Search tips
Search criteria

Results 1-25 (1236144)

Clipboard (0)

Related Articles

1.  Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium 
Autofluorescence fundus imaging using an adaptive optics scanning laser ophthalmoscope (AOSLO) allows for imaging of individual retinal pigment epithelial (RPE) cells in vivo. In this study, the potential of retinal damage was investigated by using radiant exposure levels that are 2 to 150 times those used for routine imaging.
Macaque retinas were imaged in vivo with a fluorescence AOSLO. The retina was exposed to 568- or 830-nm light for 15 minutes at various intensities over a square ½° per side. Pre-and immediate postexposure images of the photoreceptors and RPE cells were taken over a 2° field. Long-term AOSLO imaging was performed intermittently from 5 to 165 days after exposure. Exposures delivered over a uniform field were also investigated.
Exposures to 568-nm light caused an immediate decrease in autofluorescence of RPE cells. Follow-up imaging revealed either full recovery of autofluorescence or long-term damage in the RPE cells at the exposure. The outcomes of AOSLO exposures and uniform field exposures of equal average power were not significantly different. No effects from 830-nm exposures were observed.
The study revealed a novel change in RPE autofluorescence induced by 568-nm light exposure. Retinal damage occurred as a direct result of total average power, independent of the light-delivery method. Because the exposures were near or below permissible levels in laser safety standards, these results suggest that caution should be used with exposure of the retina to visible light and that the safety standards should be re-evaluated for these exposure conditions.
PMCID: PMC2790526  PMID: 18408191
2.  The Reduction of Retinal Autofluorescence Caused by Light Exposure 
We have previously shown that long exposure to 568 nm light at levels below the maximum permissible exposure safety limit produces retinal damage preceded by a transient reduction in the autofluorescence of retinal pigment epithelial (RPE) cells in vivo. Here, we determine how the effects of exposure power and duration combine to produce this autofluorescence reduction and find the minimum exposure causing a detectable autofluorescence reduction.
Macaque retinas were imaged using a fluorescence adaptive optics scanning laser ophthalmoscope to resolve individual RPE cells in vivo. The retina was exposed to 568 nm light over a square subtending 0.5° with energies ranging from 1 J/cm2 to 788 J/cm2, where power and duration were independently varied.
In vivo exposures of 5 J/cm2 and higher caused an immediate decrease in autofluorescence followed by either full autofluorescence recovery (exposures ≤ 210 J/cm2) or permanent RPE cell damage (exposures ≥ 247 J/cm2). No significant autofluorescence reduction was observed for exposures of 2 J/cm2 and lower. Reciprocity of exposure power and duration held for the exposures tested, implying that the total energy delivered to the retina, rather than its distribution in time, determines the amount of autofluorescence reduction.
That reciprocity holds is consistent with a photochemical origin, which may or may not cause retinal degeneration. The implementation of safe methods for delivering light to the retina requires a better understanding of the mechanism causing autofluorescence reduction. Finally, RPE imaging was demonstrated using light levels that do not cause a detectable reduction in autofluorescence.
PMCID: PMC2790527  PMID: 19628734
3.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic 
Biomedical Optics Express  2013;4(9):1710-1723.
Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression.
PMCID: PMC3771842  PMID: 24049692
(170.4460) Ophthalmic optics and devices; (170.4470) Ophthalmology; (290.4210) Multiple scattering; (110.1080) Active or adaptive optics
4.  Canine and Human Visual Cortex Intact and Responsive Despite Early Retinal Blindness from RPE65 Mutation 
PLoS Medicine  2007;4(6):e230.
RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA). Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA).
Methods and Findings
RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean ± standard deviation [SD] = 0.07% ± 0.06% and volume = 1.3 ± 0.6 cm3). Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% ± 0.06%) and volume (8.2 ± 0.8 cm3) of activation within the lateral gyrus (p < 0.005 for both). Cortical recovery occurred rapidly (within a month of treatment) and was persistent (as long as 2.5 y after treatment). Recovery was present even when treatment was provided as late as 1–4 y of age. Human RPE65-LCA patients (ages 18–23 y) were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 ± 0.5 mm) was within the normal range (3.2 ± 0.3 mm), and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005). Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 ± 1.2 cm3) compared to controls (29.7 ± 8.3 cm3, p < 0.001) when stimulated with lower intensity light. Unexpectedly, cortical response volume (41.2 ± 11.1 cm3) was comparable to normal (48.8 ± 3.1 cm3, p = 0.2) with higher intensity light stimulation.
Visual cortical responses dramatically improve after retinal gene therapy in the canine model of RPE65-LCA. Human RPE65-LCA patients have preserved visual pathway anatomy and detectable cortical activation despite limited visual experience. Taken together, the results support the potential for human visual benefit from retinal therapies currently being aimed at restoring vision to the congenitally blind with genetic retinal disease.
The study by Samuel Jacobson and colleagues suggests that retinal gene therapy can improve retinal, visual pathway, and visual cortex responses to light stimulation, even after prolonged periods of blindness and in congenitally blind patients.
Editors' Summary
The eye captures light but the brain is where vision is experienced. Treatments for childhood blindness at the eye level are ready, but it is unknown whether the brain will be receptive to an improved neural message. Normal vision begins as photoreceptor cells in the retina (the light-sensitive tissue lining the inside of the eye) convert visual images into electrical impulses. These impulses are sent along the optic nerve to the visual cortex, the brain region where they are interpreted. The conversion of light into electrical impulses requires the activation of a molecule called retinal, which is subsequently recycled by retinal pigment epithelium (RPE) cells neighboring the retina. One of the key enzymes of the recycling reactions is encoded by a gene called RPE65. Genetic changes (mutations) in RPE65 cause an inherited form of blindness called Leber congenital amaurosis (LCA). In this disease, retinal is not recycled and as a result, the photoreceptor cells cannot work properly and affected individuals have poor or nonexistent vision from birth. Previous studies in dog and mouse models of the human disease have demonstrated that the introduction of a functional copy of RPE65 into the RPE cells using a harmless virus (gene therapy) dramatically restores retinal activity. Very recently, a pioneering gene therapy operation took place in London (UK) where surgeons injected a functional copy of RPE65 into the retina of a man with LCA. Whether this operation results in improved vision is not known at this time.
