PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (674502)

Clipboard (0)
None

Related Articles

1.  Human Glial-Restricted Progenitor Transplantation into Cervical Spinal Cord of the SOD1G93A Mouse Model of ALS 
PLoS ONE  2011;6(10):e25968.
Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1G93A rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted progenitors derived from human fetal neural tissue. Our previous findings demonstrated that transplantation of rodent-derived GRPs into cervical spinal cord ventral gray matter (in order to target therapy to diaphragmatic function) resulted in therapeutic efficacy in the SOD1G93A rat. Those findings demonstrated the feasibility and efficacy of transplantation-based astrocyte replacement for ALS, and also show that targeted multi-segmental cell delivery to cervical spinal cord is a promising therapeutic strategy, particularly because of its relevance to addressing respiratory compromise associated with ALS. The present study investigated the safety and in vivo survival, distribution, differentiation, and potential efficacy of hGRPs in the SOD1G93A mouse. hGRP transplants robustly survived and migrated in both gray and white matter and differentiated into astrocytes in SOD1G93A mice spinal cord, despite ongoing disease progression. However, cervical spinal cord transplants did not result in motor neuron protection or any therapeutic benefits on functional outcome measures. This study provides an in vivo characterization of this glial progenitor cell and provides a foundation for understanding their capacity for survival, integration within host tissues, differentiation into glial subtypes, migration, and lack of toxicity or tumor formation.
doi:10.1371/journal.pone.0025968
PMCID: PMC3187829  PMID: 21998733
2.  Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord 
PLoS Medicine  2007;4(2):e39.
Background
Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages.
Methods and Findings
In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter.
Conclusions
NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain, especially with respect to the establishment of neuromuscular connections.
When neural stem cells from human fetal spinal cord were grafted into the lumbar cord of normal or injured adult nude rats, substantial neuronal differentiation was found.
Editors' Summary
Background.
Every year, spinal cord injuries, many caused by road traffic accidents, paralyze about 11,000 people in the US. This paralysis occurs because the spinal cord is the main communication highway between the body and the brain. Information from the skin and other sensory organs is transmitted to the brain along the spinal cord by bundles of neurons, nervous system cells that transmit and receive messages. The brain then sends information back down the spinal cord to control movement, breathing, and other bodily functions. The bones of the spine normally protect the spinal cord but, if these are broken or dislocated, the spinal cord can be cut or compressed, which interrupts the information flow. Damage near the top of the spinal cord can paralyze the arms and legs (tetraplegia); damage lower down paralyzes the legs only (paraplegia). Spinal cord injuries also cause many other medical problems, including the loss of bowel and bladder control. Although the deleterious effects of spinal cord injuries can be minimized by quickly immobilizing the patient and using drugs to reduce inflammation, the damaged nerve fibers never regrow. Consequently, spinal cord injury is permanent.
Why Was This Study Done?
Scientists are currently searching for ways to reverse spinal cord damage. One potential approach is to replace the damaged neurons using neural stem cells (NSCs). These cells, which can be isolated from embryos and from some areas of the adult nervous system, are able to develop into all the specialized cells types of the nervous system. However, because most attempts to repair spinal cord damage with NSC transplants have been unsuccessful, many scientists believe that the environment of the spinal cord is unsuitable for nerve regeneration. In this study, the researchers have investigated what happens to NSCs derived from the spinal cord of a human fetus after transplantation into the spinal cord of adult rats.
What Did the Researchers Do and Find?
The researchers injected human NSCs that they had grown in dishes into the spinal cord of intact nude rats (animals that lack a functioning immune system and so do not destroy human cells) and into nude rats whose spinal cord had been damaged at the transplantation site. The survival and fate of the transplanted cells was assessed by staining thin slices of spinal cord with an antibody that binds to a human-specific protein and with antibodies that recognize proteins specific to NSCs, neurons, or other nervous system cells. The researchers report that the human cells survived well in the adult spinal cord of the injured and normal rats and migrated into the gray matter of the spinal cord (which contains neuronal cell bodies) and into the white matter (which contains the long extensions of nerve cells that carry nerve impulses). 75% and 60% of the human cells in the gray and white matter, respectively, contained a neuron-specific protein six months after transplantation but only 10% of those in the membrane surrounding the spinal cord became neurons; the rest developed into astrocytes (another nervous system cell type) or remained as stem cells. Finally, many of the human-derived neurons made the neurotransmitter GABA (one of the chemicals that transfers messages between neurons) and made contacts with host spinal cord neurons.
What Do These Findings Mean?
These findings suggest that human NSC grafts can, after all, develop into neurons (predominantly GABA-producing neurons) in normal and injured adult spinal cord and integrate into the existing spinal cord if the conditions are right. Although these animal experiments suggest that NSC transplants might help people with spinal injuries, they have some important limitations. For example, the spinal cord lesions used here are mild and unlike those seen in human patients. This and the use of nude rats might have reduced the scarring in the damaged spinal cord that is often a major barrier to nerve regeneration. Furthermore, the researchers did not test whether NSC transplants provide functional improvements after spinal cord injury. However, since other researchers have also recently reported that NSCs can grow and develop into neurons in injured adult spinal cord, these new results further strengthen hopes it might eventually be possible to use human NSCs to repair damaged spinal cords.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/doi:10.1371/journal.pmed.0040039.
