PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1192268)

Clipboard (0)
None

Related Articles

1.  Point-of-Care International Normalized Ratio (INR) Monitoring Devices for Patients on Long-term Oral Anticoagulation Therapy 
Executive Summary
Subject of the Evidence-Based Analysis
The purpose of this evidence based analysis report is to examine the safety and effectiveness of point-of-care (POC) international normalized ratio (INR) monitoring devices for patients on long-term oral anticoagulation therapy (OAT).
Clinical Need: Target Population and Condition
Long-term OAT is typically required by patients with mechanical heart valves, chronic atrial fibrillation, venous thromboembolism, myocardial infarction, stroke, and/or peripheral arterial occlusion. It is estimated that approximately 1% of the population receives anticoagulation treatment and, by applying this value to Ontario, there are an estimated 132,000 patients on OAT in the province, a figure that is expected to increase with the aging population.
Patients on OAT are regularly monitored and their medications adjusted to ensure that their INR scores remain in the therapeutic range. This can be challenging due to the narrow therapeutic window of warfarin and variation in individual responses. Optimal INR scores depend on the underlying indication for treatment and patient level characteristics, but for most patients the therapeutic range is an INR score of between 2.0 and 3.0.
The current standard of care in Ontario for patients on long-term OAT is laboratory-based INR determination with management carried out by primary care physicians or anticoagulation clinics (ACCs). Patients also regularly visit a hospital or community-based facility to provide a venous blood samples (venipuncture) that are then sent to a laboratory for INR analysis.
Experts, however, have commented that there may be under-utilization of OAT due to patient factors, physician factors, or regional practice variations and that sub-optimal patient management may also occur. There is currently no population-based Ontario data to permit the assessment of patient care, but recent systematic reviews have estimated that less that 50% of patients receive OAT on a routine basis and that patients are in the therapeutic range only 64% of the time.
Overview of POC INR Devices
POC INR devices offer an alternative to laboratory-based testing and venipuncture, enabling INR determination from a fingerstick sample of whole blood. Independent evaluations have shown POC devices to have an acceptable level of precision. They permit INR results to be determined immediately, allowing for more rapid medication adjustments.
POC devices can be used in a variety of settings including physician offices, ACCs, long-term care facilities, pharmacies, or by the patients themselves through self-testing (PST) or self-management (PSM) techniques. With PST, patients measure their INR values and then contact their physician for instructions on dose adjustment, whereas with PSM, patients adjust the medication themselves based on pre-set algorithms. These models are not suitable for all patients and require the identification and education of suitable candidates.
Potential advantages of POC devices include improved convenience to patients, better treatment compliance and satisfaction, more frequent monitoring and fewer thromboembolic and hemorrhagic complications. Potential disadvantages of the device include the tendency to underestimate high INR values and overestimate low INR values, low thromboplastin sensitivity, inability to calculate a mean normal PT, and errors in INR determination in patients with antiphospholipid antibodies with certain instruments. Although treatment satisfaction and quality of life (QoL) may improve with POC INR monitoring, some patients may experience increased anxiety or preoccupation with their disease with these strategies.
Evidence-Based Analysis Methods
Research Questions
1. Effectiveness
Does POC INR monitoring improve clinical outcomes in various settings compared to standard laboratory-based testing?
Does POC INR monitoring impact patient satisfaction, QoL, compliance, acceptability, convenience compared to standard laboratory-based INR determination?
Settings include primary care settings with use of POC INR devices by general practitioners or nurses, ACCs, pharmacies, long-term care homes, and use by the patient either for PST or PSM.
2. Cost-effectiveness
What is the cost-effectiveness of POC INR monitoring devices in various settings compared to standard laboratory-based INR determination?
Inclusion Criteria
English-language RCTs, systematic reviews, and meta-analyses
Publication dates: 1996 to November 25, 2008
Population: patients on OAT
Intervention: anticoagulation monitoring by POC INR device in any setting including anticoagulation clinic, primary care (general practitioner or nurse), pharmacy, long-term care facility, PST, PSM or any other POC INR strategy
Minimum sample size: 50 patients Minimum follow-up period: 3 months
Comparator: usual care defined as venipuncture blood draw for an INR laboratory test and management provided by an ACC or individual practitioner
Outcomes: Hemorrhagic events, thromboembolic events, all-cause mortality, anticoagulation control as assessed by proportion of time or values in the therapeutic range, patient reported outcomes including satisfaction, QoL, compliance, acceptability, convenience
Exclusion criteria
Non-RCTs, before-after studies, quasi-experimental studies, observational studies, case reports, case series, editorials, letters, non-systematic reviews, conference proceedings, abstracts, non-English articles, duplicate publications
Studies where POC INR devices were compared to laboratory testing to assess test accuracy
Studies where the POC INR results were not used to guide patient management
Method of Review
A search of electronic databases (OVID MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, The Cochrane Library, and the International Agency for Health Technology Assessment [INAHTA] database) was undertaken to identify evidence published from January 1, 1998 to November 25, 2008. Studies meeting the inclusion criteria were selected from the search results. Reference lists of selected articles were also checked for relevant studies.
Summary of Findings
Five existing reviews and 22 articles describing 17 unique RCTs met the inclusion criteria. Three RCTs examined POC INR monitoring devices with PST strategies, 11 RCTs examined PSM strategies, one RCT included both PST and PSM strategies and two RCTs examined the use of POC INR monitoring devices by health care professionals.
Anticoagulation Control
Anticoagulation control is measured by the percentage of time INR is within the therapeutic range or by the percentage of INR values in the therapeutic range. Due to the differing methodologies and reporting structures used, it was deemed inappropriate to combine the data and estimate whether the difference between groups would be significant. Instead, the results of individual studies were weighted by the number of person-years of observation and then pooled to calculate a summary measure.
Across most studies, patients in the intervention groups tended to have a higher percentage of time and values in the therapeutic target range in comparison to control patients. When the percentage of time in the therapeutic range was pooled across studies and weighted by the number of person-years of observation, the difference between the intervention and control groups was 4.2% for PSM, 7.2% for PST and 6.1% for POC use by health care practitioners. Overall, intervention patients were in the target range 69% of the time and control patients were in the therapeutic target range 64% of the time leading to an overall difference between groups of roughly 5%.
Major Complications and Deaths
There was no statistically significant difference in the number of major hemorrhagic events between patients managed with POC INR monitoring devices and patients managed with standard laboratory testing (OR =0.74; 95% CI: 0.52- 1.04). This difference was non-significant for all POC strategies (PSM, PST, health care practitioner).
Patients managed with POC INR monitoring devices had significantly fewer thromboembolic events than usual care patients (OR =0.52; 95% CI: 0.37 - 0.74). When divided by POC strategy, PSM resulted in significantly fewer thromboembolic events than usual care (OR =0.46.; 95% CI: 0.29 - 0.72). The observed difference in thromboembolic events for PSM remained significant when the analysis was limited to major thromboembolic events (OR =0.40; 95% CI: 0.17 - 0.93), but was non-significant when the analysis was limited to minor thromboembolic events (OR =0.73; 95% CI: 0.08 - 7.01). PST and GP/Nurse strategies did not result in significant differences in thromboembolic events, however there were only a limited number of studies examining these interventions.
No statistically significant difference was observed in the number of deaths between POC intervention and usual care control groups (OR =0.67; 95% CI: 0.41 - 1.10). This difference was non-significant for all POC strategies. Only one study reported on survival with 10-year survival rate of 76.1% in the usual care control group compared to 84.5% in the PSM group (P=0.05).