Why Was This Study Done?
Gene therapy corrects the retinal defects in animal models of LCA but whether the visual pathway from the retina to the visual cortex of the brain can respond normally to the signals sent by the restored retina is not known. Early visual experience is thought to be necessary for the development of a functional visual cortex, so replacing the defective RPE65 gene might not improve the vision of people with LCA. In this study, the researchers have studied the visual cortex of RPE65-deficient dogs before and after gene therapy to see whether the therapy affects the activity of the visual cortex. They have also investigated visual pathway integrity and responsiveness in adults with LCA caused by RPE65 mutations. If the visual pathway is disrupted in these patients, they reasoned, gene therapy might not restore their vision.
What Did the Researchers Do and Find?
The researchers used a technique called functional magnetic resonance imaging (fMRI) to measure light-induced brain activity in RPE65-deficient dogs before and after gene therapy. They also examined the reactions of the dogs' pupils to light (in LCA, the pupils do not contract normally in response to light because there is reduced signal transmission along the visual pathway). Finally, they measured the electrical activity of the dogs' retinas in response to light flashes—the retinas of patients with LCA do not react to light. Gene therapy corrected the defective retinal and visual pathway responses to light in the RPE65-deficient dogs and, whereas before treatment there was no response in the visual cortex to light stimulation in these dogs, after treatment, its activity approached that seen in normal dogs. The recovery of cortical responses was permanent and occurred soon after treatment, even in animals that were 4 years old when treated. Next, using structural MRI, the researchers studied human patients with LCA and found that the optic nerve diameter in young adults was within the normal range and that the structure of the visual cortex was very similar to that of normal individuals. Finally, using fMRI, they found that, although the visual cortex of patients with LCA did not respond to dim light, its reaction to bright light was comparable to that of normal individuals.
What Do These Findings Mean?
The findings from the dog study indicate that retinal gene therapy rapidly improves retinal, visual pathway, and visual cortex responses to light stimulation, even in animals that have been blind for years. In other words, in the dog model of LCA at least, all the components of the visual system remain receptive to visual inputs even after long periods of visual deprivation. The findings from the human study also indicate that the visual pathway remains anatomically intact despite years of disuse and that the visual cortex can be activated in patients with LCA even though these people have very limited visual experience. Taken together, these findings suggest that successful gene therapy of the retina might restore some functional vision to people with LCA but proof will have to await the outcomes of several clinical trials ongoing or being planned in Europe and the USA.
Additional Information.
Please access these Web sites via the online version of this summary at
General information on gene therapy is available from the Oak Ridge National Laboratory
Information is provided by the BBC about gene therapy for Leber congenital amaurosis (includes an audio clip from a doctor about the operation)
The National Institutes of Health/National Eye Institute (US) provides information about an ongoing gene therapy trial of RPE65-Leber congenital amaurosis gives details on treatment trials for Leber congenital amaurosis
The Foundation Fighting Blindness has a fact sheet on Leber congenital amaurosis (site includes Microsoft Webspeak links that read some content aloud)
The Foundation for Retinal Research has a fact sheet on Leber congenital amaurosis
Find more detailed information on Leber congenital amaurosis and the gene mutations that cause it from GeneReviews
WonderBaby, information for parents of babies with Leber congenital amaurosis
PMCID: PMC1896221  PMID: 17594175
5.  CD36 Deficiency Leads to Choroidal Involution via COX2 Down-Regulation in Rodents 
PLoS Medicine  2008;5(2):e39.
In the Western world, a major cause of blindness is age-related macular degeneration (AMD). Recent research in angiogenesis has furthered the understanding of choroidal neovascularization, which occurs in the “wet” form of AMD. In contrast, very little is known about the mechanisms of the predominant, “dry” form of AMD, which is characterized by retinal atrophy and choroidal involution. The aim of this study is to elucidate the possible implication of the scavenger receptor CD36 in retinal degeneration and choroidal involution, the cardinal features of the dry form of AMD.
Methods and Findings
We here show that deficiency of CD36, which participates in outer segment (OS) phagocytosis by the retinal pigment epithelium (RPE) in vitro, leads to significant progressive age-related photoreceptor degeneration evaluated histologically at different ages in two rodent models of CD36 invalidation in vivo (Spontaneous hypertensive rats (SHR) and CD36−/− mice). Furthermore, these animals developed significant age related choroidal involution reflected in a 100%–300% increase in the avascular area of the choriocapillaries measured on vascular corrosion casts of aged animals. We also show that proangiogenic COX2 expression in RPE is stimulated by CD36 activating antibody and that CD36-deficient RPE cells from SHR rats fail to induce COX2 and subsequent vascular endothelial growth factor (VEGF) expression upon OS or antibody stimulation in vitro. CD36−/− mice express reduced levels of COX2 and VEGF in vivo, and COX2−/− mice develop progressive choroidal degeneration similar to what is seen in CD36 deficiency.
CD36 deficiency leads to choroidal involution via COX2 down-regulation in the RPE. These results show a novel molecular mechanism of choroidal degeneration, a key feature of dry AMD. These findings unveil a pathogenic process, to our knowledge previously undescribed, with important implications for the development of new therapies.
Florian Sennelaub and colleagues show that CD36 deficiency leads to choroidal involution, a key feature of "dry" age-related macular degeneration, via COX-2 down-regulation in the retinal pigment epithelium.
Editors' Summary
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in industrialized countries. The macula is the central region of the retina, the tissue at the back of the eye that detects light and converts it into electrical messages that are sent to the brain. In the commonest form of AMD—“dry” AMD—the light-sensitive cells in the retina (the photoreceptors) gradually die. This degeneration might occur because of damage to the retinal pigment epithelium (RPE). This layer of dark cells lies between the photoreceptors and the choroid, the layer of the eye that contains blood vessels and brings oxygen to the retina. The RPE keeps the retina healthy by transferring the right amount of oxygen and nutrients from the choroid to the retina and by removing worn-out photoreceptor outer segments (the part of the photoreceptor that actually absorbs light) in a process called phagocytosis (engulfment and digestion). In addition to photoreceptor degeneration and RPE shrinkage, a layer of the choroid rich in small blood vessels (the choriocapillaris) also shrinks in dry AMD. For affected individuals, all these changes (which experts describe as retinal atrophy and choroidal involution) mean that the sharp central vision that is needed for reading and driving is destroyed, leaving only dim, burred images or a black hole at the center of the vision.