The US National Institute of Neurological Disorders and Stroke provides information on spinal cord injury and current spinal cord research
Spinal Research (a UK charity) offers information on spinal cord injury and repair
The US National Spinal Cord Injury Association Web site contains factsheets on spinal cord injuries
MedlinePlus encyclopedia has pages on spinal cord trauma and interactive tutorials on spinal cord injury
The International Society for Stem Cell Research offers information on all sorts of stem cells including NSCs
The US National Human Neural Stem Cell Resource provides information on human NSCs, including the current US government's stance on stem cell research
doi:10.1371/journal.pmed.0040039
PMCID: PMC1796906  PMID: 17298165
3.  Precursor Cell Biology and the Development of Astrocyte Transplantation Therapies: Lessons from Spinal Cord Injury 
Neurotherapeutics  2011;8(4):677-693.
This review summarizes current progress on development of astrocyte transplantation therapies for repair of the damaged central nervous system. Replacement of neurons in the injured or diseased central nervous system is currently one of the most popular therapeutic goals, but if neuronal replacement is attempted in the absence of appropriate supporting cells (astrocytes and oligodendrocytes), then the chances of restoring neurological functional are greatly reduced. Although the past 20 years have offered great progress on oligodendrocyte replacement therapies, astrocyte transplantation therapies have been both less explored and comparatively less successful. We have now developed successful astrocyte transplantation therapies by pre-differentiating glial restricted precursor (GRP) cells into a specific population of GRP cell-derived astrocytes (GDAs) by exposing the GRP cells to bone morphogenetic protein-4 (BMP) prior to transplantation. When transplanted into transected rat spinal cord, rat and human GDAsBMP promote extensive axonal regeneration, rescue neuronal cell survival, realign tissue structure, and restore behavior to pre-injury levels on a grid-walk analysis of volitional foot placement. Such benefits are not provided by GRP cells themselves, demonstrating that the lesion environment does not direct differentiation in a manner optimally beneficial for the restoration of function. Such benefits also are not provided by transplantation of a different population of astrocytes generated from GRP cells exposed to ciliary neurotrophic factor (GDAsCNTF), thus providing the first transplantation-based evidence of functional heterogeneity in astrocyte populations. Moreover, lessons learned from the study of rat cells are strongly predictive of outcomes using human cells. Thus, these studies provide successful strategies for the use of astrocyte transplantation therapies for restoration of function following spinal cord injury.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-011-0071-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s13311-011-0071-z
PMCID: PMC3210359  PMID: 21918888
Glial-restricted precursor cells; Glial precursor cell-derived astrocyte; Spinal cord injury; Regeneration; Astrocyte transplantation therapy; Astrocyte heterogeneity
4.  Precursor Cell Biology and the Development of Astrocyte Transplantation Therapies: Lessons from Spinal Cord Injury 
Neurotherapeutics  2011;8(4):677-693.
This review summarizes current progress on development of astrocyte transplantation therapies for repair of the damaged central nervous system. Replacement of neurons in the injured or diseased central nervous system is currently one of the most popular therapeutic goals, but if neuronal replacement is attempted in the absence of appropriate supporting cells (astrocytes and oligodendrocytes), then the chances of restoring neurological functional are greatly reduced. Although the past 20 years have offered great progress on oligodendrocyte replacement therapies, astrocyte transplantation therapies have been both less explored and comparatively less successful. We have now developed successful astrocyte transplantation therapies by pre-differentiating glial restricted precursor (GRP) cells into a specific population of GRP cell-derived astrocytes (GDAs) by exposing the GRP cells to bone morphogenetic protein-4 (BMP) prior to transplantation. When transplanted into transected rat spinal cord, rat and human GDAsBMP promote extensive axonal regeneration, rescue neuronal cell survival, realign tissue structure, and restore behavior to pre-injury levels on a grid-walk analysis of volitional foot placement. Such benefits are not provided by GRP cells themselves, demonstrating that the lesion environment does not direct differentiation in a manner optimally beneficial for the restoration of function. Such benefits also are not provided by transplantation of a different population of astrocytes generated from GRP cells exposed to ciliary neurotrophic factor (GDAsCNTF), thus providing the first transplantation-based evidence of functional heterogeneity in astrocyte populations. Moreover, lessons learned from the study of rat cells are strongly predictive of outcomes using human cells. Thus, these studies provide successful strategies for the use of astrocyte transplantation therapies for restoration of function following spinal cord injury.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-011-0071-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s13311-011-0071-z
PMCID: PMC3210359  PMID: 21918888
Glial-restricted precursor cells; Glial precursor cell-derived astrocyte; Spinal cord injury; Regeneration; Astrocyte transplantation therapy; Astrocyte heterogeneity