Summary Results of Meta-Analyses of Major Complications and Deaths in POC INR Monitoring Studies
Patient Satisfaction and Quality of Life
Quality of life measures were reported in eight studies comparing POC INR monitoring to standard laboratory testing using a variety of measurement tools. It was thus not possible to calculate a quantitative summary measure. The majority of studies reported favourable impacts of POC INR monitoring on QoL and found better treatment satisfaction with POC monitoring. Results from a pre-analysis patient and caregiver focus group conducted in Ontario also indicated improved patient QoL with POC monitoring.
Quality of the Evidence
Studies varied with regard to patient eligibility, baseline patient characteristics, follow-up duration, and withdrawal rates. Differential drop-out rates were observed such that the POC intervention groups tended to have a larger number of patients who withdrew. There was a lack of consistency in the definitions and reporting for OAT control and definitions of adverse events. In most studies, the intervention group received more education on the use of warfarin and performed more frequent INR testing, which may have overestimated the effect of the POC intervention. Patient selection and eligibility criteria were not always fully described and it is likely that the majority of the PST/PSM trials included a highly motivated patient population. Lastly, a large number of trials were also sponsored by industry.
Despite the observed heterogeneity among studies, there was a general consensus in findings that POC INR monitoring devices have beneficial impacts on the risk of thromboembolic events, anticoagulation control and patient satisfaction and QoL (ES Table 2).
GRADE Quality of the Evidence on POC INR Monitoring Studies
CI refers to confidence interval; Interv, intervention; OR, odds ratio; RCT, randomized controlled trial.
Economic Analysis
Using a 5-year Markov model, the health and economic outcomes associated with four different anticoagulation management approaches were evaluated:
Standard care: consisting of a laboratory test with a venipuncture blood draw for an INR;
Healthcare staff testing: consisting of a test with a POC INR device in a medical clinic comprised of healthcare staff such as pharmacists, nurses, and physicians following protocol to manage OAT;
PST: patient self-testing using a POC INR device and phoning in results to an ACC or family physician; and
PSM: patient self-managing using a POC INR device and self-adjustment of OAT according to a standardized protocol. Patients may also phone in to a medical office for guidance.
The primary analytic perspective was that of the MOHLTC. Only direct medical costs were considered and the time horizon of the model was five years - the serviceable life of a POC device.
From the results of the economic analysis, it was found that POC strategies are cost-effective compared to traditional INR laboratory testing. In particular, the healthcare staff testing strategy can derive potential cost savings from the use of one device for multiple patients. The PSM strategy, however, seems to be the most cost-effective method i.e. patients are more inclined to adjust their INRs more readily (as opposed to allowing INRs to fall out of range).
Considerations for Ontario Health System
Although the use of POC devices continues to diffuse throughout Ontario, not all OAT patients are suitable or have the ability to practice PST/PSM. The use of POC is currently concentrated at the institutional setting, including hospitals, ACCs, long-term care facilities, physician offices and pharmacies, and is much less commonly used at the patient level. It is, however, estimated that 24% of OAT patients (representing approximately 32,000 patients in Ontario), would be suitable candidates for PST/PSM strategies and willing to use a POC device.
There are several barriers to the use and implementation of POC INR monitoring devices, including factors such as lack of physician familiarity with the devices, resistance to changing established laboratory-based methods, lack of an approach for identifying suitable patients and inadequate resources for effective patient education and training. Issues of cost and insufficient reimbursement strategies may also hinder implementation and effective quality assurance programs would need to be developed to ensure that INR measurements are accurate and precise.
Conclusions
For a select group of patients who are highly motivated and trained, PSM resulted in significantly fewer thromboembolic events compared to conventional laboratory-based INR testing. No significant differences were observed for major hemorrhages or all-cause mortality. PST and GP/Nurse use of POC strategies are just as effective as conventional laboratory-based INR testing for thromboembolic events, major hemorrhages, and all-cause mortality. POC strategies may also result in better OAT control as measured by the proportion of time INR is in the therapeutic range and there appears to be beneficial impacts on patient satisfaction and QoL. The use of POC devices should factor in patient suitability, patient education and training, health system constraints, and affordability.
Keywords
anticoagulants, International Normalized Ratio, point-of-care, self-monitoring, warfarin.
PMCID: PMC3377545  PMID: 23074516
2.  Patient self management of oral anticoagulation in routine care in the UK 
Journal of Clinical Pathology  2007;60(11):1263-1267.
Background
Self management of anticoagulation: a randomised trial (SMART) was the first large scale UK trial to assess clinical and cost effectiveness of patient self management (PSM) of oral anticoagulation therapy compared to routine care. SMART showed that while PSM was as clinically effective as routine care, it was not as cost effective. SMART adds to the growing body of trial data to support PSM; however there are no data on clinical effectiveness and cost of PSM in routine care.
Aim
To evaluate clinical effectiveness of PSM compared to routine care outside trial conditions.
Methods
A retrospective multicentre matched control study. 63 PSM patients from primary care in the West Midlands were matched by age and international normalised ratio (INR) target with controls. INR results were collected for the period 1 July 2003–30 June 2004. The primary outcome measure was INR control.
Results
38 PSM and 40 control patients were recruited. INR percentage time in range was 70% PSM vs 64% controls. 60% PSM were having a regular clinical review, 45% were performing an internal quality control (IQC) test and 82% were performing external quality assurance (EQA) on a regular basis.
Conclusion
PSM outside trial conditions is as clinically effective as routine UK care.
doi:10.1136/jcp.2006.044008
PMCID: PMC2095473  PMID: 17259295
3.  Patient self-management of warfarin therapy 
Canadian Family Physician  2011;57(8):e292-e298.
Abstract
Objective
To investigate the effectiveness of patient self-management (PSM) of anticoagulation using warfarin in a typical primary care site in Canada and to determine the feasibility of conducting a future large-scale trial in this setting.
Design
An 8-month pragmatic open-label randomized crossover trial.
Setting
A typical Canadian primary care practice in British Columbia.
Intervention
Patients were randomized to PSM or physician management for 4 months, after which allocation was reversed. The PSM group members were instructed to monitor their serum international normalized ratio (INR) at community laboratories and to adjust their warfarin doses independently using provided nomograms. Education on warfarin dose adjustment was limited to a single 15-minute office visit.
Main outcome measures
The primary outcome was the proportion of INR values in the therapeutic range among participants. Feasibility outcomes included proportion of eligible patients consenting, patients’ preference of management strategy, patients’ satisfaction, and visits or phone communication with physicians regarding dose adjustment. Safety outcomes included bleeding or thromboembolic events.
Results
Eleven patients completed the trial, contributing 99 patient-months of monitoring and providing 122 INR measures. The mean proportion of INR values in therapeutic range among subjects in the PSM and physician-management groups was 82% and 80%, respectively (P = .82). The improvement in patient satisfaction with PSM was not significant. Ten of the 11 patients preferred PSM to physician management and elected to continue with this strategy after study completion (P = .001). No calls or visits were made to the physician regarding dose adjustment during the PSM period. There were no episodes of major bleeding or thromboembolic events.
Conclusion
Patient self-management was not demonstrated to be superior to standard care, but was easily implemented and was the method preferred by patients. Our feasibility outcomes justify a larger trial and suggest that subject recruitment and protocol adherence would not pose barriers for such a study.
Trial registration number
NCT00925028 (ClinicalTrials.gov).
PMCID: PMC3155464  PMID: 21841092
4.  Sex Differences in Treatment Quality of Self-Managed Oral Anticoagulant Therapy: 6,900 Patient-Years of Follow-Up 
PLoS ONE  2014;9(11):e113627.
