Search tips
Search criteria

Results 1-25 (861910)

Clipboard (0)

Related Articles

1.  Identification of Bilateral Changes in TID1 Expression in the 6-OHDA Rat Model of Parkinson's Disease 
PLoS ONE  2011;6(10):e26045.
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.
We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.
Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrPC levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.
PMCID: PMC3189242  PMID: 22016808
2.  Misfolded Protein Aggregates: Mechanisms, Structures and Potential for Disease Transmission 
Some of the most prevalent human degenerative diseases appear as a result of the misfolding and aggregation of proteins. Compelling evidence suggest that misfolded protein aggregates play an important role in cell dysfunction and tissue damage, leading to the disease. Prion protein (Prion diseases), amyloid-beta (Alzheimer’s disease), alpha-synuclein (Parkinson’s disease), Huntingtin (Huntington’s disease), serum amyloid A (AA amyloidosis) and islet amyloid polypeptide (Type 2 Diabetes) are some of the proteins that trigger disease when they get misfolded. The recent understanding of the crucial role of misfolded proteins as well as the structural requirements and mechanism of protein misfolding have raised the possibility that these diseases may be transmissible by self-propagation of the protein misfolding process in a similar way as the infamous prions transmit prion diseases. Future research in this field should aim to clarify this possibility and translate the knowledge of the basic disease mechanisms into development of novel strategies for early diagnosis and efficient treatment.
PMCID: PMC3175247  PMID: 21571086
prion; amyloid; protein misfolding; transmission; prion-like propagation; infectious proteins
3.  Histochemical approaches to assess cell-to-cell transmission of misfolded proteins in neurodegenerative diseases 
Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-tocell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.
PMCID: PMC3683612  PMID: 23549464
advanced glycation end-products; exosome; synucleinopathies; neurodegenerative diseases; prion diseases; prionoids; RAGEs.
4.  Mysterious oligomerization of the amyloidogenic proteins 
The FEBS journal  2010;277(14):2940-2953.
Misfolding and subsequent self-assembly of protein molecules into various aggregates is a common molecular mechanism for a number of important human diseases. Curing protein misfolding pathologies and designing successful drugs for the inhibition or reversal of protein aggregation depends on understanding the peculiarities of the misfolding process. Protein aggregation is a very complex process characterized by a remarkable polymorphism, where soluble amyloid oligomers, amyloid fibrils and amorphous aggregates are found as final products. This polymorphism is associated with the existence of multiple independent and competing assembly pathways leading to aggregation. Regardless of the aggregation mechanism, soluble oligomers are inevitably formed during the self-association process. Some of these oligomers are now considered to be major initiators of the neurodegenerative cascades of corresponding diseases. However, not all oligomers are equally harmful, and several amyloidogenic proteins have been shown to form nontoxic oligomers, some of which were efficient fibrillation inhibitors. Unfortunately, the information on the structural properties of soluble oligomers and the mechanisms of their formation, interconversion and toxicity is sparse. This review provides an overview of some topics related to soluble oligomers and represents several illustrative examples of toxic, nontoxic, productive and off-pathway amyloid oligomers.
PMCID: PMC2916643  PMID: 20546306
5.  Dominant Prion Mutants Induce Curing Through Pathways That Promote Chaperone-Mediated Disaggregation 
Protein misfolding underlies many neurodegenerative diseases, including the Transmissible Spongiform Encephalopathies (prion diseases). While cells typically recognize and process misfolded proteins, prion proteins evade protective measures by forming stable, self-replicating aggregates. However, co-expression of dominant-negative prion mutants can overcome aggregate accumulation and disease progression through currently unknown pathways. Here, we determine the mechanisms by which two mutants of the Saccharomyces cerevisiae Sup35 protein cure the [PSI+] prion. We show that both mutants incorporate into wildtype aggregates and alter their physical properties in different ways, diminishing either their assembly rate or their thermodynamic stability. While wildtype aggregates are recalcitrant to cellular intervention, mixed aggregates are disassembled by the molecular chaperone Hsp104. Thus, rather than simply blocking misfolding, dominant-negative prion mutants target multiple events in aggregate biogenesis to enhance their susceptibility to endogenous quality control pathways.