5.  Functional Recovery in Traumatic Spinal Cord Injury after Transplantation of Multineurotrophin-Expressing Glial-Restricted Precursor Cells 
Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A–GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)–GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15–30%). Most importantly, 8 of 12 rats receiving grafts of D15A–GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP–GRPs, D15A–NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A–GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and GRP grafts can facilitate functional recovery after traumatic SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
doi:10.1523/JNEUROSCI.1065-05.2005
PMCID: PMC2813488  PMID: 16049170
spinal cord injury; remyelination; glial-restricted precursor cells; transplantation; rat; myelin repair
6.  Mutant SOD1 microglia-generated nitroxidative stress promotes toxicity to human fetal neural stem cell-derived motor neurons through direct damage and noxious interactions with astrocytes 
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. Human neural stem cells (hNSCs) may have the potential to replace lost motor neurons. The therapeutic efficacy of stem cell therapy depends greatly on the survival of grafted stem cell-derived motor neurons in the microenvironment of the spinal cord in ALS. After transplantation of hNSCs into the spinal cords of transgenic ALS rats, morphological analysis reveals that grafted hNSCs differentiate into motor neurons. However, hNSCs degenerate and show signs of nitroxidative damage at the disease end-stage. Using an in vitro coculture system, we systematically assess interactions between microglia and astroglia derived from both nontransgenic rats and transgenic rats expressing human mutant SOD1G93A before and after symptomatic disease onset, and determine the effects of such microglia-astroglia interactions on the survival of hNSC-derived motor neurons. We found that ALS microglia, specifically isolated after symptomatic disease onset, are directly toxic to hNSC-derived motor neurons. Furthermore, nontransgenic astrocytes not only lose their protective role in hNSC-derived motor neuron survival in vitro, but also exhibit toxic features when cocultured with mutant SOD1G93A microglia. Using inhibitors of inducible nitric oxide synthase and NADPH oxidase, we show that microglia-generated nitric oxide and superoxide partially contribute to motor neuron loss and astrocyte dysfunction in this coculture paradigm. In summary, reactive oxygen/nitrogen species released from overactivated microglia in ALS directly eliminate human neural stem cell-derived motor neurons and reduce the neuroprotective capacities of astrocytes
PMCID: PMC3643388  PMID: 23671793
Amyotrophic lateral sclerosis; microglia; astroglia; motor neuron; transplantation; oxidative stress
7.  GDNF Secreting Human Neural Progenitor Cells Protect Dying Motor Neurons, but Not Their Projection to Muscle, in a Rat Model of Familial ALS 
PLoS ONE  2007;2(8):e689.
Background
Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by rapid loss of muscle control and eventual paralysis due to the death of large motor neurons in the brain and spinal cord. Growth factors such as glial cell line derived neurotrophic factor (GDNF) are known to protect motor neurons from damage in a range of models. However, penetrance through the blood brain barrier and delivery to the spinal cord remains a serious challenge. Although there may be a primary dysfunction in the motor neuron itself, there is also increasing evidence that excitotoxicity due to glial dysfunction plays a crucial role in disease progression. Clearly it would be of great interest if wild type glial cells could ameliorate motor neuron loss in these models, perhaps in combination with the release of growth factors such as GDNF.
Methodology/Principal Findings
Human neural progenitor cells can be expanded in culture for long periods and survive transplantation into the adult rodent central nervous system, in some cases making large numbers of GFAP positive astrocytes. They can also be genetically modified to release GDNF (hNPCGDNF) and thus act as long-term ‘mini pumps’ in specific regions of the rodent and primate brain. In the current study we genetically modified human neural stem cells to release GDNF and transplanted them into the spinal cord of rats over-expressing mutant SOD1 (SOD1G93A). Following unilateral transplantation into the spinal cord of SOD1G93A rats there was robust cellular migration into degenerating areas, efficient delivery of GDNF and remarkable preservation of motor neurons at early and end stages of the disease within chimeric regions. The progenitors retained immature markers, and those not secreting GDNF had no effect on motor neuron survival. Interestingly, this robust motor neuron survival was not accompanied by continued innervation of muscle end plates and thus resulted in no improvement in ipsilateral limb use.
Conclusions/Significance
The potential to maintain dying motor neurons by delivering GDNF using neural progenitor cells represents a novel and powerful treatment strategy for ALS. While this approach represents a unique way to prevent motor neuron loss, our data also suggest that additional strategies may also be required for maintenance of neuromuscular connections and full functional recovery. However, simply maintaining motor neurons in patients would be the first step of a therapeutic advance for this devastating and incurable disease, while future strategies focus on the maintenance of the neuromuscular junction.
doi:10.1371/journal.pone.0000689
PMCID: PMC1925150  PMID: 17668067
8.  Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration 
Experimental Neurology  2011;233(2):717-732.