Background
Patient-self-management (PSM) of oral anticoagulant therapy with vitamin K antagonists has demonstrated efficacy in randomized, controlled trials. However, the effectiveness and efficacy of PSM in clinical practice and whether outcomes are different for females and males has been sparsely investigated.The objective is to evaluate the sex-dependent effectiveness of PSM of oral anticoagulant therapy in everyday clinical practice.
Methods
All patients performing PSM affiliated to Aarhus University Hospital and Aalborg University Hospital, Denmark in the period 1996–2012 were included in a case-series study. The effectiveness was estimated using the following parameters: stroke, systemic embolism, major bleeding, intracranial bleeding, gastrointestinal bleeding, death and time spent in the therapeutic international normalized ratio (INR) target range. Prospectively registered patient data were obtained from two databases in the two hospitals. Cross-linkage between the databases and national registries provided detailed information on the incidence of death, bleeding and thromboembolism on an individual level.
Results
A total of 2068 patients were included, representing 6,900 patient-years in total. Males achieved a significantly better therapeutic INR control than females; females spent 71.1% of the time within therapeutic INR target range, whereas males spent 76.4% (p<0.0001). Importantly, death, bleeding and thromboembolism were not significantly different between females and males.
Conclusions
Among patients treated with self-managed oral anticoagulant therapy, males achieve a higher effectiveness than females in terms of time spent in therapeutic INR range, but the incidence of major complications is low and similar in both sexes.
doi:10.1371/journal.pone.0113627
PMCID: PMC4240606  PMID: 25415603
5.  A randomised controlled trial of patient self management of oral anticoagulation treatment compared with primary care management 
Journal of Clinical Pathology  2002;55(11):845-849.
Background: The increase in numbers of patients receiving warfarin treatment has led to the development of alternative models of service delivery for oral anticoagulant monitoring. Patient self management for oral anticoagulation is a model new to the UK. This randomised trial was the first to compare routine primary care management of oral anticoagulation with patient self management.
Aim: To test whether patient self management is as safe, in terms of clinical effectiveness, as primary care management within the UK, as assessed by therapeutic international normalised ratio (INR) control.
Method: Patients receiving warfarin from six general practices who satisfied study entry criteria were eligible to enter the study. Eligible patients were randomised to either intervention (patient self management) or control (routine primary care management) for six months. The intervention comprised two training sessions of one to two hours duration. Patients were allowed to undertake patient self management on successful completion of training. INR testing was undertaken using a Coaguchek device and regular internal/external quality control tests were performed. Patients were advised to perform INR tests every two weeks, or weekly if a dose adjustment was made. Dosage adjustment was undertaken using a simple dosing algorithm.
Results: Seventy eight of 206 (38%) patients were eligible for inclusion and, of these, 35 (45%) declined involvement or withdrew from the study. Altogether, 23 intervention and 26 control patients entered the study. There were no significant differences in INR control (per cent time in range: intervention, 74%; control, 77%). There were no serious adverse events in the intervention group, with one fatal retroperitoneal haemorrhage in the control group. Costs of patient self management were significantly greater than for routine care (£90 v £425/patient/year).
Conclusion: These are the first UK data to demonstrate that patient self management is as safe as primary care management for a selected population. Further studies are needed to elucidate whether this model of care is suitable for a larger population.
PMCID: PMC1769803  PMID: 12401823
oral anticoagulation; patient self management; primary care
6.  Multivariate relationships between international normalized ratio and vitamin K-dependent coagulation-derived parameters in normal healthy donors and oral anticoagulant therapy patients 
Thrombosis Journal  2003;1:7.
Background and objectives
International Normalized Ratio (INR) is a world-wide routinely used factor in the monitoring of oral anticoagulation treatment (OAT). However, it was reported that other factors, e. g. factor II, may even better reflect therapeutic efficacy of OAT and, therefore, may be potentialy useful for OAT monitoring. The primary purpose of this study was to characterize the associations of INR with other vitamin K-dependent plasma proteins in a heterogenous group of individuals, including healthy donors, patients on OAT and patients not receiving OAT. The study aimed also at establishing the influence of co-morbid conditions (incl. accompanying diseases) and co-medications (incl. different intensity of OAT) on INR.
Design and Methods
Two hundred and three subjects were involved in the study. Of these, 35 were normal healthy donors (group I), 73 were patients on medication different than OAT (group II) and 95 were patients on stable oral anticoagulant (acenocoumarol) therapy lasting for at least half a year prior to the study. The values of INR and activated partial thromboplastin time (APTT) ratio, as well as activities of FII, FVII, FX, protein C, and concentration of prothrombin F1+2 fragments and fibrinogen were obtained for all subjects. In statistical evaluation, the uni- and multivariate analyses were employed and the regression equations describing the obtained associations were estimated.
Results
Of the studied parameters, three (factors II, VII and X) appeared as very strong modulators of INR, protein C and prothrombin fragments F1+2 had moderate influence, whereas both APTT ratio and fibrinogen had no significant impact on INR variability. Due to collinearity and low tolerance of independent variables included in the multiple regression models, we routinely employed a ridge multiple regression model which compromises the minimal number of independent variables with the maximal overall determination coefficient. The best-fitted two-component model included FII and FVII activities and explained 90% of INR variability (compared to 93% in the 5-component model including all vitamin K-dependent proteins). Neither the presence of accompanying diseases nor the use of OAT nor any other medication (acetylsalicylic acid, statins, steroids, thyroxin) biased significantly these associations.
Conclusion
Among various vitamin K-dependent plasma proteins, the coagulation factors II, VII and X showed the most significant associations with INR. Of these variables, the two-component model, including factors II and VII, deserves special attention, as it largely explains the overall variability observed in INR estimates. The statistical power of this model is validated on virtue of the estimation that the revealed associations are rather universal and remain essentially unbiased by other compounding variables, including clinical status and medical treatment. Further, much broader population studies are needed to verify clinical usefulness of methods alternate or compounding to INR monitoring of OAT.
doi:10.1186/1477-9560-1-7
PMCID: PMC317378  PMID: 14969588
International Normalized Ratio (INR) of prothrombin time; clotting factors; protein C; prothrombin fragment F1+2; multivariate analysis
7.  Safety and effectiveness of point-of-care monitoring devices in patients on oral anticoagulant therapy: a meta-analysis 
Open Medicine  2007;1(3):e131-e146.
Background
Point-of-care devices (POCDs) for monitoring long-term oral anticoagulation therapy (OAT) may be a useful alternative to laboratory-based international normalized ratio [INR] testing and clinical management.
Purpose
To determine clinical outcomes of the use of POCDs for OAT management by performing a meta-analysis. Previous meta-analyses on POCDs have serious limitations.
Data sources
PubMed, the Cochrane Library, DIALOG, MEDLINE, EMBASE, BIOSIS Previews and PASCAL databases.
Study selection
Randomized controlled trials of patients on long-term OAT, comparing anticoagulation monitoring by POCD with laboratory INR testing and clinical management.
Data extraction
1) rates of major hemorrhage; 2) rates of major thromboembolic events; 3) percentage of time that the patient is maintained within the therapeutic range; 4) deaths. Outcomes were compared using a random-effects model. Summary measures of rates were determined. The quality of studies was assessed using the Jadad scale.
Data synthesis
Seventeen articles (16 studies) were included. Data analysis showed that POCD INR testing reduced the risk of major thromboembolic events (odds ratio [OR] = 0.51; 95% confidence interval [CI] 0.35–0.74), was associated with fewer deaths (OR = 0.58; 95% CI = 0.38–0.89), and resulted in better INR control compared with laboratory INR testing. No significant difference between the two management modalities with respect to odds ratios for major hemorrhage was found.
