0.0001, OR = 2.3) and the T allele of SNP rs419788 (nominal p = 4.3 × 10−8, permuted p < 0.0001, OR = 2.0) in intron 6 of the class III region gene SKIV2L. Assessment of genotypic risk demonstrates a likely dominant model of inheritance for HLA-DRB1*0301, while rs419788-T confers susceptibility in an additive manner. Furthermore, by comparing transmitted and untransmitted parental chromosomes, we have delimited our class II signal to a 180 kb region encompassing the alleles HLA-DRB1*0301-HLA-DQA1*0501-HLA-DQB1*0201 alone. Our class III signal importantly excludes independent association at the TNF promoter polymorphism, TNF-308G/A, in our SLE cohort and provides a potentially novel locus for future genetic and functional studies.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex autoimmune disease in which the body's immune system attacks its own tissues, causing inflammation in a variety of different organs such as the skin, joints, and kidneys. The cause of lupus is not known, but genes play a significant role in the predisposition to disease. The major histocompatibility complex (MHC) on Chromosome 6 contains at least 100 different genes that affect the immune system, including the genes with the strongest effect on lupus susceptibility. Despite the importance of the MHC in SLE, the identity of the actual genes in the MHC region that cause SLE has remained elusive. In the present study, we used the latest set of genetic markers present at the MHC in lupus families to identify the actual genes that affect the disease. To our knowledge, we have shown for the first time that two separate groups of genes are involved in SLE. One group of genes alters how the immune system may inappropriately target its own tissues in the disease. How the second set of genes predisposes to SLE is the subject of ongoing study.
doi:10.1371/journal.pgen.0030192
PMCID: PMC2065882  PMID: 17997607
15.  A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases 
PLoS Genetics  2007;3(4):e49.
It is generally believed that susceptibility to both organ-specific and systemic autoimmune diseases is under polygenic control. Although multiple genes have been implicated in each type of autoimmune disease, few are known to have a significant impact on both. Here, we investigated the significance of polymorphisms in the human gene CD24 and the susceptibility to multiple sclerosis (MS) and systemic lupus erythematosus (SLE). We used cases/control studies to determine the association between CD24 polymorphism and the risk of MS and SLE. In addition, we also considered transmission disequilibrium tests using family data from two cohorts consisting of a total of 150 pedigrees of MS families and 187 pedigrees of SLE families. Our analyses revealed that a dinucleotide deletion at position 1527∼1528 (P1527del) from the CD24 mRNA translation start site is associated with a significantly reduced risk (odds ratio = 0.54 with 95% confidence interval = 0.34–0.82) and delayed progression (p = 0.0188) of MS. Among the SLE cohort, we found a similar reduction of risk with the same polymorphism (odds ratio = 0.38, confidence interval = 0.22–0.62). More importantly, using 150 pedigrees of MS families from two independent cohorts and the TRANSMIT software, we found that the P1527del allele was preferentially transmitted to unaffected individuals (p = 0.002). Likewise, an analysis of 187 SLE families revealed the dinucleotide-deleted allele was preferentially transmitted to unaffected individuals (p = 0.002). The mRNA levels for the dinucleotide-deletion allele were 2.5-fold less than that of the wild-type allele. The dinucleotide deletion significantly reduced the stability of CD24 mRNA. Our results demonstrate that a destabilizing dinucleotide deletion in the 3′ UTR of CD24 mRNA conveys significant protection against both MS and SLE.
Author Summary
When an individual's immune system attacks self tissues or organs, he/she develops autoimmune diseases. Although it is well established that multiple genes control susceptibility to autoimmune diseases, most of the genes remain unidentified. In addition, although different autoimmune diseases have a common immunological basis, a very small number of genes have been identified that affect multiple autoimmune diseases. Here we show that a variation in CD24 is a likely genetic factor for the risk and progression of two types of autoimmune diseases, including multiple sclerosis (MS), an organ-specific autoimmune disease affecting the central nervous system, and systemic lupus erythematosus, a systemic autoimmune disease. Our data indicated that if an individual's CD24 gene has a specific two-nucleotide deletion in the noncoding region of CD24 mRNA, his/her risk of developing MS or SLE is reduced by 2- to 3-fold. As a group, MS patients with the two-nucleotide deletion will likely have a slower disease progression. Biochemical analysis indicated that the deletion leads to rapid decay of CD24 mRNA, which should result in reduced synthesis of the CD24 protein. Our data may be useful for the treatment and diagnosis of autoimmune diseases.