PMCID: PMC3082495  PMID: 21423195
6.  Disulfide Bonding in Neurodegenerative Misfolding Diseases 
In recent years an increasing number of neurodegenerative diseases has been linked to the misfolding of a specific protein and its subsequent accumulation into aggregated species, often toxic to the cell. Of all the factors that affect the behavior of these proteins, disulfide bonds are likely to be important, being very conserved in protein sequences and being the enzymes devoted to their formation among the most conserved machineries in mammals. Their crucial role in the folding and in the function of a big fraction of the human proteome is well established. The role of disulfide bonding in preventing and managing protein misfolding and aggregation is currently under investigation. New insights into their involvement in neurodegenerative diseases, their effect on the process of protein misfolding and aggregation, and into the role of the cellular machineries devoted to disulfide bond formation in neurodegenerative diseases are emerging. These studies mark a step forward in the comprehension of the biological base of neurodegenerative disorders and highlight the numerous questions that still remain open.
PMCID: PMC3747422  PMID: 23983694
7.  Parkin-mediated ubiquitin signalling in aggresome formation and autophagy 
Biochemical Society transactions  2010;38(Pt 1):144-149.
Understanding how cells handle and dispose of misfolded proteins is of paramount importance because protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative disorders, including PD (Parkinson's disease) and Alzheimer's disease. In addition to the ubiquitin–proteasome system, the aggresome–autophagy pathway has emerged as another crucial cellular defence system against toxic build-up of misfolded proteins. In contrast with basal autophagy that mediates non-selective, bulk clearance of misfolded proteins along with normal cellular proteins and organelles, the aggresome–autophagy pathway is increasingly recognized as a specialized type of induced autophagy that mediates selective clearance of misfolded and aggregated proteins under the conditions of proteotoxic stress. Recent evidence implicates PD-linked E3 ligase parkin as a key regulator of the aggresome–autophagy pathway and indicates a signalling role for Lys63-linked polyubiquitination in the regulation of aggresome formation and autophagy. The present review summarizes the current knowledge of the aggresome–autophagy pathway, its regulation by parkin-mediated Lys63-linked polyubiquitination, and its dysfunction in neurodegenerative diseases.
PMCID: PMC2846638  PMID: 20074049
aggresome; autophagy; misfolded protein; parkin; Parkinson's disease; ubiquitin-protein ligase
8.  Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases 
PLoS ONE  2008;3(9):e3135.
Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) and Parkinson's disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid β protein (Aβ) oligomers has been identified as one of the central toxic events in AD, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Aβ promotes α-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear.
Methodology/Principal Findings
In order to understand the molecular mechanisms involved in potential Aβ/α-syn interactions, immunoblot, molecular modeling, and in vitro studies with α-syn and Aβ were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Aβ and α-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Aβ binds α-syn monomers, homodimers, and trimers, forming hybrid ring-like pentamers. Interactions occurred between the N-terminus of Aβ and the N-terminus and C-terminus of α-syn. Interacting α-syn and Aβ dimers that dock on the membrane incorporated additional α-syn molecules, leading to the formation of more stable pentamers and hexamers that adopt a ring-like structure. Consistent with the simulations, under in vitro cell-free conditions, Aβ interacted with α-syn, forming hybrid pore-like oligomers. Moreover, cells expressing α-syn and treated with Aβ displayed increased current amplitudes and calcium influx consistent with the formation of cation channels.
These results support the contention that Aβ directly interacts with α-syn and stabilized the formation of hybrid nanopores that alter neuronal activity and might contribute to the mechanisms of neurodegeneration in AD and PD. The broader implications of such hybrid interactions might be important to the pathogenesis of other disorders of protein misfolding.