Limitations
Quality scores varied from 1 to 3 (out of a maximum of 5). Only 3 studies defined how thromboembolic events would be diagnosed, casting doubt on the accuracy of the reporting of thromboembolic events. The studies suggest that only 24% of patients are good candidates for self-testing and self-management. Compared with patients managed with laboratory-based monitoring, POCD patients underwent INR testing at a much higher frequency and received much more intensive education on OAT management.
Conclusions
The use of POCDs is safe and may be more effective than laboratory-based monitoring. However, most patients are not good candidates for self-testing and self-management. Patient education and frequency of testing may be the most important factors in successful PODC management. Definitive conclusions about the clinical benefits provided by self-testing and self-management require more rigorously designed trials.
PMCID: PMC3113217  PMID: 21673942
8.  The Clinical Impact of Different Coagulometers on Patient Outcomes 
Advances in Therapy  2014;31(6):639-656.
Introduction
Long-term anticoagulation therapy using vitamin K antagonists (VKA) is used in millions of patients worldwide to reduce the risk of thrombotic or thromboembolic events. Control and monitoring of VKA therapy is improved by the regular self-measurement of international normalized ratio (INR) using a home monitoring device. This retrospective analysis of a large cohort of patients in the Netherlands seeks to determine whether the choice of INR monitor could have a clinical impact on patient outcomes.
Methods
The National Thrombosis Service provides medical supervision, training and support to anticoagulant patients eligible for home-monitoring of INR in the Netherlands. Two INR monitors (CoaguChek XS and INRatio2) have been distributed at random to patients since June 2011, and patient self-testing data (INR measurements and other clinical parameters) have been recorded to measure and improve treatment outcomes. The data have been retrospectively analyzed to determine any effect of the choice of monitor. Univariate and multivariate statistical tests are used to assess any differences between groups in terms of efficacy and safety parameters.
Results
Data from 4,326 patients were collated, and 156,507 INR values were included in the analysis. Over half the patients (54.3%) were being treated for atrial fibrillation, and 77.6% were prescribed acenocoumarol. There were few differences between the patient populations using the two different monitors. Anticoagulant control overall was good, with high percentage of time (87.9%) in the appropriate INR range and low incidence of excessively high or low INR values (0.085/month). Minor clinical events related to safety were low (0.78 per patient-year) and showed few differences between monitors. Mortality rates were similar [hazard ratio (HR) 1.05, 95% confidence interval (CI) 0.65–1.70].
Conclusion
Self-testing data from a large cohort of patients in the Netherlands suggest that there is no clinically relevant effect of the choice of coagulation monitor (CoaguChek XS or INRatio2) on the time in therapeutic range (TTR), minor or fatal outcomes of long-term anticoagulation management.
Electronic supplementary material
The online version of this article (doi:10.1007/s12325-014-0124-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s12325-014-0124-x
PMCID: PMC4082646  PMID: 24895179
Anticoagulation; CoaguChek XS; INRatio2; International normalized ratio (INR); Patient self-monitoring (PSM); Patient self-testing (PST); Point of care (POC) test (POCT); Time in therapeutic range (TTR); Time in target range; Vitamin K antagonist (VKA)
9.  Quality of oral anticoagulation with phenprocoumon in regular medical care and its potential for improvement in a telemedicine-based coagulation service – results from the prospective, multi-center, observational cohort study thrombEVAL 
BMC Medicine  2015;13:14.
Background
The majority of studies on quality of oral anticoagulation (OAC) therapy with vitamin K-antagonists are performed with short-acting warfarin. Data on long-acting phenprocoumon, which is frequently used in Europe for OAC therapy and is considered to enable more stable therapy adjustment, are scarce. In this study, we aimed to assess quality of OAC therapy with phenprocoumon in regular medical care and to evaluate its potential for optimization in a telemedicine-based coagulation service.
Methods
In the prospective observational cohort study program thrombEVAL we investigated 2,011 patients from regular medical care in a multi-center cohort study and 760 patients from a telemedicine-based coagulation service in a single-center cohort study. Data were obtained from self-reported data, computer-assisted personal interviews, and laboratory measurements according to standard operating procedures with detailed quality control. Time in therapeutic range (TTR) was calculated by linear interpolation method to assess quality of OAC therapy. Study monitoring was carried out by an independent institution.
Results
Overall, 15,377 treatment years and 48,955 international normalized ratio (INR) measurements were analyzed. Quality of anticoagulation, as measured by median TTR, was 66.3% (inte rquartile range (IQR) 47.8/81.9) in regular medical care and 75.5% (IQR 64.2/84.4) in the coagulation service (P <0.001). Stable anticoagulation control within therapeutic range was achieved in 63.8% of patients in regular medical care with TTR at 72.1% (IQR 58.3/84.7) as compared to 96.4% of patients in the coagulation service with TTR at 76.2% [(IQR 65.6/84.7); P = 0.001)]. Prospective follow-up of coagulation service patients with pretreatment in regular medical care showed an improvement of the TTR from 66.2% (IQR 49.0/83.6) to 74.5% (IQR 62.9/84.2; P <0.0001) in the coagulation service. Treatment in the coagulation service contributed to an optimization of the profile of time outside therapeutic range, a 2.2-fold increase of stabile INR adjustment and a significant decrease in TTR variability by 36% (P <0.001).
Conclusions
Quality of anticoagulation with phenprocoumon was comparably high in this real-world sample of regular medical care. Treatment in a telemedicine-based coagulation service substantially improved quality of OAC therapy with regard to TTR level, frequency of stable anticoagulation control, and TTR variability.
Trial registration
ClinicalTrials.gov, unique identifier NCT01809015, March 8, 2013.
Electronic supplementary material
The online version of this article (doi:10.1186/s12916-015-0268-9) contains supplementary material, which is available to authorized users.
doi:10.1186/s12916-015-0268-9
PMCID: PMC4333875  PMID: 25616558
Coagulation service; Epidemiology; Health care research; Oral anticoagulation; Quality of therapy; Telemedicine
10.  Comparing the quality of oral anticoagulant management by anticoagulation clinics and by family physicians: a randomized controlled trial 
Background
There is growing evidence that better outcomes are achieved when anticoagulation is managed by anticoagulation clinics rather than by family physicians. We carried out a randomized controlled trial to evaluate these 2 models of anticoagulant care.
Methods
We randomly allocated patients who were expected to require warfarin sodium for 3 months either to anticoagulation clinics located in 3 Canadian tertiary hospitals or to their family physician practices. We evaluated the quality of oral anticoagulant management by comparing the proportion of time that the international normalized ratio (INR) of patients receiving warfarin sodium was within the target therapeutic range ± 0.2 INR units (expanded therapeutic range) while they were managed in anticoagulation clinics as opposed to family physicians' care over 3 months. We measured the rates of thromboembolic and major hemorrhagic events and patient satisfaction in the 2 groups.
Results
Of the 221 patients enrolled, 112 were randomly assigned to anticoagulation clinics and 109 to family physicians. The INR values of patients who were managed by anticoagulation clinics were within the expanded therapeutic range 82% of the time versus 76% of the time for those managed by family physicians (p = 0.034). High-risk INR values (defined as being < 1.5 or > 5.0) were more commonly observed in patients managed by family physicians (40%) than in patients managed by anticoagulation clinics (30%, p = 0.005). More INR measurements were performed by family physicians than by anticoagulation clinics (13 v. 11, p = 0.001). Major bleeding events (2 [2%] v. 1 [1%]), thromboembolic events (1 [1%] v. 2 [2%]) and deaths (5 [4%] v. 6 [6%]) occurred at a similar frequency in the anticoagulation clinic and family physician groups respectively. Of the 170 (77%) patients who completed the patient satisfaction questionnaire, more were satisfied when their anticoagulant management was managed through anticoagulation clinics than by their family physicians (p = 0.001).