Although astrocytes are involved in the production of an inhibitory glial scar following injury, they are also capable of providing neuroprotection and supporting axonal growth. There is growing appreciation for a diverse and dynamic population of astrocytes, specified by a variety of glial precursors, whose function is regulated regionally and temporally. Consequently, the therapeutic application of glial precursors and astrocytes by effective transplantation protocols requires a better understanding of their phenotypic and functional properties and effective protocols for their preparation. We present a systematic analysis of astrocyte differentiation using multiple preparations of glial-restricted precursors (GRP), evaluating their morphological and phenotypic properties following treatment with fetal bovine serum (FBS), bone morphogenetic protein 4 (BMP-4), or ciliary neurotrophic factor (CNTF) in comparison to controls treated with basic fibroblast growth factor (bFGF), which maintains undifferentiated GRP. We found that treatments with FBS or BMP-4 generated similar profiles of highly differentiated astrocytes that were A2B5−/GFAP+. Treatment with FBS generated the most mature astrocytes, with a distinct and nearhomogeneous morphology of fibroblast-like flat cells, whereas BMP-4 derived astrocytes had a stellate, but heterogeneous morphology. Treatment with CNTF induced differentiation of GRP to an intermediate state of GFAP+ cells that maintained immature markers and had relatively long processes. Furthermore, astrocytes generated by BMP-4 or CNTF showed considerable experimental plasticity, and their morphology and phenotypes could be reversed with complementary treatments along a wide range of mature-immature states. Importantly, when GRP or GRP treated with BMP-4 or CNTF were transplanted acutely into a dorsal column lesion of the spinal cord, cells from all 3 groups survived and generated permissive astrocytes that supported axon growth and regeneration of host sensory axons into, but not out of the lesion. Our study underscores the dynamic nature of astrocytes prepared from GRP and their permissive properties, and suggest that future therapeutic applications in restoring connectivity following CNS injury are likely to require a combination of treatments.
doi:10.1016/j.expneurol.2011.11.002
PMCID: PMC3272137  PMID: 22101004
bone morphogenetic protein (BMP); ciliary neurotrophic factor (CNTF); astrocyte differentiation; astrocyte transplantation; spinal cord injury; axon regeneration
9.  Mitochondrial Dysfunction in SOD1G93A-Bearing Astrocytes Promotes Motor Neuron Degeneration: Prevention by Mitochondrial-Targeted Antioxidants 
The Journal of Neuroscience  2008;28(16):4115-4122.
Mitochondrial dysfunction and oxidative stress contribute to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Recent reports indicate that astrocytes expressing the mutations of superoxide dismutase-1 (SOD1) may contribute to motor neuron injury in ALS. Here, we provide evidence that mitochondrial dysfunction in SOD1G93A rat astrocytes causes astrocytes to induce apoptosis of motor neurons. Mitochondria from SOD1G93A rat astrocytes displayed a defective respiratory function, including decreased oxygen consumption, lack of ADP-dependent respiratory control, and decreased membrane potential. Protein 3-nitrotyrosine was detected immunochemically in mitochondrial proteins from SOD1G93A astrocytes, suggesting that mitochondrial defects were associated with nitroxidative damage. Furthermore, superoxide radical formation in mitochondria was increased in SOD1G93A astrocytes. Similar defects were found in mitochondria isolated from the spinal cord of SOD1G93A rats, and pretreatment of animals with the spin trap 5,5-dimethyl-1-pyrroline N-oxide restored mitochondrial function, forming adducts with mitochondrial proteins in vivo. As shown previously, SOD1G93A astrocytes induced death of motor neurons in cocultures, compared with nontransgenic ones. This behavior was recapitulated when nontransgenic astrocytes were treated with mitochondrial inhibitors. Remarkably, motor neuron loss was prevented by preincubation of SOD1G93A astrocytes with antioxidants and nitric oxide synthase inhibitors. In particular, low concentrations (∼10 nm) of two mitochondrial-targeted antioxidants, ubiquinone and carboxy-proxyl nitroxide, each covalently coupled to a triphenylphosphonium cation (Mito-Q and Mito-CP, respectively), prevented mitochondrial dysfunction, reduced superoxide production in SOD1G93A astrocytes, and restored motor neuron survival. Together, our results indicate that mitochondrial dysfunction in astrocytes critically influences motor neuron survival and support the potential pharmacological utility of mitochondrial-targeted antioxidants in ALS treatment.
doi:10.1523/JNEUROSCI.5308-07.2008
PMCID: PMC3844766  PMID: 18417691
mitochondria; ALS; astrocytes; SOD1; free radicals; antioxidants
10.  Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice 
Experimental & Molecular Medicine  2009;41(7):487-500.