PMCID: PMC2519786  PMID: 18769546
9.  Role of Protein Misfolding and Proteostasis Deficiency in Protein Misfolding Diseases and Aging 
The misfolding, aggregation, and tissue accumulation of proteins are common events in diverse chronic diseases, known as protein misfolding disorders. Many of these diseases are associated with aging, but the mechanism for this connection is unknown. Recent evidence has shown that the formation and accumulation of protein aggregates may be a process frequently occurring during normal aging, but it is unknown whether protein misfolding is a cause or a consequence of aging. To combat the formation of these misfolded aggregates cells have developed complex and complementary pathways aiming to maintain protein homeostasis. These protective pathways include the unfolded protein response, the ubiquitin proteasome system, autophagy, and the encapsulation of damaged proteins in aggresomes. In this paper we review the current knowledge on the role of protein misfolding in disease and aging as well as the implication of deficiencies in the proteostasis cellular pathways in these processes. It is likely that further understanding of the mechanisms involved in protein misfolding and the natural defense pathways may lead to novel strategies for treatment of age-dependent protein misfolding disorders and perhaps aging itself.
PMCID: PMC3855986  PMID: 24348562
10.  Inhibition of Protein Misfolding/Aggregation Using Polyglutamine Binding Peptide QBP1 as a Therapy for the Polyglutamine Diseases 
Neurotherapeutics  2013;10(3):440-446.
Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and the polyglutamine (polyQ) diseases, which are collectively called the “protein misfolding diseases”. In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). We show that QBP1 does, indeed, inhibit misfolding and aggregation of the expanded polyQ protein in vitro. Furthermore overexpression of QBP1 by the crossing of transgenic animals inhibits neurodegeneration in Drosophila models of the polyQ diseases. We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-013-0184-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3701761  PMID: 23504628
Polyglutamine disease; Neurodegeneration; QBP1; Protein aggregation; Inhibitor peptide; Therapy
11.  Environmental Stresses Induce Misfolded Protein Aggregation in Plant Cells in a Microtubule-Dependent Manner 
Misfolded protein aggregation in mammalian cells is one of the cellular responses to environmental stresses. However, the aggregation of misfolded proteins in plant cells exposed to environmental stresses is still poorly understood. Here, we report the misfolded protein aggregation in plant cells in response to environmental stresses, including ultraviolet (UV) radiation, heat stress and cold stress. Treatment of grape and tobacco cultured cells with MG-132, a proteasome inhibitor, induced misfolded protein aggregation. All of the environmental stresses examined induced the endoplasmic reticulum (ER) stress response in the cells. The cells under ER stress showed aggregation of misfolded proteins. The misfolded protein aggregation was completely inhibited by treatment of the cells with trichostatin A or colchicine, suggesting that the misfolded proteins might be aggregated in plant cells in a microtubule-dependent manner. Detected aggregates were initially observed immediately after exposure to the environmental stresses (1 min after UV radiation, 5 min after heat stress exposure, and 15 min after cold stress exposure). Based on these findings, we hypothesize that environmental stresses induce misfolded protein aggregation in plant cells in a microtubule-dependent manner.
PMCID: PMC3645715  PMID: 23574938
environmental stress; ER stress; misfolded protein; protein aggregate
12.  Parkin-mediated K63-linked polyubiquitination 
Autophagy  2007;4(1):85-87.
Pathological inclusions containing misfolded proteins are a prominent feature common to many age-related neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In cultured cells, when the production of misfolded proteins exceeds the capacity of the chaperone refolding system and the ubiquitin-proteasome degradation pathway, misfolded proteins are actively transported along microtubules to pericentriolar inclusions called aggresomes. The aggresomes sequester potentially toxic misfolded proteins and facilitate their clearance by autophagy. The molecular mechanism(s) that targets misfolded proteins to the aggresome-autophagy pathway is mostly unknown. Our recent work identifies parkin-mediated K63-linked polyubiquitination as a signal that couples misfolded proteins to the dynein motor complex via the adaptor protein histone deacetylase 6 and thereby promotes sequestration of misfolded proteins into aggresomes and subsequent clearance by autophagy. Our findings provide insight into the mechanisms underlying aggresome formation and suggest that parkin and K63-linked polyubiquitination may play a role in the autophagic clearance of misfolded proteins.
PMCID: PMC2597496  PMID: 17957134
Parkinson’s disease; autophagy; aggresome; inclusion body; misfolded proteins; parkin; lysine-63; ubiquitination; HDAC6
13.  Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders 
Cell and Tissue Research  2012;352(1):33-47.