Why Was This Study Done?
Little is known about the molecular mechanisms that underlie dry AMD and, consequently, there is no cure for it. In this study, the researchers have tested whether a molecule called CD36, which is expressed on the surface of RPE cells, is involved in dry AMD. CD36 is a scavenger receptor—which means it binds many potentially harmful molecules including oxidized fats (which are present in the photoreceptor outer segments) and is involved in their phagocytosis. Phagocytosis itself induces the expression of several proteins in the RPE cells, including COX2, a “proangiogenic” protein that stimulates the growth of blood vessels. Putting this information together, the researchers hypothesized that a defect in CD36 might cause the characteristic retinal atrophy (by preventing the phagocytosis of worn-out photoreceptor outer segments) and choroidal involution (by preventing the induction of COX2 expression and consequently the maintenance of the blood vessels in the choroid) of dry AMD.
What Did the Researchers Do and Find?
The researchers first show that retinal degeneration occurs in rats and mice that express no CD36. This degeneration (which included a reduction in the thickness of the retina, the presence of irregularly shaped photoreceptor outer segments, and the detachment of these structures from the RPE) was seen in old but not young animals. Choroidal involution was also seen in these CD36-deficient animals. This change was present in young mice and rats but increased with age so that by one year old, the choriocapillaris looked moth-eaten. Next, the researchers show that although RPE cells taken from normal animals and grown in dishes were able to make COX2 in response to exposure to purified photoreceptor outer segments, RPE cells from CD36-deficient animals did not. The expression of vascular endothelial growth factor (VEGF; a protein that is needed for normal choroidal development and whose expression is controlled by COX2) showed a similar pattern. Finally, the researchers report that COX2 deficiency in mice caused similar age-dependent choroidal involution and similar effects on VEGF expression in RPE cells as CD36 deficiency.
What Do These Findings Mean?
These findings show that CD36 deficiency leads to progressive, age-related degeneration of photoreceptors and choroidal involution in rats and mice. They also show that CD36 deficiency causes this choroidal involution, the key feature of dry AMD, because it leads to down-regulation of COX2 expression (and subsequently reduced VEGF expression) in the RPE. Researchers now need to find out whether this mechanism for the development of dry AMD holds in people—what happens in animals does not necessarily happen in people. If it does, pharmacological activation of CD36 or restoration of CD36 expression in the RPE might eventually provide a way to treat dry AMD.
Additional Information.
Please access these Web sites via the online version of this summary at
MedlinePlus provides links to information on macular degeneration and an encyclopedia page on macular degeneration (in English and Spanish)
Pages on the US National Institutes of Health NIH SeniorHealth site provides text and spoken information about AMD
The US National Eye Institute and the UK Royal National Institute of Blind People also provide information about AMD
Wikipedia has pages on the retina, photoreceptor cells, retinal pigment epithelium, and choroid (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2245984  PMID: 18288886
6.  Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis 
PLoS Medicine  2006;3(10):e347.
RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice.
Methods and Findings
Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease.
By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65−/− mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose.
In theRpe65-/- mouse model of Leber congenital amaurosis, injection of a lentiviral vector expressing the Rpe65 mouse cDNA was able to prevent cone degeneration and restore cone function.
Editors' Summary
Leber congenital amaurosis (LCA) is the name of a group of hereditary diseases that cause blindness in infants and children. Changes in any one of a number of different genes can cause the blindness, which affects vision starting at birth or soon after. The condition was first described by a German doctor, Theodore Leber, in the 19th century, hence the first part of the name; “amaurosis” is another word for blindness. Mutations in one gene called retinal pigment epithelium-specific protein, 65 kDa (RPE65)—so called because it is expressed in the pigment epithelium, a cell layer adjacent to the light-sensitive cells, and is 65 kilodaltons in size—cause about 10% of cases of LCA. The product of this gene is essential for the recycling of a substance called 11-cis-retinal, which is necessary for the light-sensitive rods and cones of the retina to capture light. If the gene is abnormal, the sensitivity of the retina to light is drastically reduced, but it also leads to damage to the light-sensitive cells themselves.
Why Was This Study Done?
Potentially, eyes diseases such as this one could be treated by gene therapy, which works by replacing a defective gene with a normal functional one, usually by putting a copy of the normal gene into a harmless virus and injecting it into the affected tissue—in this case, the eye. The researchers here wanted to see whether expressing wild-type RPE65 using a particular type of gene vector that can carry large pieces of DNA transcript—a lentiviral vector—could prevent degeneration of cone cells and restore cone function in a mouse model of this type of LCA—mice who had had this Rpe65 gene genetically removed.
What Did the Researchers Do and Find?
Injection of the normal gene into the retina of Rpe65-deficient mice led to sustained expression of the protein RPE65 in the retinal pigment epithelium. Electrical recordings of the activity of the eyes in these mice showed that Rpe65 gene transfer restored retinal function to a near-normal level. In addition, Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mice.
What Do These Findings Mean?
These findings suggest that it is theoretically possible to treat this type of blindness by gene therapy. However, because this study was done in mice, many other steps need to be taken before it will be clear whether the treatment could work in humans. These steps include a demonstration that the virus is safe in humans, and experiments to determine what dose of virus would be needed and how long the effects of the treatment would last. Another question is whether it would be necessary (or even possible) to treat affected children during early childhood or when children start losing vision.
Additional Information.
Please access these Web sites via the online version of this summary at
The Foundation for Retinal Research has detailed information on Leber's congenital amaurosis
Contact a Family is a UK organization that aims to put families of children with illnesses in touch with each other
The Foundation for Fighting Blindness funds research into, and provides information about many types of blindness, including Leber's congenital amaurosis
This Web site provides information on gene therapy clinical trials, including those dedicated to cure eye diseases
This foundation provides information on diseases leading to blindness, including Leber's congenital amaurosis
PMCID: PMC1592340  PMID: 17032058
7.  Quantitative Autofluorescence and Cell Density Maps of the Human Retinal Pigment Epithelium 
Lipofuscin (LF) accumulation within RPE cells is considered pathogenic in AMD. To test whether LF contributes to RPE cell loss in aging and to provide a cellular basis for fundus autofluorescence (AF) we created maps of human RPE cell number and histologic AF.