doi:10.1371/journal.pgen.0030049
PMCID: PMC1847692  PMID: 17411341
16.  End-Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With APOL1 
Objective
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE) that exhibits familial aggregation and may progress to end-stage renal disease (ESRD). LN is more prevalent among African Americans than among European Americans. This study was undertaken to investigate the hypothesis that the apolipoprotein L1 gene (APOL1) nephropathy risk alleles G1/G2, common in African Americans and rare in European Americans, contribute to the ethnic disparity in risk.
Methods
APOL1 G1 and G2 nephropathy alleles were genotyped in 855 African American SLE patients with LN-ESRD (cases) and 534 African American SLE patients without nephropathy (controls) and tested for association under a recessive genetic model, by logistic regression.
Results
Ninety percent of the SLE patients were female. The mean ± SD age at SLE diagnosis was significantly lower in LN-ESRD cases than in SLE non-nephropathy controls (27.3 ± 10.9 years versus 39.5 ± 12.2 years). The mean ± SD time from SLE diagnosis to development of LN-ESRD in cases was 7.3 ± 7.2 years. The G1/G2 risk alleles were strongly associated with SLE-ESRD, with 25% of cases and 12% of controls having 2 nephropathy alleles (odds ratio [OR] 2.57, recessive model P = 1.49 × 10−9), and after adjustment for age, sex, and ancestry admixture (OR 2.72, P = 6.23 × 10−6). The age-, sex-, and admixture-adjusted population attributable risk for ESRD among patients with G1/G2 polymorphisms was 0.26, compared to 0.003 among European American patients. The mean time from SLE diagnosis to ESRD development was ~2 years earlier among individuals with APOL1 risk genotypes (P = 0.01).
Conclusion
APOL1 G1/G2 alleles strongly impact the risk of LN-ESRD in African Americans, as well as the time to progression to ESRD. The high frequency of these alleles in African Americans with near absence in European Americans explains an important proportion of the increased risk of LN-ESRD in African Americans.
doi:10.1002/art.38220
PMCID: PMC4002759  PMID: 24504811
17.  Mutations in Complement Regulatory Proteins Predispose to Preeclampsia: A Genetic Analysis of the PROMISSE Cohort 
PLoS Medicine  2011;8(3):e1001013.
Jane Salmon and colleagues studied 250 pregnant patients with SLE and/or antiphospholipid antibodies and found an association of risk variants in complement regulatory proteins in patients who developed preeclampsia, as well as in preeclampsia patients lacking autoimmune disease.
Background
Pregnancy in women with systemic lupus erythematosus (SLE) or antiphospholipid antibodies (APL Ab)—autoimmune conditions characterized by complement-mediated injury—is associated with increased risk of preeclampsia and miscarriage. Our previous studies in mice indicate that complement activation targeted to the placenta drives angiogenic imbalance and placental insufficiency.
Methods and Findings
We use PROMISSE, a prospective study of 250 pregnant patients with SLE and/or APL Ab, to test the hypothesis in humans that impaired capacity to limit complement activation predisposes to preeclampsia. We sequenced genes encoding three complement regulatory proteins—membrane cofactor protein (MCP), complement factor I (CFI), and complement factor H (CFH)—in 40 patients who had preeclampsia and found heterozygous mutations in seven (18%). Five of these patients had risk variants in MCP or CFI that were previously identified in atypical hemolytic uremic syndrome, a disease characterized by endothelial damage. One had a novel mutation in MCP that impairs regulation of C4b. These findings constitute, to our knowledge, the first genetic defects associated with preeclampsia in SLE and/or APL Ab. We confirmed the association of hypomorphic variants of MCP and CFI in a cohort of non-autoimmune preeclampsia patients in which five of 59 were heterozygous for mutations.
Conclusion
The presence of risk variants in complement regulatory proteins in patients with SLE and/or APL Ab who develop preeclampsia, as well as in preeclampsia patients lacking autoimmune disease, links complement activation to disease pathogenesis and suggests new targets for treatment of this important public health problem.