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer’s, Parkinson’s and Huntington’s disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.
PMCID: PMC3602607  PMID: 22610588
Exosomes; Dementia; Spreading; Transfer; Aggregopathy
14.  Molecular Chaperones in Parkinson’s Disease – Present and Future 
Journal of Parkinson's disease  2011;1(4):299-320.
Parkinson’s disease, like many other neurodegenerative disorders, is characterized by the progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. The cascade by which the small synaptic protein α-synuclein misfolds to form distinctive protein aggregates, termed Lewy bodies and Lewy neurites, has been the subject of intensive research for more than a decade. Genetic and pathological studies in Parkinson’s disease patients as well as experimental studies in disease models have clearly established altered protein metabolism as a key element in the pathogenesis of Parkinson’s disease. Alterations in protein metabolism include misfolding and aggregation, post-translational modification and dysfunctional degradation of cytotoxic protein species.
Protein folding and re-folding are both mediated by a highly conserved network of molecules, called molecular chaperones and co-chaperones. In addition to the regulatory role in protein folding, molecular chaperone function is intimately associated with pathways of protein degradation, such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway, to effectively remove irreversibly misfolded proteins. Because of the central role of molecular chaperones in maintaining protein homeostasis, we herein review our current knowledge on the involvement of molecular chaperones and co-chaperones in Parkinson’s disease. We further discuss the capacity of molecular chaperones to prevent or modulate neurodegeneration, an important concept for future neuroprotective strategies and summarize the current progress in preclinical studies in models of Parkinson’s disease and other neurodegenerative disorders. Finally we include a discussion on the future potential of using molecular chaperones as a disease modifying therapy.
PMCID: PMC3264060  PMID: 22279517
neurodegeneration; Parkinson’s disease; alpha-synuclein; Lewy body; molecular chaperone; proteasome; autophagy; lysosome; heat shock protein (Hsp); Hsp90 inhibitor
15.  A Revisited Folding Reporter for Quantitative Assay of Protein Misfolding and Aggregation in Mammalian Cells 
Biotechnology journal  2012;7(10):1297-1307.
Protein misfolding and aggregation play important roles in many physiological processes. These include pathological protein aggregation in neurodegenerative diseases and biopharmaceutical protein aggregation during production in mammalian cells. In order to develop a simple non-invasive assay for protein misfolding and aggregation in mammalian cells, the folding reporter green fluorescent protein (GFP) system, originally developed for bacterial cells, was evaluated. As a folding reporter, GFP was fused to the C-terminus of a panel of human copper/zinc superoxide dismutase (SOD1) mutants with varying misfolding/aggregation propensities. Flow cytometric analysis of transfected HEK293T and NSC-34 cells revealed that the mean fluorescence intensities of the cells expressing GFP fusion of SOD1 variants exhibit an inverse correlation with the misfolding/aggregation propensities of the four SOD1 variants. Our results support the hypothesis that the extent of misfolding/aggregation of a target protein in mammalian cells can be quantitatively estimated by measuring the mean fluorescence intensity of the cells expressing GFP fusion. The assay method developed here will facilitate understanding of aggregation process of SOD1 variants and identifying aggregation inhibitors. The method also has great promise for misfolding/ aggregation study of other proteins in mammalian cells.
PMCID: PMC3517142  PMID: 22623352
green fluorescence protein; protein aggregation; protein misfolding; SOD1
16.  Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease 
Neurotoxicology  2011;32(5):554-562.
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.
PMCID: PMC3205977  PMID: 21871919
prion; metals; manganese; apoptosis; neurotoxicity
17.  Dual Functional Small Molecule Probes as Fluorophore and Ligand for Misfolding Proteins 
Current organic chemistry  2013;17(6):10.2174/1385272811317060004.