Retinal pigment epithelium–Bruch's membrane flat mounts were prepared from 20 donor eyes (10 ≤ 51 and 10 > 80 years; postmortem: ≤4.2 hours; no retinal pathologies), preserving foveal position. Phalloidin-binding RPE cytoskeleton and LF-AF (488-nm excitation) were imaged at up to 90 predefined positions. Maps were assembled from 83,330 cells in 1470 locations. From Voronoi regions representing each cell, the number of neighbors, cell area, and total AF intensity normalized to an AF standard was determined.
Highly variable between individuals, RPE-AF increases significantly with age. A perifoveal ring of high AF mirrors rod photoreceptor topography and fundus-AF. Retinal pigment epithelium cell density peaks at the fovea, independent of age, yet no net RPE cell loss is detectable. The RPE monolayer undergoes considerable lifelong re-modeling. The relationship of cell size and AF, a surrogate for LF concentration, is orderly and linear in both groups. Autofluorescence topography differs distinctly from the topography of age-related rod loss.
Digital maps of quantitative AF, cell density, and packing geometry provide metrics for cellular-resolution clinical imaging and model systems. The uncoupling of RPE LF content, cell number, and photoreceptor topography in aging challenges LF's role in AMD.
Simultaneous RPE cell density and autofluorescence maps of human donor eyes exhibit a significant increase in lipofuscin autofluorescence with age while RPE cell density remains stable, questioning lipofuscin's role in aging and AMD.
PMCID: PMC4123894  PMID: 25034602
retinal pigment epithelium; autofluorescence; photoreceptor; lipofuscin; cytoskeleton
8.  The Bisretinoids of Retinal Pigment Epithelium 
The retina exhibits an inherent autofluorescence that is imaged ophthalmoscopically as fundus autofluorescence. In clinical settings, fundus autofluorescence examination aids in the diagnosis and follow-up of many retinal disorders. Fundus autofluorescence originates from the complex mixture of bisretinoid fluorophores that are amassed by retinal pigment epithelial (RPE) cells as lipofuscin. Unlike the lipofuscin found in other cell-types, this material does not form as a result of oxidative stress. Rather, the formation is attributable to non-enzymatic reactions of vitamin A aldehyde in photoreceptor cells; transfer to RPE occurs upon phagocytosis of photoreceptor outer segments. These fluorescent pigments accumulate even in healthy photoreceptor cells and are generated as a consequence of the light capturing function of the cells. Nevertheless, the formation of this material is accelerated in some retinal disorders including recessive Stargardt disease and ELOVL-4-related retinal degeneration. As such, these bisretinoid side-products are implicated in the disease processes that threaten vision. In this article, we review our current understanding of the composition of RPE lipofuscin, the structural characteristics of the various bisretinoids, their related spectroscopic features and the biosynthetic pathways by which they form. We will revisit factors known to influence the extent of the accumulation and therapeutic strategies being used to limit bisretinoid formation. Given their origin from vitamin A aldehyde, an isomer of the visual pigment chromophore, it is not surprising that the bisretinoids of retina are light sensitive molecules. Accordingly, we will discuss recent findings that implicate the photodegradation of bisretinoid in the etiology of age-related macular degeneration.
PMCID: PMC3288746  PMID: 22209824
A2E; all-trans-retinal; bisretinoid; retinal pigment epithelium; macular degeneration; retina
9.  Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in retinal pigment epithelium 
Molecular Vision  2010;16:665-675.
Hydration and ionic composition of the subretinal space (SRS) is modulated by the retinal pigment epithelium (RPE). In particular calcium concentration (Ca2+) in the SRS varies with light exposure, and although this change is regulated by RPE transport activity, the specific transport proteins involved have yet to be defined. Two members of the transient receptor potential vanilloid family, TRPV5 and TRPV6, are calcium selective ion channels and are known to be expressed in calcium-transporting epithelial tissues. The present work characterizes of TRPV5 and TRPV6 in RPE.
Reverse transcriptase PCR was used to examine the presence of TRPV5 and TRPV6 mRNA in cultured human RPE. Protein expression was assessed by western blotting using TRPV5- and TRPV6-specific antibodies. Immunocytochemistry was employed to examine subcellular localization of TRPV5 and TRPV6 in frozen, formaldehyde-fixed sections of native RPE–choroid tissue and in cultured human RPE monolayers. Finally, TRPV5/TRPV6 activity was assessed in cultured RPE, using Ca2+ indicator dyes to follow [Ca2+]i as a function of changes in [Ca2+]o with and without addition of the TRPV5/TRPV6 inhibitor ruthenium red.
Direct sequencing of PCR DNAs documented the presence of TRPV5 and TRPV6 transcripts in human RPE. Immunocytochemistry showed that TRPV5 and TRPV6 are expressed in native RPE–choroid tissue with strong immunoreactivity for both channels on the apical as well as the basal plasma membranes. Immunostaining for both channels was also positive in monolayers of cultured RPE cells. In cultured cells subcellular localization was variable with immunoreactivity present in the cytoplasmic domain as well as on the plasma membrane. Plasma membrane staining was increased with phagocytosis. The reported molecular weight of the core protein for both TRPV5 and TRPV6 is about 75 kDa, with the expected size of the glycosylated proteins in the range of 85–100 kDa. Western blot analysis of TRPV6 in RPE detected a distinct band at approximately 85 kDa, with another strong band at approximately 60 kDa. A similar pattern was seen for TRPV5, with strong bands at 82 kDa and 71 kDa. In live-cell imaging experiments, [Ca2+]i was lower in the presence of the TRPV5/TRPV6 inhibitor ruthenium red.
RPE expresses the epithelial calcium channels TRPV5 and TRPV6, the most calcium-selective channels of the TRP superfamily. Present findings suggest that these channels could function in RPE to mediate calcium influx from SRS and thus regulate changes in SRS calcium composition that accompany light/dark transitions.
PMCID: PMC2855730  PMID: 20405023
10.  Methodologies for analysis of patterning in the mouse RPE sheet 
Molecular Vision  2015;21:40-60.
Our goal was to optimize procedures for assessing shapes, sizes, and other quantitative metrics of retinal pigment epithelium (RPE) cells and contact- and noncontact-mediated cell-to-cell interactions across a large series of flatmount RPE images.