Study Registration
ClinicalTrials.gov NCT00198068
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Most pregnancies culminate in the birth of a healthy baby but, sadly, about a quarter of women lose their babies during pregnancy. A common pregnancy-related medical problem that threatens the life of both baby and mother is preeclampsia. Mild and severe preeclampsia affects up to 10% and 1%–2% of pregnancies, respectively. Preeclampsia occurs because of a problem with the function of the placenta, the organ that transfers nutrients and oxygen from mother to baby and removes waste products from the baby. Although preeclampsia begins early in pregnancy, it is diagnosed by the onset of high blood pressure (hypertension) and the appearance of protein in the urine (proteinuria) after 20 weeks of pregnancy. Other warning signs include headaches and swelling of the hands and face. The only cure for preeclampsia is delivery, and labor is usually induced early to prevent eclampsia (seizures), stroke, liver and kidney failure, and breathing and blood vessel problems developing in the mother. Although delivery before 37 weeks of pregnancy is not generally recommended, in cases of preeclampsia it may be too dangerous for both the baby and the mother to allow the pregnancy to continue. Unfortunately when severe preeclampsia occurs in the second trimester, babies weighing only 500 grams may be delivered and they may not survive.
Why Was This Study Done?
Because the exact cause of preeclampsia is unknown, it is difficult to develop treatments for the condition or to find ways to prevent it. Many experts think that immune system problems—in particular, perturbations in complement activation—may be involved in preeclampsia. The complement system is a set of blood proteins that attacks invading bacteria and viruses. The activation of complement proteins is usually tightly regulated (overactivation of the complement system causes tissue damage) and, because preeclampsia may run in families, one hypothesis is that mutations (genetic changes) in complement regulatory proteins might predispose women to preeclampsia. In this study, the researchers test this hypothesis by sequencing genes encoding complement regulatory proteins in pregnant women with the autoimmune diseases systemic lupus erythematosus (SLE) and/or antiphospholipid antibodies (APL Ab) who developed preeclampsia. In autoimmune diseases, the immune system attacks healthy human cells instead of harmful invaders. Both SLE and APL Ab are characterized by complement-mediated tissue injury and are associated with an increased risk of preeclampsia and miscarriage.
What Did the Researchers Do and Find?
Two hundred fifty women with SLE and/or APL Ab were enrolled into the PROMISSE study (a multi-center observational study to identify predictors of pregnancy outcome in women with SLE and/or APL Ab) when they were 12 weeks pregnant and followed through pregnancy. Thirty patients developed preeclampsia during the study and ten more had had preeclampsia during a previous pregnancy. The researchers sequenced the genes for complement regulatory proteins: membrane cofactor protein (MCP), factor I, and factor H in these 40 patients. Seven women (18%) had mutations in one copy of one of these genes (there are two copies of most genes in human cells). Five mutations were alterations in MCP or factor I that are gene variants that increase the risk of hemolytic uremic syndrome, a disease characterized by blood vessel damage. The sixth mutation was a new MCP mutation that impaired MCP's ability to regulate complement component C4b. The final mutation was a factor H mutation that did not have any obvious functional effect. No mutations in complement regulatory proteins were found in 34 matched participants in PROMISSE without preeclampsia but, among a group of non-autoimmune women who developed preeclampsia during pregnancy, 10% had mutations in MCP or factor I.
What Do These Findings Mean?
These findings identify MCP and factor I mutations as genetic defects associated with preeclampsia in pregnant women with SLE and/or APL Ab. Importantly, they also reveal an association between similar mutations and preeclampsia in women without any underlying autoimmune disease. Taken together with evidence from previous animal experiments, these findings suggest that dysregulation of complement activation is involved in the development of preeclampsia. Although further studies are needed to confirm and extend these findings, these results suggest that proteins involved in the regulation of complement activation could be new targets for the treatment of preeclampsia and raise the possibility that tests could be developed to identify women at risk of developing preeclampsia.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001013.