Interpretation
Anticoagulation clinics provided better oral anticoagulant management than family physicians, but the differences were relatively modest.
PMCID: PMC180652  PMID: 12925422
11.  Effects of computer-assisted oral anticoagulant therapy 
Thrombosis Journal  2012;10:17.
Background
Computer-assistance and self-monitoring lower the cost and may improve the quality of anticoagulation therapy. The main purpose of this clinical investigation was to use computer-assisted oral anticoagulant therapy to improve the time to reach and the time spent within the therapeutic target range compared to traditional oral anticoagulant therapy by physicians.
Methods
54 patients were randomized equally into 3 groups. Patients in two groups used CoaguChek® systems to measure international normalized ratio (INR) values and had dosages of anticoagulation treatment calculated in a computer system by an algorithm specific to each group. The third group received traditional anticoagulation treatment by physicians. The obtained INR values were compared regarding the time to reach, and the time spent within, the therapeutic target range, corresponding to INR values from 2 to 3.
Results
Patients randomized to computer-assisted anticoagulation and the CoaguChek® system reached the therapeutic target range after 8 days compared to 14 days by prescriptions from physicians (p = 0.04). Time spent in the therapeutic target range did not differ between groups. The median INR value measured throughout the study from all patients by CoaguChek® at 2.5 (2.42–2.62) was lower than measured by a hospital-based Clinical and Biochemical Laboratory at 2.6 (2.45–2.76), (p = 0.02).
Conclusions
The therapeutic target range was reached faster by the use of computer-assisted anticoagulation treatment than prescribed by physicians, and the total time spent within the therapeutic target range was similar. Thus computer-assisted oral anticoagulant therapy may reduce the cost of anticoagulation therapy without lowering the quality. INR values measured by CoaguChek® were reliable compared to measurements by a clinical and biochemical laboratory.
doi:10.1186/1477-9560-10-17
PMCID: PMC3502261  PMID: 22935243
12.  Factors determining patients’ intentions to use point-of-care testing medical devices for self-monitoring: the case of international normalized ratio self-testing 
Purpose
To identify factors that determine patients’ intentions to use point-of-care medical devices, ie, portable coagulometer devices for self-testing of the international normalized ratio (INR) required for ongoing monitoring of blood-coagulation intensity among patients on long-term oral anticoagulation therapy with vitamin K antagonists, eg, warfarin.
Methods
A cross-sectional study that applied the technology-acceptance model through a self-completed questionnaire, which was administered to a convenience sample of 125 outpatients attending outpatient anticoagulation services at a district general hospital in London, UK. Data were analyzed using descriptive statistics, factor analyses, and structural equation modeling.
Results
The participants were mainly male (64%) and aged ≥ 71 years (60%). All these patients were attending the hospital outpatient anticoagulation clinic for INR testing; only two patients were currently using INR self-testing, 84% of patients had no knowledge about INR self-testing using a portable coagulometer device, and 96% of patients were never offered the option of the INR self-testing. A significant structural equation model explaining 79% of the variance in patients’ intentions to use INR self-testing was observed. The significant predictors that directly affected patients’ intention to use INR self-testing were the perception of technology (β = 0.92, P < 0.001), trust in doctor (β = −0.24, P = 0.028), and affordability (β = 0.15, P = 0.016). In addition, the perception of technology was significantly affected by trust in doctor (β = 0.43, P = 0.002), age (β = −0.32, P < 0.001), and affordability (β = 0.23, P = 0.013); thereby, the intention to use INR self-testing was indirectly affected by trust in doctor (β = 0.40), age (β = −0.29), and affordability (β = 0.21) via the perception of technology.
Conclusion
Patients’ intentions to use portable coagulometers for INR self-testing are affected by patients’ perceptions about the INR testing device, the cost of device, trust in doctors/clinicians, and the age of the patient, which need to be considered prior to any intervention involving INR self-testing by patients. Manufacturers should focus on increasing the affordability of INR testing devices for patients’ self-testing and on the potential role of medical practitioners in supporting use of these medical devices as patients move from hospital to home testing.
doi:10.2147/PPA.S38328
PMCID: PMC3536357  PMID: 23300344
oral anticoagulation; INR self-testing; technology-acceptance model; trust in doctor; home testing; affordability; structural equation modeling
13.  Security and cost comparison of INR self-testing and conventional hospital INR testing in patients with mechanical heart valve replacement 
Background
International normalized ratio (INR) self-testing can improve the management of anticoagulation therapy with warfarin for the patients following mechanical heart valve replacement. Several reviews and studies have demonstrated self-management as an option to improve patient’s outcome considerably after mechanical heart valve replacement. We sought to analyze the security, economy and discuss the prospect of self-testing of anticoagulation therapy in patients following mechanical heart valve replacement in China, and evaluate the accuracy and stability of CoaguChek XS portable INR-testing device.
Methods
This was a prospective self-controlled clinical study conducted with 526 patients receiving oral warfarin anticoagulation therapy after mechanical heart valve replacement in the period of Mar.1, 2012 – Nov.1, 2012 in Cardiovascular Surgery Department of West China Hospital of Sichuan University. The same patient performed INR testing with CoaguChek XS portable coagulometer (group1) and central lab (group 2) in parallel. The follow-up time was 6 months. Meanwhile, a questionnaire was handed out to survey the expenses required for the re-examination visits to the hospital, time, and anticoagulation complications.
Results
No severe anticoagulation complications occurred in all the patients. No significant difference of the INR results were observed between group 1 and group 2, they showed significant relevance, r = 0.953(p < 0.05). Compared with the conventional method of INR testing in hospital, the portable coagulometer is convenient, quick and less traumatic. Self-testing of anticoagulation therapy reduced the cost and the time required for re-examination.
Conclusions
Results of CoaguChek XS monitor are precise and have a good consistency and stability as compared with traditional laboratory testing. For the patients receiving anticoagulation therapy after mechanical heart valve replacement, the self-testing of anticoagulation therapy with portable coagulometer is a safe choice, and it has a promising future application in China.
doi:10.1186/s13019-015-0205-1
PMCID: PMC4308889  PMID: 25592732
Heart valve replacement; Anticoagulation therapy; Portable coagulometer; Self-testing; Cost
14.  Telephone-based anticoagulation management in the homebound setting: a retrospective observational study 
Background
Anticoagulation management is currently performed through anticoagulation clinics or self-managed with or without the help of medical services. Homebound patients are a unique population that cannot utilize anticoagulation clinics or self-testing. Telephone-based anticoagulation management could be an alternative to the traditional methods of monitoring warfarin in this subgroup. The objective of this retrospective, observational study is to investigate the feasibility of warfarin management in homebound patients.
Methods
This study was performed through the use of telephone-based adjustments of warfarin dose based on an international normalized ratio (INR) result. Four hundred forty-eight homebound patients referred to the anticoagulation clinic at Staten Island University Hospital were visited at home by a phlebotomist; a blood sample was drawn for initial laboratory testing. A nurse practitioner then called the patient or designated person to relay the INR result and to direct dosage adjustment. INR results and dosage changes were entered into an electronic medical record and analyzed statistically.