Misfolding of a protein is a destructive process for variety of diseases that include neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington disease, mad cow disease, amyotrophic lateral sclerosis (ALS), and frontal temporal dementia (FTD), and other non-CNS diseases such as diabetes, cystic fibrosis, and lysosomal storage diseases. Formation of various misfunctional large assembles of the misfolded protein is the primary consequence. To detect the formation of the aggregated species is very important for not only basic mechanism research but also very crucial for diagnosis of the diseases. In this review, we updated references related to the new development of the dual functional fluorescent small molecule probes for detecting the aggregated proteins in vitro and in vivo.
PMCID: PMC3867281  PMID: 24363605
Dual functional probes; fluorescent probe; misfolding proteins; neurodegenerative disease; in vivo imaging; fluorescent imaging; near infrared imaging; Alzheimer’s disease; neurodegenerative diseases
18.  Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases 
Brain research reviews  2008;59(1):245-252.
A number of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine diseases, are characterized by the age-dependent formation of intracellular protein aggregates and neurodegeneration. Although there is some debate surrounding the role of these aggregates in neurotoxicity, the formation of aggregates is known to reflect the accumulation of misfolded and toxic proteins. The degradation of misfolded proteins occurs mainly via the ubiquitin–proteasome and autophagy pathways. In neuronal cells, polyglutamine protein inclusions are present predominantly in the nucleus, which is not accessible to autophagy. It remains unclear how the ubiquitin–proteasomal and autophagy pathways remove misfolded proteins in the different subcellular regions of neurons, where disease proteins become misfolded and aggregated in an age-dependent manner. Here we discuss the key findings to date about the roles of the ubiquitin–proteasome system and autophagy in polyglutamine diseases. Understanding how these two pathways function to clear mutant polyglutamine proteins will further the development of effective treatments for polyglutamine and other neurodegenerative diseases.
PMCID: PMC2577582  PMID: 18773920
Ubiquitin; Proteasome; Autophagy; Polyglutamine; Huntingtin; Neurodegeneration
19.  Dealing with Misfolded Proteins: Examining the Neuroprotective Role of Molecular Chaperones in Neurodegeneration 
Molecules (Basel, Switzerland)  2010;15(10):6859-6887.
Human neurodegenerative diseases arise from a wide array of genetic and environmental factors. Despite the diversity in etiology, many of these diseases are considered "conformational" in nature, characterized by the accumulation of pathological, misfolded proteins. These misfolded proteins can induce cellular stress by overloading the proteolytic machinery, ultimately resulting in the accumulation and deposition of aggregated protein species that are cytotoxic. Misfolded proteins may also form aberrant, non-physiological protein-protein interactions leading to the sequestration of other normal proteins essential for cellular functions. The progression of such disease may therefore be viewed as a failure of normal protein homeostasis, a process that involves a network of molecules regulating the synthesis, folding, translocation and clearance of proteins. Molecular chaperones are highly conserved proteins involved in the folding of nascent proteins, and the repair of proteins that have lost their typical conformations. These functions have therefore made molecular chaperones an active area of investigation within the field of conformational diseases. This review will discuss the role of molecular chaperones in neurodegenerative diseases, highlighting their functional classification, regulation, and therapeutic potential for such diseases.
PMCID: PMC3133442  PMID: 20938400
Alzheimer’s disease; Parkinson’s disease; PolyQ disease; Hsp90; Hsp70
20.  Nanomedicine and Protein Misfolding Diseases 
Misfolding and self assembly of proteins in nano-aggregates of different sizes and morphologies (nano-ensembles, primarily nanofilaments and nano-rings) is a complex phenomenon that can be facilitated, impeded, or prevented, by interactions with various intracellular metabolites, intracellular nanomachines controlling protein folding and interactions with other proteins. A fundamental understanding of molecular processes leading to misfolding and self-aggregation of proteins involved in various neurodegenerative diseases will provide critical information to help identify appropriate therapeutic routes to control these processes. An elevated propensity of misfolded protein conformation in solution to aggregate with the formation of various morphologies impedes the use of traditional physical chemical approaches for studies of misfolded conformations of proteins. In our recent alternative approach, the protein molecules were tethered to surfaces to prevent aggregation and AFM force spectroscopy was used to probe the interaction between protein molecules depending on their conformations. It was shown that formation of filamentous aggregates is facilitated at pH values corresponding to the maximum of rupture forces. In this paper, a novel surface chemistry was developed for anchoring of amyloid β (Aβ) peptides at their N-terminal moieties. The use of the site specific immobilization procedure allowed to measure the rupture of Aβ - Aβ contacts at single molecule level. The rupture of these contacts is accompanied by the extension of the peptide chain detected by a characteristic elasto-mechanical component of the force-distance curves. Potential applications of the nanomechanical studies to understanding the mechanisms of development of protein misfolding diseases are discussed.