Tommy's, a UK charity that funds scientific research into the causes and prevention of miscarriage, premature birth, and stillbirth, has information on preeclampsia
The March of Dimes Foundation, a nonprofit organization for pregnancy and baby health, has information on preeclampsia
The UK National Health Services Choices website also has information about preeclampsia
Wikipedia has pages on the complement system, on autoimmune disease, and on preeclampsia (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
More information on the PROMISSE study is available
doi:10.1371/journal.pmed.1001013
PMCID: PMC3062534  PMID: 21445332
18.  Cross-sectional analysis of adverse outcomes in 1,029 pregnancies of Afro-Caribbean women in Trinidad with and without systemic lupus erythematosus 
The objective of the study was to examine pregnancy outcomes in women with systemic lupus erythematosus (SLE) and population controls in Trinidad. We performed a cross-sectional analysis of adverse outcomes in pregnancies of Afro-Caribbean women with SLE and without SLE. One hundred and twenty-two female adult cases of SLE and 203 neighbourhood age-matched women without SLE were interviewed concerning details of their reproductive history, and the anticardiolipin antibody (ACL) status was established for women with SLE. A total of 1,029 pregnancies were reported (356 by women with SLE, 673 by women without SLE). In women with ≥ 1 pregnancy the total number of pregnancies was similar in women with a diagnosis of SLE and women without; however, a lower proportion of women with SLE had ever been pregnant compared with women without SLE (80% versus 91%, P = 0.002). In multivariate logistic regression analyses adjusted for maternal age, district of residence, pregnancy order and smoking, SLE pregnancies were more than twice as likely to end in foetal death than non-SLE pregnancies (odds ratio (OR), 2.4; 95% confidence interval (CI), 1.2–4.7). This effect was driven by a large increase in the odds of stillbirth (OR, 8.5; 95% CI, 2.5–28.8). The odds of early miscarriage (OR, 1.4; 95% CI, 0.6–3.1) and of mid-trimester miscarriage (OR, 1.9; 95% CI, 0.4–9.5) were higher, but were not statistically significantly different, in SLE pregnancies than in non-SLE pregnancies. The odds of ectopic pregnancy (OR, 7.5; 95% CI, 0.9–62.5) and of preterm birth (OR, 3.4; 95% CI, 1.2–10.0) were higher in SLE pregnancies conceived after diagnosis than in non-SLE pregnancies. There was no evidence of raised levels of IgG or IgM ACL among the majority (93/97 women, 96%) of SLE cases who reported sporadic mid-trimester miscarriage or stillbirth, although there was evidence of high levels of IgM and IgG ACL among women reporting three or more miscarriages and three consecutive miscarriages, and of raised IgG ACL among those experiencing ectopic pregnancy. In conclusion, we found evidence for a large increase in risk of stillbirth in the pregnancies of Afro-Caribbean Trinidadian women with SLE (not accounted for by high ACL status). There was some evidence of an increased risk of preterm delivery and ectopic pregnancy in pregnancies conceived after a diagnosis of maternal SLE.
doi:10.1186/ar2332
PMCID: PMC2246243  PMID: 18042277
19.  High Dietary Fat Promotes Visceral Obesity and Impaired Endothelial Function in Female Mice with Systemic Lupus Erythematosus 
Gender medicine  2011;8(2):150-155.
Inflammation contributes to metabolic and cardiovascular disease. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that predominantly affects young women. Cardiovascular disease is a major cause of mortality in patients with SLE. We recently reported that a model of SLE (female NZBWF1 mice) develops characteristics of the metabolic syndrome. In the present study, we tested the hypothesis that high dietary fat during SLE accelerates the development of cardiovascular risk factors such as central obesity and vascular dysfunction. Twenty four week old female SLE mice (NZBWF1) were fed either control diet (SLE, 10% kcal) or high fat diet (SLE+HF, 45% kcal) for a total of 14 weeks. Body weight was similar between SLE (42±1g, n=5) and SLE+HF (45±2g, n=6) and weight gain was not different in the SLE+HF mice (+18.0±3.0%) compared with controls (+15.8±3.6%) and food intake was not different (SLE, 2.2±0.3 vs. SLE+HF, 2.1±0.2 g/24 hours). Fifty seven percent of the SLE+HF mice exhibited signs of albuminuria (>100 mg/dL) compared with only 20% of the control SLE mice at the end of the experiment. Endothelial dependent relaxation in isolated carotid arteries was impaired in the SLE+HF group compared to SLE. Ovarian fat was increased in SLE+HF mice (6.6±0.5g) when compared to control SLE (5.4±0.1g, p<0.05) and liver weight was decreased in SLE+HF (1.6±0.1g) mice compared to control mice (1.9±0.1g, p<0.03). These data suggest that dietary fat accelerates renal injury and peripheral vascular dysfunction and promotes visceral obesity in a disease model with chronic inflammation.
doi:10.1016/j.genm.2011.03.006
PMCID: PMC3229028  PMID: 21536233
Lupus; Endothelial; Adipose
20.  Functional polymorphisms of the coagulation factor II gene (F2) and susceptibility to systemic lupus erythematosus (SLE) 
The Journal of rheumatology  2011;38(4):652-657.