Neural progenitor cells (NPs) have shown several promising benefits for the treatment of neurological disorders. To evaluate the therapeutic potential of human neural progenitor cells (hNPs) in amyotrophic lateral sclerosis (ALS), we transplanted hNPs or growth factor (GF)-expressing hNPs into the central nervous system (CNS) of mutant Cu/Zn superoxide dismutase (SOD1G93A) transgenic mice. The hNPs were engineered to express brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), VEGF, neurotrophin-3 (NT-3), or glial cell-derived neurotrophic factor (GDNF), respectively, by adenoviral vector and GDNF by lentiviral vector before transplantation. Donor-derived cells engrafted and migrated into the spinal cord or brain of ALS mice and differentiated into neurons, oligodendrocytes, or glutamate transporter-1 (GLT1)-expressing astrocytes while some cells retained immature markers. Transplantation of GDNF- or IGF-1-expressing hNPs attenuated the loss of motor neurons and induced trophic changes in motor neurons of the spinal cord. However, improvement in motor performance and extension of lifespan were not observed in all hNP transplantation groups compared to vehicle-injected controls. Moreover, the lifespan of GDNF-expressing hNP recipient mice by lentiviral vector was shortened compared to controls, which was largely due to the decreased survival times of female animals. These results imply that although implanted hNPs differentiate into GLT1-expressing astrocytes and secrete GFs, which maintain dying motor neurons, inadequate trophic support could be harmful and there is sexual dimorphism in response to GDNF delivery in ALS mice. Therefore, additional therapeutic approaches may be required for full functional recovery.
doi:10.3858/emm.2009.41.7.054
PMCID: PMC2721146  PMID: 19322031
amyotrophic lateral sclerosis; cell differentiation; glial cell line-derived neurotrophic factor; nerve growth factors; stem cell transplantation; stem cells
11.  Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury 
PLoS ONE  2011;6(3):e17328.
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system.
doi:10.1371/journal.pone.0017328
PMCID: PMC3047562  PMID: 21407803
12.  Overexpression of the Astrocyte Glutamate Transporter GLT1 Exacerbates Phrenic Motor Neuron Degeneration, Diaphragm Compromise, and Forelimb Motor Dysfunction following Cervical Contusion Spinal Cord Injury 
The Journal of Neuroscience  2014;34(22):7622-7638.
A major portion of spinal cord injury (SCI) cases affect midcervical levels, the location of the phrenic motor neuron (PhMN) pool that innervates the diaphragm. While initial trauma is uncontrollable, a valuable opportunity exists in the hours to days following SCI for preventing PhMN loss and consequent respiratory dysfunction that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxic cell death due to dysregulation of extracellular glutamate homeostasis. GLT1, mainly expressed by astrocytes, is responsible for the vast majority of functional uptake of extracellular glutamate in the CNS, particularly in spinal cord. We found that, in bacterial artificial chromosome-GLT1-enhanced green fluorescent protein reporter mice following unilateral midcervical (C4) contusion SCI, numbers of GLT1-expressing astrocytes in ventral horn and total intraspinal GLT1 protein expression were reduced soon after injury and the decrease persisted for ≥6 weeks. We used intraspinal delivery of adeno-associated virus type 8 (AAV8)-Gfa2 vector to rat cervical spinal cord ventral horn for targeting focal astrocyte GLT1 overexpression in areas of PhMN loss. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in transduction primarily of GFAP+ astrocytes that persisted for ≥6 weeks postinjury, as well as increased intraspinal GLT1 protein expression. Surprisingly, we found that astrocyte-targeted GLT1 overexpression increased lesion size, PhMN loss, phrenic nerve axonal degeneration, and diaphragm neuromuscular junction denervation, and resulted in reduced functional diaphragm innervation as assessed by phrenic nerve-diaphragm compound muscle action potential recordings. These results demonstrate that GLT1 overexpression via intraspinal AAV-Gfa2-GLT1 delivery exacerbates neuronal damage and increases respiratory impairment following cervical SCI.
doi:10.1523/JNEUROSCI.4690-13.2014
PMCID: PMC4035523  PMID: 24872566
adeno-associated virus; gene therapy; glutamate transporter; phrenic motor neuron; respiratory; spinal cord injury
13.  Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis 
Background
During pathology of the nervous system, increased extracellular ATP acts both as a cytotoxic factor and pro-inflammatory mediator through P2X7 receptors. In animal models of amyotrophic lateral sclerosis (ALS), astrocytes expressing superoxide dismutase 1 (SOD1G93A) mutations display a neuroinflammatory phenotype and contribute to disease progression and motor neuron death. Here we studied the role of extracellular ATP acting through P2X7 receptors as an initiator of a neurotoxic phenotype that leads to astrocyte-mediated motor neuron death in non-transgenic and SOD1G93A astrocytes.
Methods
We evaluated motor neuron survival after co-culture with SOD1G93A or non-transgenic astrocytes pretreated with agents known to modulate ATP release or P2X7 receptor. We also characterized astrocyte proliferation and extracellular ATP degradation.
Results
Repeated stimulation by ATP or the P2X7-selective agonist BzATP caused astrocytes to become neurotoxic, inducing death of motor neurons. Involvement of P2X7 receptor was further confirmed by Brilliant blue G inhibition of ATP and BzATP effects. In SOD1G93A astrocyte cultures, pharmacological inhibition of P2X7 receptor or increased extracellular ATP degradation with the enzyme apyrase was sufficient to completely abolish their toxicity towards motor neurons. SOD1G93A astrocytes also displayed increased ATP-dependent proliferation and a basal increase in extracellular ATP degradation.