PMCID: PMC1351038  PMID: 16467913
Nanotechnology; amyloids; neurodegenerative diseases; protein aggregation; protein folding; intermolecular forces; AFM; Alzheimer’s disease
21.  Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders 
The family of the mammalian small heat-shock proteins consists of 10 members (sHSPs/HSPBs: HSPB1–HSPB10) that all share a highly conserved C-terminal alpha-crystallin domain, important for the modulation of both their structural and functional properties. HSPB proteins are biochemically classified as molecular chaperones and participate in protein quality control, preventing the aggregation of unfolded or misfolded proteins and/or assisting in their degradation. Thus, several members of the HSPB family have been suggested to be protective in a number of neurodegenerative and neuromuscular diseases that are characterized by protein misfolding. However, the pro-refolding, anti-aggregation or pro-degradative properties of the various members of the HSPB family differ largely, thereby influencing their efficacy and protective functions. Such diversity depends on several factors, including biochemical and physical properties of the unfolded/misfolded client, the expression levels and the subcellular localization of both the chaperone and the client proteins. Furthermore, although some HSPB members are inefficient at inhibiting protein aggregation, they can still exert neuroprotective effects by other, as yet unidentified, manners; e.g. by maintaining the proper cellular redox state or/and by preventing the activation of the apoptotic cascade. Here, we will focus our attention on how the differences in the activities of the HSPB proteins can influence neurodegenerative and neuromuscular disorders characterized by accumulation of aggregate-prone proteins. Understanding their mechanism of action may allow us to target a specific member in a specific cell type/disease for therapeutic purposes.
PMCID: PMC3638395  PMID: 23530259
small heat-shock proteins; neurodegeneration; chaperones; heat-shock proteins
22.  Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans 
BMC Cell Biology  2012;13:10.
Protein misfolding and subsequent aggregation are hallmarks of several human diseases. The cell has a variety of mechanisms for coping with misfolded protein stress, including ubiquitin-mediated protein degradation. In fact, the presence of ubiquitin at protein aggregates is a common feature of protein misfolding diseases. Ubiquitin conjugating enzymes (UBCs) are part of the cascade of enzymes responsible for the regulated attachment of ubiquitin to protein substrates. The specific UBC used during ubiquitination can determine the type of polyubiquitin chain linkage, which in turn plays an important role in determining the fate of the ubiquitinated protein. Thus, UBCs may serve an important role in the cellular response to misfolded proteins and the fate of protein aggregates.
The Q82 strain of C. elegans harbors a transgene encoding an aggregation prone tract of 82 glutamine residues fused to green fluorescent protein (Q82::GFP) that is expressed in the body wall muscle. When measured with time-lapse microscopy in young larvae, the initial formation of individual Q82::GFP aggregates occurs in approximately 58 minutes. This process is largely unaffected by a mutation in the C. elegans E1 ubiquitin activating enzyme. RNAi of ubc-22, a nematode homolog of E2-25K, resulted in higher pre-aggregation levels of Q82::GFP and a faster initial aggregation rate relative to control. Knockdown of ubc-1 (RAD6 homolog), ubc-13, and uev-1 did not affect the kinetics of initial aggregation. However, RNAi of ubc-13 decreases the rate of secondary growth of the aggregate. This result is consistent with previous findings that aggregates in young adult worms are smaller after ubc-13 RNAi. mCherry::ubiquitin becomes localized to Q82::GFP aggregates during the fourth larval (L4) stage of life, a time point long after most aggregates have formed. FLIP and FRAP analysis indicate that mCherry::ubiquitin is considerably more mobile than Q82::GFP within aggregates.