Objective
Two F2 functional polymorphisms, rs1799963 (G20210A) and rs3136516 (A19911G), are known to be associated with elevated prothrombin (encoded by F2) levels/activity and thrombosis risk. Since systemic lupus erythematosus (SLE) patients have high risk of thrombosis and accelerated atherosclerosis and also high prevalence of anti-prothrombin antibodies, we hypothesized that these two F2 polymorphisms could affect SLE risk.
Methods
We investigated these polymorphisms in 627 women with SLE (84% Caucasian Americans, 16% African Americans) and 657 female controls (78% Caucasian Americans, 22% African Americans).
Results
While the rs1799963 A allele was almost absent in African Americans, it was present at ~2% frequency in Caucasian Americans and showed no significant association with SLE. The rs3136516 G allele frequency was significantly higher in Caucasian SLE cases than controls (48.4% vs. 43.7%) with a covariate-adjusted odds ratio (OR) of 1.22 (95%CI: 1.03–1.46; P = 0.023). The association was replicated in African Americans (rs3136516 G allele frequency: 91.2% in cases vs. 82.2% in controls) with an adjusted OR of 1.96 (95%CI: 1.08–3.58; P = 0.022). Stratification of Caucasian SLE patients based on the presence or absence of cardiac and vascular events (CVE) revealed stronger association with the CVE-positive SLE subgroup than the CVE-negative SLE subgroup (OR: 1.42 vs. 1.20). Prothrombin activity measurements in a subset of SLE cases demonstrated higher activity in the carriers of the rs3136516 G allele.
Conclusion
Our results suggest a potential role for prothrombin and the crosstalk between hemostatic and immune/inflammatory systems in SLE and SLE-associated cardiovascular events, which warrant further investigation in independent samples.
doi:10.3899/jrheum.100728
PMCID: PMC3073870  PMID: 21239755
lupus; prothrombin; F2; polymorphism; A19911G; G20210A
21.  MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus 
PLoS Genetics  2013;9(2):e1003336.
We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.
Author Summary
Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease contributed to by excessive innate immune activation involving toll-like receptors (TLRs, particularly TLR7/8/9) and type I interferon (IFN) signaling pathways. TLR7 responds against RNA–containing nuclear antigens and activates IFN-α pathway, playing a pivotal role in the development of SLE. While a genomic duplication of Tlr7 promotes lupus-like disease in the Y-linked autoimmune accelerator (Yaa) murine model, the lack of common copy number variations at TLR7 in humans led us to identify a functional single nucleotide polymorphism (SNP), rs3853839 at 3′ UTR of the TLR7 gene, associated with SLE susceptibility in Eastern Asians. In this study, we fine-mapped the TLR7-TLR8 region and confirmed rs3853839 exhibiting the strongest association with SLE in European Americans, African Americans, and Amerindian/Hispanics. Individuals carrying the risk G allele of rs3853839 exhibited increased TLR7 expression at the both mRNA and protein level and decreased transcript degradation. MicroRNA-3148 (miR-3148) downregulated the expression of non-risk allele (C) containing transcripts preferentially, suggesting a likely mechanism for increased TLR7 levels in risk-allele carriers. This trans-ancestral mapping provides evidence for the global association with SLE risk at rs3853839, which resides in a microRNA–gene regulatory site affecting TLR7 expression.
doi:10.1371/journal.pgen.1003336
PMCID: PMC3585142  PMID: 23468661
22.  TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study 
Introduction
The Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3' untranslated region (3' UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.
Methods
A case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.
Results
In addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3' UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3' UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3' UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.