Conclusions
Here we found that P2X7 receptor activation in spinal cord astrocytes initiated a neurotoxic phenotype that leads to motor neuron death. Remarkably, the neurotoxic phenotype of SOD1G93A astrocytes depended upon basal activation the P2X7 receptor. Thus, pharmacological inhibition of P2X7 receptor might reduce neuroinflammation in ALS through astrocytes.
doi:10.1186/1742-2094-7-33
PMCID: PMC2901222  PMID: 20534165
14.  Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2 
Glia  2011;59(11):1719-1731.
Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, non-cell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.
doi:10.1002/glia.21218
PMCID: PMC3896305  PMID: 21769946
Amyotrophic lateral sclerosis; post-translational modification; SUMO; excitotoxicity
15.  Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis 
PLoS ONE  2012;7(4):e34776.
Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS.
doi:10.1371/journal.pone.0034776
PMCID: PMC3318006  PMID: 22509356
16.  Transplantation of Human Glial Restricted Progenitors and Derived Astrocytes into a Contusion Model of Spinal Cord Injury 
Journal of Neurotrauma  2011;28(4):579-594.
Abstract
Transplantation of neural progenitors remains a promising therapeutic approach to spinal cord injury (SCI), but the anatomical and functional evaluation of their effects is complex, particularly when using human cells. We investigated the outcome of transplanting human glial-restricted progenitors (hGRP) and astrocytes derived from hGRP (hGDA) in spinal cord contusion with respect to cell fate and host response using athymic rats to circumvent xenograft immune issues. Nine days after injury hGRP, hGDA, or medium were injected into the lesion center and rostral and caudal to the lesion, followed by behavioral testing for 8 weeks. Both hGRP and hGDA showed robust graft survival and extensive migration. The total number of cells increased 3.5-fold for hGRP, and twofold for hGDA, indicating graft expansion, but few proliferating cells remained by 8 weeks. Grafted cells differentiated into glia, predominantly astrocytes, and few remained at progenitor state. About 80% of grafted cells around the injury were glial fibrillary acidic protein (GFAP)-positive, gradually decreasing to 40–50% at a distance of 6 mm. Conversely, there were few graft-derived oligodendrocytes at the lesion, but their numbers increased away from the injury to 30–40%. Both cell grafts reduced cyst and scar formation at the injury site compared to controls. Microglia/macrophages were present at and around the lesion area, and axons grew along the spared tissue with no differences among groups. There were no significant improvements in motor function recovery as measured by the Basso, Beattie, and Bresnahan (BBB) scale and grid tests in all experimental groups. Cystometry revealed that hGRP grafts attenuated hyperactive bladder reflexes. Importantly, there was no increased sensory or tactile sensitivity associated with pain, and the hGDA group showed sensory function returning to normal. Although the improved lesion environment was not sufficient for robust functional recovery, the permissive properties and lack of sensory hypersensitivity indicate that human GRP and astrocytes remain promising candidates for therapy after SCI.
doi:10.1089/neu.2010.1626
PMCID: PMC3070147  PMID: 21222572
axon growth; bladder control; motor and sensory function; neural stem cells; scar formation
17.  Stem Cell-Derived Motor Neurons: Applications and Challenges in Amyotrophic Lateral Sclerosis 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the selective loss of both spinal and upper motor neurons. One strategy in treating ALS is to use stem cells to replace lost spinal motor neurons. However, transplanted stem cell-derived motor neurons may not survive when exposed to the harsh microenvironment in the spinal cord of ALS. In particular, dysfunctional astrocytes and overactivated microglia in ALS may limit the survival of motor neurons generated from cell replacement therapy. On the other hand, stem cells may provide large quantities of motor neurons that can be used for studying glia-mediated toxic mechanisms and potential therapies in ALS. Here we will review methods and molecular factors for directed differentiation of stem cells into spinal motor neurons, the potential uses of these models for dissecting the mechanisms underlying glia-induced motor neuron degeneration and screening for new therapeutics aimed at protecting motor neurons in ALS, as well as discuss challenges facing the development of motor neuron replacement-based cell therapies for recovery in ALS.
PMCID: PMC2887342  PMID: 19492980
amyotrophic lateral sclerosis; stem cell; motor neuron; microglia; astrocyte; transplantation
18.  Transplantation of D15A-Expressing Glial-Restricted-Precursor-Derived Astrocytes Improves Anatomical and Locomotor Recovery after Spinal Cord Injury 
The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI). In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs)-derived astrocytes (GDAs) could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs). Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.
doi:10.7150/ijbs.5626
PMCID: PMC3535536  PMID: 23289019
astrocytes; oligodendrocyte; transplantation; spinal cord injury; remyelination.
19.  Astrocytes derived from glial-restricted precursors promote spinal cord repair 
Journal of Biology  2006;5(3):7.
Background
Transplantation of embryonic stem or neural progenitor cells is an attractive strategy for repair of the injured central nervous system. Transplantation of these cells alone to acute spinal cord injuries has not, however, resulted in robust axon regeneration beyond the sites of injury. This may be due to progenitors differentiating to cell types that support axon growth poorly and/or their inability to modify the inhibitory environment of adult central nervous system (CNS) injuries. We reasoned therefore that pre-differentiation of embryonic neural precursors to astrocytes, which are thought to support axon growth in the injured immature CNS, would be more beneficial for CNS repair.