The two principal methodological advances of this study were optimization of a mouse RPE flatmount preparation and refinement of open-access software to rapidly analyze large numbers of flatmount images. Mouse eyes were harvested, and extra-orbital fat and muscles were removed. Eyes were fixed for 10 min, and dissected by puncturing the cornea with a sharp needle or a stab knife. Four radial cuts were made with iridectomy scissors from the puncture to near the optic nerve head. The lens, iris, and the neural retina were removed, leaving the RPE sheet exposed. The dissection and outcomes were monitored and evaluated by video recording. The RPE sheet was imaged under fluorescence confocal microscopy after staining for ZO-1 to identify RPE cell boundaries. Photoshop, Java, Perl, and Matlab scripts, as well as CellProfiler, were used to quantify selected parameters. Data were exported into Excel spreadsheets for further analysis.
A simplified dissection procedure afforded a consistent source of images that could be processed by computer. The dissection and flatmounting techniques were illustrated in a video recording. Almost all of the sheet could be routinely imaged, and substantial fractions of the RPE sheet (usually 20–50% of the sheet) could be analyzed. Several common technical problems were noted and workarounds developed. The software-based analysis merged 25 to 36 images into one and adjusted settings to record an image suitable for large-scale identification of cell-to-cell boundaries, and then obtained quantitative descriptors of the shape of each cell, its neighbors, and interactions beyond direct cell–cell contact in the sheet. To validate the software, human- and computer-analyzed results were compared. Whether tallied manually or automatically with software, the resulting cell measurements were in close agreement. We compared normal with diseased RPE cells during aging with quantitative cell size and shape metrics. Subtle differences between the RPE sheet characteristics of young and old mice were identified. The IRBP−/− mouse RPE sheet did not differ from C57BL/6J (wild type, WT), suggesting that IRBP does not play a direct role in maintaining the health of the RPE cell, while the slow loss of photoreceptor (PhR) cells previously established in this knockout does support a role in the maintenance of PhR cells. Rd8 mice exhibited several measurable changes in patterns of RPE cells compared to WT, suggesting a slow degeneration of the RPE sheet that had not been previously noticed in rd8.
An optimized dissection method and a series of programs were used to establish a rapid and hands-off analysis. The software-aided, high-sampling-size approach performed as well as trained human scorers, but was considerably faster and easier. This method allows tens to hundreds of thousands of cells to be analyzed, each with 23 metrics. With this combination of dissection and image analysis of the RPE sheet, we can now analyze cell-to-cell interactions of immediate neighbors. In the future, we may be able to observe interactions of second, third, or higher ring neighbors and analyze tension in sheets, which might be expected to deviate from normal near large bumps in the RPE sheet caused by druse or when large frank holes in the RPE sheet are observed in geographic atrophy. This method and software can be readily applied to other aspects of vision science, neuroscience, and epithelial biology where patterns may exist in a sheet or surface of cells.
PMCID: PMC4301600
11.  Generation of retinal pigment epithelial cells from small molecules and OCT4-reprogrammed human induced pluripotent stem cells 
Autologous retinal pigment epithelium (RPE) grafts derived from induced pluripotent stem cells (iPSCs) may be used to cure blinding diseases in which RPE dysfunction results in photoreceptor degeneration. Four, two, and one factor-derived iPS (4F-, 2F-, and 1F-iPSCs, respectively) were differentiated into fully functional cuboidal shaped pigmented cells in polarized monolayers that express RPE-specific markers. 1F-iPS-RPE strongly resemble primary human fetal RPE (hfRPE) based on proteomic and untargeted metabolomic analyses, and, utilizing novel in vivo imaging technology coupled with electroretinography, we demonstrate that 1F-iPS-RPE mediate anatomical and functional rescue of photoreceptors after transplantation in an animal model of RPE-mediated retinal degeneration. 1F-iPS-RPE cells were injected subretinally as a suspension and formed a monolayer dispersed between host RPE cells. Furthermore, 1F-iPS-RPE do not simply provide trophic support to rescue photoreceptors as previously speculated, but actually phagocytose photoreceptor outer segments in vivo and restore visual cycling (based on high-resolution mass spectrometry based detection of recycled photoreceptor protein and lipid end products and electron microscopic analysis). Thus, 1F-iPS-RPE grafts may be superior to conventional iPS-RPE for clinical use since 1F-iPS-RPE closely resemble hfRPE, mediate anatomical and functional photoreceptor rescue in vivo and are generated using a reduced number of potentially oncogenic reprogramming factors.
PMCID: PMC3328503  PMID: 22532929
Retinal pigment epithelium; induced pluripotent stem cells; differentiation; small molecules
12.  Modulation of MCT3 Expression during Wound Healing of the Retinal Pigment Epithelium 
MCT3, a specific marker of differentiated RPE, is downregulated after wounding. This report demonstrates for the first time a role for cell-cell contacts in restoring MCT3 expression after injury.
MCT3 is a proton-coupled monocarboxylate transporter preferentially expressed in the basolateral membrane of the retinal pigment epithelium (RPE) and has been shown to play an important role in regulating pH and lactate concentrations in the outer retina. Decreased expression of MCT3 in response to trauma or disease could contribute to pathologic changes in the retina. The present study followed the expression of MCT3 after wounding and re-epithelialization of chick RPE explant and human fetal (hf) RPE cultures.
Immunofluorescence microscopy and immunoblotting were performed to determine changes in MCT expression after scratch wounding and re-epithelialization of chick RPE/choroid explant cultures and hfRPE cell monolayers.
MCT3 expression and basolateral polarity were maintained in chick RPE/choroid explant cultures and hfRPE monolayers. Wounding resulted in loss of MCT3 and the upregulation of MCT4 expression in migrating cells at the edge of the wound. On re-epithelialization, MCT3 was detected in chick and hfRPE cells when cells became hexagonally packed and pigmented. However, in hfRPE cells, MCT4 was consistently expressed throughout the epithelial monolayer. RPE cells at the edges of chick explants and hfRPE cultures with a free edge expressed MCT4 but not MCT3.
Wounding of RPE monolayers resulted in dedifferentiation of the cells at the edge of the wound, as evidenced by a loss of MCT3 and increased MCT4 expression. Collectively, these findings suggest that both cell-cell and cell-substrate interactions are essential in directing and maintaining differentiation of the RPE and expression of MCT3.