These data indicate that initial formation of Q82::GFP aggregates in C. elegans is not directly dependent on ubiquitination, but is more likely a spontaneous process driven by biophysical properties in the cytosol such as the concentration of the aggregating species. The effect of ubiquitination appears to be most significant in later, secondary aggregate growth.
PMCID: PMC3368771  PMID: 22494772
23.  Quantitative Analysis of α-Synuclein Solubility in Living Cells Using Split GFP Complementation 
PLoS ONE  2012;7(8):e43505.
Presently incurable, Parkinson's disease (PD) is the most common neurodegenerative movement disorder and affects 1% of the population over 60 years of age. The hallmarks of PD pathogenesis are the loss of dopaminergic neurons in the substantia nigra pars compacta, and the occurrence of proteinaceous cytoplasmic inclusions (Lewy bodies) in surviving neurons. Lewy bodies are mainly composed of the pre-synaptic protein alpha-synuclein (αsyn), an intrinsically unstructured, misfolding-prone protein with high propensity to aggregate. Quantifying the pool of soluble αsyn and monitoring αsyn aggregation in living cells is fundamental to study the molecular mechanisms of αsyn-induced cytotoxicity and develop therapeutic strategies to prevent αsyn aggregation. In this study, we report the use of a split GFP complementation assay to quantify αsyn solubility. Particularly, we investigated a series of naturally occurring and rationally designed αsyn variants and showed that this method can be used to study how αsyn sequence specificity affects its solubility. Furthermore, we demonstrated the utility of this assay to explore the influence of the cellular folding network on αsyn solubility. The results presented underscore the utility of the split GFP assay to quantify αsyn solubility in living cells.
PMCID: PMC3425482  PMID: 22927976
24.  Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6 
The Journal of Cell Biology  2007;178(6):1025-1038.
Sequestration of misfolded proteins into pericentriolar inclusions called aggresomes is a means that cells use to minimize misfolded protein-induced cytotoxicity. However, the molecular mechanism by which misfolded proteins are recruited to aggresomes remains unclear. Mutations in the E3 ligase parkin cause autosomal recessive Parkinson's disease that is devoid of Lewy bodies, which are similar to aggresomes. Here, we report that parkin cooperates with heterodimeric E2 enzyme UbcH13/Uev1a to mediate K63-linked polyubiquitination of misfolded DJ-1. K63-linked polyubiquitination of misfolded DJ-1 serves as a signal for interaction with histone deacetylase 6, an adaptor protein that binds the dynein–dynactin complex. Through this interaction, misfolded DJ-1 is linked to the dynein motor and transported to aggresomes. Furthermore, fibroblasts lacking parkin display deficits in targeting misfolded DJ-1 to aggresomes. Our findings reveal a signaling role for K63-linked polyubiquitination in dynein-mediated transport, identify parkin as a key regulator in the recruitment of misfolded DJ-1 to aggresomes, and have important implications regarding the biogenesis of Lewy bodies.
PMCID: PMC2064625  PMID: 17846173
25.  Misfolded proteins partition between two distinct quality control compartments 
Nature  2008;454(7208):1088-1095.
The accumulation of misfolded proteins in intracellular amyloid inclusions, typical of many neurodegenerative disorders including Huntington's and prion disease, is thought to occur after failure of the cellular protein quality control mechanisms. Here we examine the formation of misfolded protein inclusions in the eukaryotic cytosol of yeast and mammalian cell culture models. We identify two intracellular compartments for the sequestration of misfolded cytosolic proteins. Partition of quality control substrates to either compartment seems to depend on their ubiquitination status and aggregation state. Soluble ubiquitinated misfolded proteins accumulate in a juxtanuclear compartment where proteasomes are concentrated. In contrast, terminally aggregated proteins are sequestered in a perivacuolar inclusion. Notably, disease-associated Huntingtin and prion proteins are preferentially directed to the perivacuolar compartment. Enhancing ubiquitination of a prion protein suffices to promote its delivery to the juxtanuclear inclusion. Our findings provide a framework for understanding the preferential accumulation of amyloidogenic proteins in inclusions linked to human disease.
PMCID: PMC2746971  PMID: 18756251

Results 1-25 (861910)