Results
Transplantation of astrocytes derived from embryonic glial-restricted precursors (GRPs) promoted robust axon growth and restoration of locomotor function after acute transection injuries of the adult rat spinal cord. Transplantation of GRP-derived astrocytes (GDAs) into dorsal column injuries promoted growth of over 60% of ascending dorsal column axons into the centers of the lesions, with 66% of these axons extending beyond the injury sites. Grid-walk analysis of GDA-transplanted rats with rubrospinal tract injuries revealed significant improvements in locomotor function. GDA transplantation also induced a striking realignment of injured tissue, suppressed initial scarring and rescued axotomized CNS neurons with cut axons from atrophy. In sharp contrast, undifferentiated GRPs failed to suppress scar formation or support axon growth and locomotor recovery.
Conclusion
Pre-differentiation of glial precursors into GDAs before transplantation into spinal cord injuries leads to significantly improved outcomes over precursor cell transplantation, providing both a novel strategy and a highly effective new cell type for repairing CNS injuries.
doi:10.1186/jbiol35
PMCID: PMC1561531  PMID: 16643674
20.  Glial Restricted Precursor Cell Transplant with Cyclic Adenosine Monophosphate Improved Some Autonomic Functions but Resulted in a Reduced Graft Size after Spinal Cord Contusion Injury in Rats 
Experimental neurology  2010;227(1):159-171.
Transplantation of glial restricted precursor (GRP) cells has been shown to reduce glial scarring after spinal cord injury (SCI) and, in combination with neuronal restricted precursor (NRP) cells or enhanced expression of neurotrophins, to improve recovery of function after SCI. We hypothesized that combining GRP transplants with rolipram and cAMP would improve functional recovery, similar to that seen after combining Schwann cell transplants with increasing cAMP. A short term study, 1)uninjured control, 2)SCI+vehicle, and 3)SCI+cAMP, showed that spinal cord [cAMP] were increased 14 days after SCI. We used 51 male rats subjected to a thoracic SCI for a 12-week survival study: 1)SCI+vehicle, 2)SCI+GRP, 3)SCI+cAMP, 4)SCI+GRP+cAMP, and 5)uninjured endpoint age-matched control (AM). Rolipram was administered for 2 weeks after SCI. At 9 days after SCI, GRP transplantation and injection of dibutyryl-cAMP into the spinal cord were performed. GRP cells survived, differentiated, and formed extensive transplants that were well integrated with host tissue. Presence of GRP cells increased the amount of tissue in the lesion; however, cAMP reduced the graft size. White matter sparing at the lesion epicenter was not affected. Serotonergic input to the lumbosacral spinal cord was not affected by treatment, but the amount of serotonin immediately caudal to the lesion was reduced in the cAMP groups. Using telemetric monitoring of corpus spongiosum penis pressure we show that the cAMP groups regained the same number of micturitions per 24 hrs when compared to the AM group, however, the frequency of peak pressures was increased in these groups compared to the AM group. In contrast, the GRP groups had similar frequency of peak pressures compared to baseline and the AM group. Animals that received GRP cells regained the same number of erectile events per 24 hrs compared to baseline and the AM group. Since cAMP reduced the GRP transplant graft, and some modest positive effects were seen that could be attributable to both GRP or cAMP, future research is required to determine how cAMP affects survival, proliferation, and / or function of progenitor cells and how this is related to function. cAMP may not always be a desirable addition to a progenitor cell transplantation strategy after SCI.
doi:10.1016/j.expneurol.2010.10.011
PMCID: PMC3018678  PMID: 21040723
rolipram; micturition; sexual function; chronic; telemetry; hPLAP transgenic rat; serotonin; therapeutic strategy; astrocytes; oligodendrocytes
21.  Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS 
Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular origin of AbA cells remains unknown. Because AbA cells are labeled with the proliferation marker Ki67, we analyzed the phenotypic makers of proliferating glial cells that surround motor neurons by immunohistochemistry. The number of Ki67 +AbA cells sharply increased in symptomatic rats, displaying large cell bodies with processes embracing motor neurons. Most were co-labeled with astrocytic marker GFAP concurrently with the microglial markers Iba1 and CD163. Cultures of spinal cord prepared from symptomatic SOD1 G93A rats yielded large numbers of microglia expressing Iba1, CD11b, and CD68. Cells sorted for CD11b expression by flow cytometry transformed into AbA cells within two weeks. During these two weeks, the expression of microglial markers largely disappeared, while GFAP and S100β expression increased. The phenotypic transition to AbA cells was stimulated by forskolin. These findings provide evidence for a subpopulation of proliferating microglial cells in SOD1 G93A rats that undergo a phenotypic transition into AbA cells after onset of paralysis that may promote the fulminant disease progression. These cells could be a therapeutic target for slowing paralysis progression in ALS.
doi:10.3389/fncel.2013.00274
PMCID: PMC3871969  PMID: 24399933
microglia; astrocytes; AbA cells; ALS; phenotypic transformation; neurodegeneration
22.  Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury 
Journal of Biology  2008;7(7):24.