PMCID: PMC3066603  PMID: 20505202
13.  High-Resolution Images of Retinal Structure in Patients with Choroideremia 
To study retinal structure in choroideremia patients and carriers using high-resolution imaging techniques.
Subjects from four families (six female carriers and five affected males) with choroideremia (CHM) were characterized with best-corrected visual acuity (BCVA), kinetic and static perimetry, full-field electroretinography, and fundus autofluorescence (FAF). High-resolution macular images were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography (SD-OCT). Coding regions of the CHM gene were sequenced.
Molecular analysis of the CHM gene identified a deletion of exons 9 to 15 in family A, a splice site mutation at position 79+1 of exon 1 in family B, deletion of exons 6 to 8 in family C, and a substitution at position 106 causing a premature stop in family D. BCVA ranged from 20/16 to 20/63 in carriers and from 20/25 to 5/63 in affected males. FAF showed abnormalities in all subjects. SD-OCT showed outer retinal layer loss, outer retinal tubulations at the margin of outer retinal loss, and inner retinal microcysts. Patchy cone loss was present in two symptomatic carriers. In two affected males, cone mosaics were disrupted with increased cone spacing near the fovea but more normal cone spacing near the edge of atrophy.
High-resolution retinal images in CHM carriers and affected males demonstrated RPE and photoreceptor cell degeneration. As both RPE and photoreceptor cells were affected, these cell types may degenerate simultaneously in CHM. These findings provide insight into the effect of CHM mutations on macular retinal structure, with implications for the development of treatments for CHM. ( number, NCT00254605.)
High-resolution retinal images in choroideremia carriers and affected males demonstrated degeneration of retinal pigment epithelial and photoreceptor cells. The findings illustrate the effect of CHM mutations on macular cone structure, with implications for the development of treatments for CHM.
PMCID: PMC3564452  PMID: 23299470
14.  Fundus autofluorescence and the bisretinoids of retina† 
Imaging of the human fundus of the eye with excitation wavelengths in the visible spectrum reveals a natural autofluorescence, that in a healthy retina originates primarily from the bisretinoids that constitute the lipofuscin of retinal pigment epithelial (RPE) cells. Since the intensity and distribution of fundus autofluorescence is altered in the presence of retinal disease, we have examined the fluorescence properties of the retinal bisretinoids with a view to aiding clinical interpretations. As is also observed for fundus autofluorescence, fluorescence emission from RPE lipofuscin was generated with a wide range of exciting wavelengths; with increasing excitation wavelength, the emission maximum shifted towards longer wavelengths and spectral width was decreased. These features are consistent with fluorescence generation from a mixture of compounds. While the bisretinoids that constitute RPE lipofuscin all fluoresced with maxima that were centered around 600 nm, fluorescence intensities varied when excited at 488 nm, the excitation wavelength utilized for fundus autofuorescence imaging. For instance the fluorescence efficiency of the bisretinoid A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE) was greater than A2E and relative to both of the latter, all-trans-retinal dimer-phosphatidylethanolamine was weakly fluorescent. On the other hand, certain photooxidized forms of the bisretinoids present in both RPE and photoreceptor cells were more strongly fluorescent than the parent compound. We also sought to evaluate whether diffuse puncta of autofluorescence observed in some retinal disorders of monogenic origin are attributable to retinoid accumulation. However, two retinoids of the visual cycle, all-trans-retinyl ester and all-trans-retinal, did not exhibit fluorescence at 488 nm excitation.
PMCID: PMC4071605  PMID: 20862444
15.  An Alternative Isomerohydrolase in the Retinal Müller Cells of a Cone-Dominant Species 
The Febs Journal  2011;278(16):2913-2926.
Cone photoreceptors have faster light responses than rods and a higher demand for 11-cis retinal (11cRAL), the chromophore of visual pigments. RPE65 is the isomerohydrolase in the retinal pigment epithelium (RPE) which converts all-trans retinyl ester (atRE) to 11-cis retinol, a key step in the visual cycle to regenerate 11cRAL. Accumulating evidence suggests that cone-dominant species express an alternative isomerase, likely in retinal Müller cells, in order to meet the high demand for the chromophore by cones. Herein we describe the identification and characterization of a novel isomerohydrolase, RPE65c, from the cone-dominant zebrafish retina. RPE65c shares 78% amino acid sequence identity with RPE-specific zebrafish RPE65a (orthologue of human RPE65) and retains all of the known key residues for the enzymatic activity of RPE65. Similar to the other RPE-specific RPE65, RPE65c was present in both the membrane and cytosolic fractions, used atRE as its substrate and required iron for its enzymatic activity. However, immunohistochemistry detected RPE65c in the inner retina including Müller cells, but not in the RPE. Furthermore, double-immunostaining of dissociated retinal cells using antibodies for RPE65c and glutamine synthetase (a Müller cell marker), showed that RPE65c co-localized with the Müller cell marker. These results suggest that RPE65c is the alternative isomerohydrolase in the intra-retinal visual cycle, providing 11cRAL to cone photoreceptors in cone-dominant species. Identification of an alternative visual cycle will contribute to the understanding of the functional differences of rod and cone photoreceptors.
PMCID: PMC3354629  PMID: 21676174
retinoids; cone-dominant retina; isomerohydrolase; Müller cell; visual cycle
16.  Histopathology and Functional Correlations in a Patient with a Mutation in RPE65, the Gene for Retinol Isomerase 
This analysis describes the histopathologic features in the eyes of an adult donor with an RPE65 mutation. The donor had a full clinical workup from visits through several decades, and details are included as background for the histopathology and immunocytochemical analysis. This is the first time an adult donation with a mutation in the RPE65 gene was ever available for study.
Here the authors describe the structural features of the retina and retinal pigment epithelium (RPE) in postmortem donor eyes of a 56-year-old patient with a homozygous missense RPE65 mutation (Ala132Thr) and correlate the pathology with the patient's visual function last measured at age 51.
Eyes were enucleated within 13.5 hours after death. Representative areas from the macula and periphery were processed for light and electron microscopy. Immunofluorescence was used to localize the distribution of RPE65, rhodopsin, and cone arrestin. The autofluorescence in the RPE was compared with that of two normal eyes from age-similar donors.