Results
The mean percentage of INR values in range was 58.39%. The mean time when the INR was in the therapeutic range was 62.75%. The percent of patients who were therapeutically controlled decreased as the number of medications increased. The complication rate was 4% per patient year, with an equal distribution between bleeding and clotting. These values compared favorably to other studies in which monitoring was performed through anticoagulation clinics or self-monitoring. The cost per visit at our anticoagulation clinic was found to be approximately $300 compared with $82 when utilizing our homebound service.
Conclusion
Telephone-based management of warfarin therapy in the homebound setting is feasible. It can lower the cost of health care expenditures compared to other modalities of anticoagulation management.
doi:10.2147/IJGM.S50057
PMCID: PMC3857151  PMID: 24348065
warfarin; anticoagulation; homebound; telephone-based; anticoagulation clinic; INR
15.  Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial 
Trials  2012;13:239.
Background
Hemorrhagic events are frequent in patients on treatment with antivitamin-K oral anticoagulants due to their narrow therapeutic margin. Studies performed with acenocoumarol have shown the relationship between demographic, clinical and genotypic variants and the response to these drugs. Once the influence of these genetic and clinical factors on the dose of acenocoumarol needed to maintain a stable international normalized ratio (INR) has been demonstrated, new strategies need to be developed to predict the appropriate doses of this drug. Several pharmacogenetic algorithms have been developed for warfarin, but only three have been developed for acenocoumarol. After the development of a pharmacogenetic algorithm, the obvious next step is to demonstrate its effectiveness and utility by means of a randomized controlled trial. The aim of this study is to evaluate the effectiveness and efficiency of an acenocoumarol dosing algorithm developed by our group which includes demographic, clinical and pharmacogenetic variables (VKORC1, CYP2C9, CYP4F2 and ApoE) in patients with venous thromboembolism (VTE).
Methods and design
This is a multicenter, single blind, randomized controlled clinical trial. The protocol has been approved by La Paz University Hospital Research Ethics Committee and by the Spanish Drug Agency. Two hundred and forty patients with VTE in which oral anticoagulant therapy is indicated will be included. Randomization (case/control 1:1) will be stratified by center. Acenocoumarol dose in the control group will be scheduled and adjusted following common clinical practice; in the experimental arm dosing will be following an individualized algorithm developed and validated by our group. Patients will be followed for three months. The main endpoints are: 1) Percentage of patients with INR within the therapeutic range on day seven after initiation of oral anticoagulant therapy; 2) Time from the start of oral anticoagulant treatment to achievement of a stable INR within the therapeutic range; 3) Number of INR determinations within the therapeutic range in the first six weeks of treatment.
Discussion
To date, there are no clinical trials comparing pharmacogenetic acenocoumarol dosing algorithm versus routine clinical practice in VTE. Implementation of this pharmacogenetic algorithm in the clinical practice routine could reduce side effects and improve patient safety.
Trial registration
Eudra CT. Identifier: 2009-016643-18.
doi:10.1186/1745-6215-13-239
PMCID: PMC3543328  PMID: 23237631
Pharmacogenetic; Acenocoumarol; Hematology
16.  Emergency reversal of anticoagulation: from theory to real use of prothrombin complex concentrates. A retrospective Italian experience 
Blood Transfusion  2012;10(1):87-94.
Background
Prothrombin Complex Concentrates (PCC) are administered to normalise blood coagulation in patients receiving oral anticoagulant therapy (OAT). Rapid reversal of OAT is essential in case of major bleeding, internal haemorrhage or surgery.
The primary end-point was to evaluate whether PCC in our hospital were being used in compliance with international and national guidelines for the reversal of OAT on an emergency basis. The secondary end-point was to evaluate the efficacy and safety of PCC.
Materials and methods
All patients receiving OAT who required rapid reversal anticoagulation because they had to undergo emergency surgery or urgent invasive techniques following an overdose of oral anticoagulants were eligible for this retrospective observational study.
Results
Forty-seven patients receiving OAT who needed rapid reverse of anticoagulation were enrolled in our study. The patients were divided in two groups: (i) group A (n=23), patients needed haemostatic treatment before neurosurgery after a head injury and (ii) group B (n=24), patients with critical haemorrhage because of an overdose of oral anticoagulants. The International Normalised Ratio (INR) was checked before and after infusion of the PCC. The mean INR in group A was 2.7 before and 1.43 after infusion of the PCC; in group B the mean INR of 6.58, before and 1.92 after drug infusion. The use of vitamin K, fresh-frozen plasma and red blood cells was also considered. During our study 22 patients died, but no adverse effects following PCC administration were recorded.
Discussion
In our study three-factor-PCC was found to be effective and safe in rapidly reversing the effects of OAT, although it was not always administered in accordance with international or national guidelines. The dose, time of administration and monitoring often differed from those recommended. In the light of these findings, we advocate the use of single standard protocol to guide the correct use of PCC in each hospital ward.
doi:10.2450/2011.0030-11
PMCID: PMC3258994  PMID: 22044952
prothrombin complex concentrate; oral anticoagulant therapy; reversal of anticoagulation guidelines
17.  Positive surgical margins during robotic radical prostatectomy: a contemporary analysis of risk factors 
BJU international  2008;102(5):603-608.
Objective
To determine the risk factors (clinical, pathological and technical) for positive surgical margins (PSMs) after robotically assisted radical prostatectomy (RARP), as a PSM is associated with an increased risk of biochemical recurrence and often responsible for significant patient anxiety.
Patients and Methods
Between November 2003 and March 2007, 216 consecutive patients had an RARP by one fellowship-trained urological oncologist. The surgical pathological specimens were fixed and processed using standard techniques, and assessed by a pathologist at the same institution. A PSM was defined as the presence of cancer adjacent to the inked margin. The clinical charts were reviewed retrospectively under an approved institutional review board protocol. Univariable and multivariable methods, including logistic regression models, were used to analyse the clinical, pathological and technical risk factors for PSM.
Results
The overall prevalence of PSM was 14.8% (32/216), and 5.4% (8/149) for pT2 cancers. The only preoperative factor that was associated with a greater risk of a PSM was the serum prostate-specific antigen (PSA) level (P = 0.012) and PSA density (P = 0.005). Age, clinical stage and clinical Gleason grade were not predictors of a PSM. The overall and pT2 PSM rate remained constant throughout the series of 216 patients (P = 0.371), indicating that the initial experience for RARP was not associated with a significantly greater risk of a PSM. However, there was a small independent ‘learning curve’ effect, with a lower rate of PSM associated with each increment of 25 patients (odds ratio 0.8, 95% confidence interval 0.6–1.0), supported by the significantly decreasing trend in PSM for pT3 cancers over time (P = 0.031) Although there was no significant increase over time in PSM with the use of an endostapler to control the dorsal venous complex (DVC), there was a significant learning effect, with a decrease in the PSM rate specifically in pT3 cancers using the suture technique (P = 0.005). A nerve-sparing procedure increased the risk of PSM in multivariable analysis (P = 0.03). As expected, pathological stage and pathological Gleason grade were the strongest predictors of PSM (P < 0.001).
Conclusion
The most important risk factors for a PSM after RARP are the preoperative PSA level, PSA density, pathological stage and Gleason grade. PSM rates for a surgeon in their initial experience can be comparable to that of a surgeon experienced in RARP. Using a stapling device to control the DVC does not appear to increase the risk of a PSM, although nerve-sparing increases the rates of PSM in extraprostatic prostate cancer.
doi:10.1111/j.1464-410X.2008.07672.x
PMCID: PMC4041686  PMID: 18435807
prostate cancer; surgical margins; robotic; PSA
18.  Demonstration of anticoagulation patient self-testing feasibility at an Indian Health Service facility: A case series analysis 
Pharmacy Practice  2013;11(1):30-37.