Background
Two critical challenges in developing cell-transplantation therapies for injured or diseased tissues are to identify optimal cells and harmful side effects. This is of particular concern in the case of spinal cord injury, where recent studies have shown that transplanted neuroepithelial stem cells can generate pain syndromes.
Results
We have previously shown that astrocytes derived from glial-restricted precursor cells (GRPs) treated with bone morphogenetic protein-4 (BMP-4) can promote robust axon regeneration and functional recovery when transplanted into rat spinal cord injuries. In contrast, we now show that transplantation of GRP-derived astrocytes (GDAs) generated by exposure to the gp130 agonist ciliary neurotrophic factor (GDAsCNTF), the other major signaling pathway involved in astrogenesis, results in failure of axon regeneration and functional recovery. Moreover, transplantation of GDACNTF cells promoted the onset of mechanical allodynia and thermal hyperalgesia at 2 weeks after injury, an effect that persisted through 5 weeks post-injury. Delayed onset of similar neuropathic pain was also caused by transplantation of undifferentiated GRPs. In contrast, rats transplanted with GDAsBMP did not exhibit pain syndromes.
Conclusion
Our results show that not all astrocytes derived from embryonic precursors are equally beneficial for spinal cord repair and they provide the first identification of a differentiated neural cell type that can cause pain syndromes on transplantation into the damaged spinal cord, emphasizing the importance of evaluating the capacity of candidate cells to cause allodynia before initiating clinical trials. They also confirm the particular promise of GDAs treated with bone morphogenetic protein for spinal cord injury repair.
doi:10.1186/jbiol85
PMCID: PMC2776404  PMID: 18803859
23.  Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis 
Neurodegenerative disorders are characterized by the selective vulnerability and progressive loss of discrete neuronal populations. Non-neuronal cells appear to significantly contribute to neuronal loss in diseases such as amyotrophic lateral sclerosis (ALS), Parkinson, and Alzheimer’s disease. In ALS, there is deterioration of motor neurons in the cortex, brainstem, and spinal cord, which control voluntary muscle groups. This results in muscle wasting, paralysis, and death. Neuroinflammation, characterized by the appearance of reactive astrocytes and microglia as well as macrophage and T-lymphocyte infiltration, appears to be highly involved in the disease pathogenesis, highlighting the involvement of non-neuronal cells in neurodegeneration. There appears to be cross-talk between motor neurons, astrocytes, and immune cells, including microglia and T-lymphocytes, which are subsequently activated. Currently, effective therapies for ALS are lacking; however, the non-cell autonomous nature of ALS may indicate potential therapeutic targets. Here, we review the mechanisms of action of astrocytes, microglia, and T-lymphocytes in the nervous system in health and during the pathogenesis of ALS. We also evaluate the therapeutic potential of these cellular populations, after transplantation into ALS patients and animal models of the disease, in modulating the environment surrounding motor neurons from pro-inflammatory to neuroprotective. We also thoroughly discuss the recent advances made in the field and caveats that need to be overcome for clinical translation of cell therapies aimed at modulating non-cell autonomous events to preserve remaining motor neurons in patients.
doi:10.1007/s00018-013-1480-4
PMCID: PMC3928509  PMID: 24100629
Amyotrophic lateral sclerosis; Astrocytes; Microglia; T-lymphocytes; Motor neuron
24.  Amyotrophic lateral sclerosis 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
doi:10.1186/1750-1172-4-3
PMCID: PMC2656493  PMID: 19192301
25.  Activation of Interferon Signaling Pathways in Spinal Cord Astrocytes from an ALS Mouse Model 
Glia  2011;59(6):946-958.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting predominantly motor neurons. Recent studies suggest that the disease progression of ALS is non-cell-autonomous, although the interaction between neurons and glial cells in different disease stages is not entirely clear. Here, we demonstrate that the interferon (IFN) signaling pathway is activated in human SOD1(G93A) transgenic mice, a rodent model of ALS. IFN-stimulated genes (ISGs) increased in the spinal cord of SOD1(G93A) mice at a pre-symptomatic age. In addition, the up-regulated ISGs, and most likely their transcriptional activators, were found specifically in astrocytes surrounding motor neurons, suggesting that IFN signaling in astrocytes was triggered by specific pathologic changes in motor neurons. Furthermore, induction of ISGs in cultured astrocytes was highly sensitive to IFN, especially type I IFN. ISGs in astrocytes were activated specifically by endoplasmic reticulum stress-induced neurodegeneration in vitro, implicating a similar process in the pre-symptomatic stage of SOD1 mutant mice. Finally, reduction or deletion of IFNα receptor 1 inhibited IFN signaling and increased the life-span of SOD1(G93A) mice. Thus, the activation of IFN signaling pathways represents an early “dialogue” between motor neurons and astrocytes in response to pathological changes in ALS.
doi:10.1002/glia.21167
PMCID: PMC3077460  PMID: 21446050
motor neuron; neurodegenerative disease; gene expression; neuron-glia interaction

Results 1-25 (674502)