Histologic examination revealed the loss of rods and cones across most areas of the retina, attenuated retinal vessels, and RPE thinning in both eyes. A small number of highly disorganized cones were present in the macula that showed simultaneous labeling with cone arrestin and red/green or blue opsin. RPE65 immunoreactivity and RPE autofluorescence were reduced compared with control eyes in all areas studied. Rhodopsin labeling was observed in rods in the far periphery. The optic nerve showed a reduced number of axons.
The clinical findings of reduced visual acuity, constricted fields, and reduced electroretinograms (ERGs) 5 years before death correlated with the small number of cones present in the macula and the extensive loss of photoreceptors in the periphery. The absence of autofluorescence in the RPE suggests that photoreceptor cells were probably missing across the retina for extended periods of time. Possible mechanisms that could lead to photoreceptor cell death are discussed.
PMCID: PMC3208160  PMID: 21931134
17.  The Oral Iron Chelator Deferiprone Protects Against Systemic Iron Overload–Induced Retinal Degeneration in Hepcidin Knockout Mice 
To investigate the retinal-protective effects of the oral iron chelator deferiprone (DFP) in mice lacking the iron regulatory hormone hepcidin (Hepc). These Hepc knockout (KO) mice have age-dependent systemic and retinal iron accumulation leading to retinal degeneration.
Hepc KO mice were given DFP in drinking water from age 6 to 18 months. They were then compared to Hepc KO mice not receiving DFP by fundus imaging, electroretinography (ERG), histology, immunofluorescence, and quantitative PCR to investigate the protective effect of DFP against retinal and retinal pigment epithelial (RPE) degeneration.
In Hepc KO mice, DFP diminished RPE depigmentation and autofluorescence on fundus imaging. Autofluorescence in the RPE layer in cryosections was significantly diminished by DFP, consistent with the fundus images. Immunolabeling with L-ferritin and transferrin receptor antibodies showed a decreased signal for L-ferritin in the inner retina and RPE cells and an increased signal for transferrin receptor in the inner retina, indicating diminished retinal iron levels with DFP treatment. Plastic sections showed that photoreceptor and RPE cells were well preserved in Hepc KO mice treated with DFP. Consistent with photoreceptor protection, the mRNA level of rhodopsin was significantly higher in retinas treated with DFP. The mRNA levels of oxidative stress–related genes heme oxygenase-1 and catalase were significantly lower in DFP-treated Hepc KO retinas. Finally, ERG rod a- and b- and cone b-wave amplitudes were significantly higher in DFP-treated mice.
Long-term treatment with the oral iron chelator DFP diminished retinal and RPE iron levels and oxidative stress, providing significant protection against retinal degeneration caused by chronic systemic iron overload in Hepc KO mice. This indicates that iron chelation could be a long-term preventive treatment for retinal disease involving iron overload and oxidative stress.
Iron chelation provides a long-term preventive treatment for retinal disease involving iron overload and oxidative stress.
PMCID: PMC4106252  PMID: 24970260
deferiprone; oxidative stress; hepcidin; retinal degeneration
18.  Loss of Synchronized Retinal Phagocytosis and Age-related Blindness in Mice Lacking αvβ5 Integrin 
The Journal of Experimental Medicine  2004;200(12):1539-1545.
Daily phagocytosis by the retinal pigment epithelium (RPE) of spent photoreceptor outer segment fragments is critical for vision. In the retina, early morning circadian photoreceptor rod shedding precedes synchronized uptake of shed photoreceptor particles by RPE cells. In vitro, RPE cells use the integrin receptor αvβ5 for particle binding. Here, we tested RPE phagocytosis and retinal function in β5 integrin–deficient mice, which specifically lack αvβ5 receptors. Retinal photoresponses severely declined with age in β5−/− mice, whose RPE accumulated autofluorescent storage bodies that are hallmarks of human retinal aging and disease. β5−/− RPE in culture failed to take up isolated photoreceptor particles. β5−/− RPE in vivo retained basal uptake levels but lacked the burst of phagocytic activity that followed circadian photoreceptor shedding in wild-type RPE. Rhythmic activation of focal adhesion and Mer tyrosine kinases that mediate wild-type retinal phagocytosis was also completely absent in β5−/− retina. These results demonstrate an essential role for αvβ5 integrin receptors and their downstream signaling pathways in synchronizing retinal phagocytosis. Furthermore, they identify the β5−/− integrin mouse strain as a new animal model of age-related retinal dysfunction.
PMCID: PMC2211990  PMID: 15596525
circadian rhythm; knockout; photoreceptors; retinal pigment; epithelium; vision
19.  Epithelial phenotype and the RPE: Is the answer blowing in the Wnt? 
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis.
Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/β-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.
PMCID: PMC2584165  PMID: 18775790
20.  Analysis of the RPE sheet in the rd10 retinal degeneration model 
The normal RPE sheet in the C57BL/6J mouse is subclassified into two major tiling patterns: a regular generally hexagonal array covering most of the surface and a “soft network” near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells.
We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rd10 compared to C57BL/6J mice.
In rd10 mice, RPE sheet damage was extensive but occurred later than expected, after most retinal degeneration was complete. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone, around the optic nerve, RPE cells take on larger irregular and varied shapes to maintain an intact monolayer. In mid periphery, RPE cells have a compressed or convoluted morphology that progress into ingrown layers of RPE under the retina. Cells in the periphery maintain their shape and size until the late stages of the RPE reorganization. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate after the photoreceptors have degenerated.
The RPE cells are bystanders to photoreceptor degeneration in the rd10 model, and the collateral damage to the RPE results in changes in morphology as early as 30 days old. Quantitative measures of the tiling patterns and histopathology detected here were scripted in a pipeline written in Perl and Cell Profiler (an open source MatLab plugin) and are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.
PMCID: PMC3732179  PMID: 22183388
21.  mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice 
Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress.