Background
Anticoagulation patient self-testing (PST) represents an alternative approach to warfarin monitoring by enabling patients to use coagulometers to test their international normalized ratio (INR) values. PST offers several advantages that potentially improve warfarin management.
Objective
To describe implementation and associated performance of a PST demonstration program at an Indian Health Service (IHS) facility.
Methods
A non-consecutive case series analysis of patients from a pharmacy-managed PST demonstration program was performed at an IHS facility in Oklahoma between July 2008 and February 2009.
Results
Mean time in therapeutic range (TTR) for the seven patients showed a small, absolute increase during the twelve weeks of PST compared to the twelve weeks prior to PST. Four of the seven patients had an increase in TTR during the twelve week course of PST compared to their baseline TTR. Three of four patients with increased TTR in the final eight week period of PST achieved a TTR of 100%. Of the three patients who experienced a decrease in TTR after initiating self-testing, two initially presented with a TTR of 100% prior to PST and one patient had a TTR of 100% for the final eight weeks of PST. The two patients not achieving a TTR of 100% during the twelve week PST period demonstrated an increase in TTR following the first four weeks of PST.
Conclusions
Although anticoagulation guidelines now emphasize patient self-management (PSM) only, optimal PST remains an integral process in PSM delivery. In the patients studied, the results of this analysis suggest that PST at the IHS facility provided a convenient, alternative method for management of chronic warfarin therapy for qualified patients. More than half of the patients demonstrated improvement in TTR. Although there is a learning curve immediately following PST initiation, the mean TTR for the entire PST period increased modestly when compared to the time period prior to PST.
PMCID: PMC3780503  PMID: 24155847
Self Care; Anticoagulants; Warfarin; International Normalized Ratio; Drug Monitoring; United States
19.  SMART: Self-Management of Anticoagulation, a Randomised Trial [ISRCTN19313375] 
BMC Family Practice  2003;4:11.
Background
Oral anticoagulation monitoring has traditionally taken place in secondary care because of the need for a laboratory blood test, the international normalised ratio (INR). The development of reliable near patient testing (NPT) systems for INR estimation has facilitated devolution of testing to primary care. Patient self-management is a logical progression from the primary care model. This study will be the first to randomise non-selected patients in primary care, to either self-management or standard care.
Method
The study was a multi-centred randomised controlled trial with patients from 49 general practices recruited. Those suitable for inclusion were aged 18 or over, with a long term indication for oral anticoagulation, who had taken warfarin for at least six months. Patients randomised to the intervention arm attended at least two training sessions which were practice-based, 1 week apart. Each patient was assessed on their capability to undertake self management. If considered capable, they were given a near patient INR testing monitor, test strips and quality control material for home testing. Patients managed their own anticoagulation for a period of 12 months and performed their INR test every 2 weeks. Control patients continued with their pre-study care either attending hospital or practice based anticoagulant clinics.
Discussion
The methodology used in this trial will overcome concerns from previous trials of selection bias and relevance to the UK health service. The study will give a clearer understanding of the benefits of self-management in terms of clinical and cost effectiveness and patient preference.
doi:10.1186/1471-2296-4-11
PMCID: PMC240084  PMID: 13678426
20.  Frequency of adverse events in patients with poor anticoagulation: a meta-analysis 
Background
Patients taking anticoagulants orally over the long term have international normalized ratios (INRs) outside the individual therapeutic range more than one-third of the time. Improved anticoagulation control will reduce hemorrhagic and thromboembolic event rates. To gauge the potential effect of improved anticoagulation control, we undertook to determine the proportion of anticoagulant-associated events that occur when INRs are outside the therapeutic range.
Methods
We conducted a meta-analysis of all studies that assigned hemorrhagic and thromboembolic events in patients taking anticoagulants to discrete INR ranges. We identified studies using the MEDLINE (1966–2006) and EMBASE (1980–2006) databases. We included studies reported in English if the majority of patients taking oral anticoagulants had an INR range with a lower limit between 1.8 and 2 and an upper limit between 3 and 3.5, and their INR at the time of the hemorrhagic or thromboembolic event was recorded.
Results
The final analysis included results from 45 studies (23 that reported both hemorrhages and thromboemboli; 14 that reported hemorrhages only; and 8, thromboemboli only) involving a median of 208 patients (limits of interquartile range [25th–75th percentile] 131–523 subjects; total n = 71 065). Of these studies, 64% were conducted at community practices; the remainder, at anticoagulation clinics. About 69% of the studies were classed as having moderate or high quality. Overall, 44% (95% confidence interval [CI] 39%–49%) of hemorrhages occurred when INRs were above the therapeutic range, and 48% (95% CI 41%–55%) of thromboemboli took place when below it. The mean proportion of events that occurred while the patient's INR was outside the therapeutic range was greater for studies with a short mean follow-up (< 1 yr). Between-study heterogeneity was significant (p < 0.001).
Interpretation
Improved anticoagulation control could decrease the likelihood of almost half of all anticoagulant-associated adverse events.
doi:10.1503/cmaj.061523
PMCID: PMC1867836  PMID: 17515585
21.  Patients' perspectives on self-testing of oral anticoagulation therapy: Content analysis of patients' internet blogs 
Background
Patients on oral anticoagulant therapy (OAT) require regular testing of the prothrombin time (PT) and the international normalised ratio (INR) to monitor their blood coagulation level to avoid complications of either over or under coagulation. PT/INR can be tested by a healthcare professional or by the patient. The latter mode of the testing is known as patient self-testing or home testing. The objective of this study was to elicit patients' perspectives and experiences regarding PT/INR self-testing using portable coagulometer devices.
Methods
Internet blog text mining was used to collect 246 blog postings by 108 patients, mainly from the USA and the UK. The content of these qualitative data were analysed using XSight and NVivo software packages.
Results
The key themes in relation to self-testing of OAT identified were as follows: Patient benefits reported were time saved, personal control, choice, travel reduction, cheaper testing, and peace of mind. Equipment issues included high costs, reliability, quality, and learning how to use the device. PT/INR issues focused on the frequency of testing, INR fluctuations and individual target (therapeutic) INR level. Other themes noted were INR testing at laboratories, the interactions with healthcare professionals in managing and testing OAT and insurance companies' involvement in acquiring the self-testing equipment. Social issues included the pain and stress of taking and testing for OAT.
Conclusions
Patients' blogs on PT/INR testing provide insightful information that can help in understanding the nature of the experiences and perspectives of patients on self-testing of OAT. The themes identified in this paper highlight the substantial complexities involved in self-testing programmes in the healthcare system. Thus, the issues elicited in this study are very valuable for all stakeholders involved in developing effective self-testing strategies in healthcare that are gaining considerable current momentum particularly for patients with chronic illness.
doi:10.1186/1472-6963-11-25
PMCID: PMC3045880  PMID: 21291542
22.  Warfarin for non-rheumatic atrial fibrillation: five year experience in a district general hospital 
Heart  2004;90(11):1259-1262.
Objectives: To assess the long term efficacy of and risks associated with computer aided oral anticoagulation for non-rheumatic atrial fibrillation (NRAF) in a district hospital setting.
Design: Retrospective, age stratified, event driven clinical database analysis.
Setting: District general hospital.
Participants: 739 patients receiving warfarin for NRAF between 1996 and 2001. Patients were selected from an anticoagulation database through appropriate filter settings.
Main outcome measures: Anticoagulation control (international normalised ratio (INR)) and hospitalisations for bleeding complications, thromboembolic events, and stroke.