Conclusions
The TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3' UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations.
doi:10.1186/ar3277
PMCID: PMC3132023  PMID: 21396113
23.  Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus 
PLoS Genetics  2008;4(5):e1000084.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. A polymorphism in the STAT4 gene has recently been established as a risk factor for SLE, but the relationship with specific SLE subphenotypes has not been studied. We studied 137 SNPs in the STAT4 region genotyped in 4 independent SLE case series (total n = 1398) and 2560 healthy controls, along with clinical data for the cases. Using conditional testing, we confirmed the most significant STAT4 haplotype for SLE risk. We then studied a SNP marking this haplotype for association with specific SLE subphenotypes, including autoantibody production, nephritis, arthritis, mucocutaneous manifestations, and age at diagnosis. To prevent possible type-I errors from population stratification, we reanalyzed the data using a subset of subjects determined to be most homogeneous based on principal components analysis of genome-wide data. We confirmed that four SNPs in very high LD (r2 = 0.94 to 0.99) were most strongly associated with SLE, and there was no compelling evidence for additional SLE risk loci in the STAT4 region. SNP rs7574865 marking this haplotype had a minor allele frequency (MAF) = 31.1% in SLE cases compared with 22.5% in controls (OR = 1.56, p = 10−16). This SNP was more strongly associated with SLE characterized by double-stranded DNA autoantibodies (MAF = 35.1%, OR = 1.86, p<10−19), nephritis (MAF = 34.3%, OR = 1.80, p<10−11), and age at diagnosis<30 years (MAF = 33.8%, OR = 1.77, p<10−13). An association with severe nephritis was even more striking (MAF = 39.2%, OR = 2.35, p<10−4 in the homogeneous subset of subjects). In contrast, STAT4 was less strongly associated with oral ulcers, a manifestation associated with milder disease. We conclude that this common polymorphism of STAT4 contributes to the phenotypic heterogeneity of SLE, predisposing specifically to more severe disease.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one’s risk for lupus but do not fully determine the outcome. It is thought that the interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between subtypes of lupus and specific genes, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that the STAT4 gene, very recently identified as a lupus risk gene, predisposes specifically to severe manifestations of lupus, including kidney disease.
doi:10.1371/journal.pgen.1000084
PMCID: PMC2377340  PMID: 18516230
24.  Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4 
PLoS Genetics  2013;9(7):e1003554.
We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.
Author Summary
Systemic lupus erythematosus (SLE/lupus) is a complex disease in which the body's immune cells cause inflammation in one or more systems to cause the associated morbidity. Hormones, the environment and genes are all causal contributors to SLE and over the past several years the genetic component of SLE has been firmly established. Several genes which are regulators of the immune system are associated with disease risk. We have established one of these, the tumour-necrosis family superfamily member 4 (TNFSF4) gene, as a lupus susceptibility gene in Northern Europeans. A major obstacle in pinpointing the marker(s) at TNFSF4 which best explain the risk of SLE has been the strong correlation (linkage disequilibrium, LD) between adjacent markers across the TNFSF4 region in this population. To address this, we have typed polymorphisms in several populations in addition to the European groups. The mixed ancestry of these populations gives a different LD pattern than that found in Europeans, presenting a method of pinpointing the section of the TNFSF4 region which results in SLE susceptibility. The Non-European populations have allowed identification of a polymorphism likely to regulate expression of TNFSF4 to increase susceptibility to SLE.
doi:10.1371/journal.pgen.1003554
PMCID: PMC3715547  PMID: 23874208
25.  A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap 
PLoS Genetics  2011;7(12):e1002406.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn's disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.
Author Summary
It is well known that multiple autoimmune disorders cluster in families. However, all of the genetic variants that explain this clustering have not been discovered, and the specific genetic variants shared between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) are not known. In order to better understand the genetic factors that explain this predisposition to autoimmunity, we performed a comprehensive evaluation of shared autoimmune genetic variants. First we considered results from 17 ADs and compiled a list with 446 significant genetic variants from these studies. We identified some genetic variants extensively shared between ADs, as well as the ADs that share the most variants. The genetic overlap between SLE and other ADs was modest. Next we tested how important all the 446 genetic variants were in our collection with a minimum of 1,500 SLE patients. Among the most significant variants in SLE, the majority had already been identified in previous studies, but we also discovered variants in two important immune genes. In summary, our data identified diseases with common genetic risk factors and novel SLE effects, and this supports a relatively distinct genetic susceptibility for SLE. This study helps delineate the genetic architecture of ADs.
doi:10.1371/journal.pgen.1002406
PMCID: PMC3234215  PMID: 22174698

Results 1-25 (1201880)