PMCID: PMC3007156  PMID: 21135502
22.  Generation of Retinal Pigment Epithelial Cells from Small Molecules and OCT4 Reprogrammed Human Induced Pluripotent Stem Cells 
Autologous retinal pigment epithelium (RPE) grafts derived from induced pluripotent stem cells (iPSCs) may be used to cure blinding diseases in which RPE dysfunction results in photoreceptor degeneration. Four-, two-, and one-factor-derived iPSCs (4F-, 2F-, and 1F-iPSCs, respectively) were differentiated into fully functional cuboidal pigmented cells in polarized monolayers that express RPE-specific markers. 1F-iPSC-RPE (1F-iPS-RPE) strongly resembles primary human fetal RPE (hfRPE) based on proteomic and untargeted metabolomic analyses, and using novel in vivo imaging technology coupled with electroretinography, we demonstrated that 1F-iPS-RPE mediate anatomical and functional rescue of photoreceptors after transplantation in an animal model of RPE-mediated retinal degeneration. 1F-iPS-RPE cells were injected subretinally as a suspension and formed a monolayer dispersed between host RPE cells. Furthermore, 1F-iPS-RPE do not simply provide trophic support to rescue photoreceptors as previously speculated but actually phagocytose photoreceptor outer segments in vivo and maintain visual cycling. Thus, 1F-iPS-RPE grafts may be superior to conventional iPS-RPE for clinical use because 1F-iPS-RPE closely resemble hfRPE, mediate anatomical and functional photoreceptor rescue in vivo, and are generated using a reduced number of potentially oncogenic reprogramming factors.
PMCID: PMC3328503  PMID: 22532929
Retina; Induced pluripotent stem cells; Differentiation; Small molecules; Stem cell transplantation; Aging
23.  Scanning Laser Ophthalmoscope Measurement of Local Fundus Reflectance and Autofluorescence Changes Arising from Rhodopsin Bleaching and Regeneration 
We measured the bleaching and regeneration kinetics of rhodopsin in the living human eye with two-wavelength, wide-field scanning laser ophthalmoscopy (SLO), and investigated the effect of rhodopsin bleaching on autofluorescence intensity.
The retina was imaged with an Optos P200C SLO by its reflectance of 532 and 633 nm light, and its autofluorescence excited by 532 nm light, before and after exposure to lights calibrated to bleach rhodopsin substantially. Bleaching was confined to circular retinal regions of 4.8° visual angle located approximately 16° superotemporal and superonasal to fixation. Images were captured as 12-bit tiff files and postprocessed to extract changes in reflectance and autofluorescence.
At the locus of bleaching transient increases in reflectance of the 532 nm, but not the 633 nm beam were observed readily and quantified. A transient increase in autofluorescence also occurred. The action spectrum, absolute sensitivity, and recovery of the 532 nm reflectance increase were consistent with previous measurements of human rhodopsin's spectral sensitivity, photosensitivity, and regeneration kinetics. The autofluorescence changes closely tracked the changes in rhodopsin density.
The bleaching and regeneration kinetics of rhodopsin can be measured locally in the human retina with a widely available SLO. The increased autofluorescence excited by 532 nm light upon bleaching appears primarily due to transient elimination of rhodopsin's screening of autofluorescent fluorochromes in the RPE. The spatially localized measurement with a widely available SLO of rhodopsin, the most abundant protein in the retina, could be a valuable adjunct to retinal health assessment.
Rhodopsin was measured locally in the retina with a widely available, dual wavelength scanning laser ophthalmoscope that does not require pupil dilation. Increased autofluorescence attendant bleaching arises largely from transient removal of rhodopsin's screening of autofluorescent fluorochromes.
PMCID: PMC3621503  PMID: 23412087
24.  Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study 
PLoS Computational Biology  2012;8(5):e1002440.
Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV, after choriocapillaries initially penetrate Bruch's membrane (BrM), invading vessels may regress or expand (CNV initiation). Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion). Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM) results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion (e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings suggest that defects in adhesion dominate CNV initiation and progression.
Author Summary
This paper tests hypotheses for the mechanisms of choroidal neovascularization (CNV), the pathological growth of capillaries in response to physical defects in a structured tissue, the retina, showing that previously neglected cell-cell, cell-ECM and ECM-ECM adhesion failures suffice to determine the loci and progression of neovascularization. Surprisingly, a simple theory based on classes of adhesion failures, which involve variation of only five parameters, can coherently explain the heterogeneous range of CNV growth patterns and dynamics. Our results are generally applicable to other types of tissues where capillaries are close to an epithelium, e.g., lung and gut.
PMCID: PMC3342931  PMID: 22570603
25.  Using Flow Cytometry to Compare the Dynamics of Photoreceptor Outer Segment Phagocytosis in iPS-Derived RPE Cells 
Retinal pigment epithelium (RPE) autologous grafts can be readily derived from induced pluripotent stem (iPS) cells. It is critical to stringently characterize iPS-RPE using standardized and quantifiable methods to be confident that they are safe and adequate replacements for diseased RPE before utilizing them in clinical settings. One important and required function is that the iPS-RPE phagocytose photoreceptor outer segments (POS).
We developed a flow cytometry-based assay to monitor binding and internalization of FITC labeled POS by ARPE-19, human fetal RPE (hfRPE), and two types of iPS-RPE. Expression and density of αvβ5 integrin, CD36, and MerTK receptors, which are required for phagocytosis, were compared.
Trypsinization of treated RPE cells results in the release of bound POS. The number of freed POS, the percentage of cells that internalized POS, the brightness of the FITC signal from the cells, and the surface density of the phagocytosis receptors on single RPE cells were measured using flow cytometry. These assays reveal that receptor density is dynamic during differentiation and this can affect the binding and internalization dynamics of the RPE cells. Highly differentiated iPS-RPE phagocytose POS more efficiently than hfRPE.
Caution should be exercised to not use RPE grafts until demonstrating that they are fully functional. The density of the phagocytosis receptors is dynamic and may be used as a predictor for how well the iPS-RPE cells will function in vivo. The phagocytosis dynamics observed between iPS-RPE and primary RPE is very encouraging and adds to mounting evidence that iPS-RPE may be a viable replacement for dysfunctional or dying RPE in human patients.
In this manuscript, we describe the development and application of a novel, rapid, and quantitative flow cytometry-based assay to assess photoreceptor outer segment phagocytosis by retinal pigment epithelium (RPE) cells in vitro and have used it to evaluate and compare human induced pluripotent stem (iPS) cell-derived RPE cells with ARPE-19 and human fetal RPE.
PMCID: PMC3444211  PMID: 22871841

Results 1-25 (1236144)