Results: Over 1484 patient-years, computer assisted anticoagulation was uncontrolled in 38.3% of patients (INR < 2.0 or > 3.0). No significant differences in INR control were observed with respect to patient age (< 65, 65–75, and > 75 years), although to achieve adequate control of anticoagulation, the frequency of testing increased significantly with age. Annual risks of bleeding complications, thromboembolism, and stroke were 0.76%, 0.35%, and 0.84%, respectively. No significant differences in these events were observed between the three age groups studied. Patients who had thromboembolic events and haemorrhagic complications were significantly more likely to have been under-anticoagulated (INR < 2.0) and over-anticoagulated (INR > 3.0), respectively, at the time of their clinical event.
Conclusions: Computerised long term oral anticoagulation for NRAF in a community setting of elderly and diverse patients is safe and effective. Anticoagulation control, bleeding events, thromboembolic episodes, and stroke rates are directly comparable with those reported in major clinical trials. The authors therefore support the strategy of rate control with long term oral anticoagulation for NRAF in general clinical practice.
doi:10.1136/hrt.2003.023325
PMCID: PMC1768526  PMID: 15486116
atrial fibrillation; warfarin; long term oral anticoagulation
23.  Impact of positive surgical margins on biochemical relapse after radical retropubic prostatectomy (RRP) 
Introduction
RP (radical prostatectomy) technique continues the major treatment option for men with potential cure and life expectancy exceeding 10 years. The aim of the study is to assess the impact of PSM on BR (biochemical relapse), to identify PSM risk factors, to clarify the factors involved in BR in the absence of PSM.
Material and methods
Consultation of 171 medical-records from patients submitted to RRP (radical retropubic prostatectomy) between January/2000-December/2005. Mean-age: 64 yr. Mean – PSA (positive surgical margin): 11.88 ng/ml. Clinical staging: 67.8% cT1, 32.2% cT2. GS: ≤6 (66.1%), =7 (21.1%), 8-10 (12.3%). PS: pT0 1.2%, pT2 50.3%, pT3a 36.3%, pT3b 12.9%, pT4 0.6%. pathological Gleason score: ≤6 39.2%, =7 40.9%, 8-10 19.3%. RB definition was PSA ≥0.2 ng/ml. Adjusted Odds-Ratios with 95% confidence intervals (CI) were estimated through univariate logistic regression.
Results
There were PSM in 46 specimens, 28 had single PSM and 18 multiple PSM (≥2). BR occurred in 57 patients (33.3%), with an average time after surgery of 23.5 months – 26 patients had PSM and 31 had not. Statistical significant results for BR in variables PSA, PS and PSM. Quadruples if PSM (p <0.0001), triples in single PSM (p = 0.01) and is 6x higher in multiple PSM (p = 0.001). Regarding factors that influence the presence of PSM, only PS ≥pT3a reach statistical significance (p <0.0001). Patients with BR but without PSM (54.38%), variables statistically significant were: initial PSA >10, (p = 0.029) and pathological Gleason score ≥8 with a risk nearly 4x higher than pathological Gleason score ≤6 (p = 0.027).
Conclusions
Statistical risk analysis concluded that the presence of PSM in RRP is strongly influenced by PS ≥pT3a. The presence of PSM and their number increase significantly the risk of BR compared to other factors. In the absence of PSM, the factors that seem to be crucial and with greater impact on BR are initial PSA>10 and pathological Gleason score ≥8.
doi:10.5173/ceju.2011.04.art7
PMCID: PMC3921750  PMID: 24578898
biochemical relapse; positive surgical margins; radical retropubic prostatectomy
24.  Oral anticoagulation and self-management: analysis of the factors that determine the feasibility of using self-testing and self-management in primary care 
Background
The skills of patients on oral anticoagulants are critical for achieving good outcomes with this treatment. Self-management, or the capacity of patients to control their INR level and adjust their treatment, is an effective strategy of treatment. Capacity of patients to self manage is determined by a range of factors. The identification of these factors would improve the design of self management programmes and in turn increase the number of patients able to self-manage. The objective of our study is to identify those factors that determine the ability of patients on oral anticoagulant therapy to achieve self-management of their treatment.
Design
This will be a three year quasi- experimental prospective study with a control group. 333 patients on anticoagulant therapy from five health centres of the Basque Health Service are to be followed up for a period of six months each after the intervention, to assess their ability to self-test and self-manage. The intervention will consist of a patient training programme involving the provision of information and practical training concerning their condition and its treatment, as well as how to use a portable blood coagulation monitoring device and adjust their anticoagulant dose.
Discussion
The ease-of-use of this technique lead us to believe that self-management is feasible and will represent an innovative advance that should have a substantial impact on the quality of life of this patients and their families as well as on the health care provision systems.
Trial registration
Osakidetza Protocol Record ISCIII-11/02285, Oral anticoagulation and self-management, ClinicalTrials.gov Identifier: NCT01878539
doi:10.1186/1471-2261-13-59
PMCID: PMC3765739  PMID: 23968316
Oral anticoagulants; Self-management; Determinants
25.  Quality of vitamin K antagonist control and outcomes in atrial fibrillation patients: a meta-analysis and meta-regression 
Thrombosis Journal  2014;12:14.
Background
Atrial fibrillation (AF) patients frequently require anticoagulation with vitamin K antagonists (VKAs) to prevent thromboembolic events, but their use increases the risk of hemorrhage. We evaluated time spent in therapeutic range (TTR), proportion of international normalized ratio (INR) measurements in range (PINRR), adverse events in relation to INR, and predictors of INR control in AF patients using VKAs.
Methods
We searched MEDLINE, CENTRAL and EMBASE (1990-June 2013) for studies of AF patients receiving adjusted-dose VKAs that reported INR control measures (TTR and PINRR) and/or reported an INR measurement coinciding with thromboembolic or hemorrhagic events. Random-effects meta-analyses and meta-regression were performed.
Results
Ninety-five articles were included. Sixty-eight VKA-treated study groups reported measures of INR control, while 43 studies reported an INR around the time of the adverse event. Patients spent 61% (95% CI, 59–62%), 25% (95% CI, 23–27%) and 14% (95% CI, 13-15%) of their time within, below or above the therapeutic range. PINRR assessments were within, below, and above range 56% (95% CI, 53–59%), 26% (95% CI, 23–29%) and 13% (95% CI, 11-17%) of the time. Patients receiving VKA management in the community spent less TTR than those managed by anticoagulation clinics or in randomized trials. Patients newly receiving VKAs spent less TTR than those with prior VKA use. Patients in Europe/United Kingdom spent more TTR than patients in North America. Fifty-seven percent (95% CI, 50-64%) of thromboembolic events and 42% (95% CI, 35 – 51%) of hemorrhagic events occurred at an INR <2.0 and >3.0, respectively; while 56% (95% CI, 48-64%) of ischemic strokes and 45% of intracranial hemorrhages (95% CI, 29-63%) occurred at INRs <2.0 and >3.0, respectively.
Conclusions
Patients on VKAs for AF frequently have INRs outside the therapeutic range. While, thromboembolic and hemorrhagic events do occur patients with a therapeutic INR; patients with an INR <2.0 make up many of the cases of thromboembolism, while those >3.0 make up many of the cases of hemorrhage. Managing anticoagulation outside of a clinical trial or anticoagulation clinic is associated with poorer INR control, as is, the initiation of therapy in the VKA-naïve. Patients in Europe/UK have better INR control than those in North America.
doi:10.1186/1477-9560-12-14
PMCID: PMC4094926  PMID: 25024644
Vitamin K antagonists; Atrial fibrillation; International normalized ratio; Anticoagulation

Results 1-25 (1192268)