PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (814938)

Clipboard (0)
None

Related Articles

1.  Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca2+ - de novo ceramide - PP2A - ROS dependent signaling pathway 
Cancer research  2010;70(15):6313-6324.
The targeted therapeutics sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I evaluation. In this study we determined how CD95 is activated by treatment with this drug combination. Low doses of sorafenib and vorinostat but not the individual drugs rapidly increased ROS, Ca2+ and ceramide levels in GI tumor cells. The production of ROS was reduced in Rho zero cells. Quenching ROS blocked drug-induced CD95 surface localization and apoptosis. ROS generation, CD95 activation and cell killing was also blocked by quenching of induced Ca2+ levels or by inhibition of PP2A. Inhibition of acidic sphingomyelinase or de novo ceramide generation blocked the induction of ROS however combined inhibition of both acidic sphingomyelinase and de novo ceramide generation was required to block the induction of Ca2+. Quenching of ROS did not impact on drug-induced ceramide/dihydro-ceramide levels whereas quenching of Ca2+ reduced the ceramide increase. Sorafenib and vorinostat treatment radiosensitized liver and pancreatic cancer cells, an effect that was suppressed by quenching ROS or knock down of LASS6. Further, sorafenib and vorinostat treatment suppressed the growth of pancreatic tumors in vivo. Our findings demonstrate that induction of cytosolic Ca2+ by sorafenib and vorinostat is a primary event that elevates dihydroceramide levels, each essential steps in ROS generation that promotes CD95 activation.
doi:10.1158/0008-5472.CAN-10-0999
PMCID: PMC2918282  PMID: 20631069
2.  Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in GI tumor cells 
Molecular cancer therapeutics  2010;9(8):2220-2231.
Sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and the present studies have determined individually how sorafenib and vorinostat contribute to CD95 activation. Sorafenib (3-6 μM) promoted a dose-dependent increase in Src Y416, ERBB1 Y845 and CD95 Y232/Y291 phosphorylation, and Src Y527 dephosphorylation. Low levels of sorafenib (3 μM) –induced CD95 tyrosine phosphorylation did not promote surface localization whereas sorafenib (6 μM), or sorafenib (3 μM) and vorinostat (500 nM) treatment promoted higher levels of CD95 phosphorylation that correlated with DISC formation, receptor surface localization and autophagy. CD95 (Y232F, Y291F) was not tyrosine phosphorylated and was unable to plasma membrane localize or induce autophagy. Knock down / knock out of Src family kinases abolished sorafenib –induced: CD95 tyrosine phosphorylation; DISC formation; and the induction of cell death and autophagy. Knock down of PDGFRβ enhanced Src Y416 and CD95 tyrosine phosphorylation that correlated with elevated CD95 plasma membrane levels and autophagy, and with a reduced ability of sorafenib to promote CD95 membrane localization. Vorinostat increased ROS levels; and in a delayed NFκB-dependent fashion, those of FAS ligand and CD95. Neutralization of FAS-L did not alter the initial rapid drug-induced activation of CD95 however, neutralization of FAS-L reduced sorafenib + vorinostat toxicity by ~50%. Thus sorafenib contributes to CD95 activation by promoting receptor tyrosine phosphorylation whereas vorinostat contributes to CD95 activation via initial facilitation of ROS generation and subsequently of FAS-L expression.
doi:10.1158/1535-7163.MCT-10-0274
PMCID: PMC2933415  PMID: 20682655
Vorinostat; Sorafenib; CD95; c-FLIP-s; FAS-L; cell death; autophagy
3.  Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation 
Purpose and Design
Mechanism(s) by which the multi-kinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal and pancreatic adenocarcinoma cells have been defined.
Results
Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal and pancreatic adenocarcinoma cells in multiple short term viability (24–96h) and in long term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase 8, and to a lesser extent by inhibition of caspase 9. Twenty four hours after exposure, the activities of ERK1/2, AKT and NFκB were only modestly modulated by sorafenib and vorinostat treatment. However, 24h after exposure, sorafenib and vorinostat- treated cells exhibited markedly diminished expression of c-FLIP-s, full length BID, BCL-2, BCLXL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK and BAD. Expression of eIF2α S51A blocked sorafenib and vorinostat –induced suppression of c-FLIP-s levels and over-expression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase 8. Knock down of CD95 or FADD expression significantly reduced sorafenib / vorinostat -mediated lethality.
Conclusions
These data demonstrate that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple anti-apoptotic proteins, promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the pro-apoptotic signals from CD95 to promote mitochondrial dysfunction and death.
doi:10.1158/1078-0432.CCR-08-0469
PMCID: PMC2561272  PMID: 18765530
Vorinostat; Sorafenib; CD95; c-FLIP-s; caspase 8; cathepsin; cell death
4.  Regulation of autophagy by ceramide-CD95-PERK signaling 
Autophagy  2008;4(7):929-931.
The manuscripts by Park et al.1 and Zhang et al.2 were initially planned as studies to understand the regulation of cell survival in transformed cells treated with sorafenib and vorinostat, and in primary hepatocytes treated with a bile acid+MEK1/2 inhibitor. In both cell systems we discovered that the toxicity of sorafenib and vorinostat or bile acid+MEK1/2 inhibitor exposure depended on the generation of ceramide and the ligand-independent activation of the CD95 death receptor, with subsequent activation of pro-caspase 8. We noted, however, in these systems that, in parallel with death receptor–induced activation of the extrinsic pathway, CD95 signaling also promoted increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2α, increased expression of ATG5, and increased processing of LC3 and vesicularization of a GFP-LC3 construct. The knockdown of ATG5 expression blocked GFP-LC3 vesicularization and enhanced cell killing. Thus ceramide-CD95 signaling promoted cell death via activation of pro-caspase 8 and cell survival via autophagy. PERK was shown to signal in a switch-hitting fashion; PERK promoted CD95-DISC formation and an eIF2α-dependent reduction in c-FLIP-s levels that were essential for cell killing to proceed, but in parallel it also promoted autophagy that was protective. The death receptor-induced apoptosis and autophagy occur proximal to the receptor rather than the mitochondrion, and the relative flow of death receptor signaling into either pathway may determine cell fate. Finally, death receptor induced apoptosis and autophagy could be potential targets for therapeutic intervention.
PMCID: PMC3292039  PMID: 18719356
Vorinostat; Sorafenib; bile acid; CD95; autophagy; ceramide; cell death; ASMase
5.  Sorafenib and HDAC inhibitors synergize to kill CNS tumor cells 
Cancer Biology & Therapy  2012;13(7):567-574.
The present studies were designed to determine whether the multi-kinase inhibitor sorafenib (Nexavar) interacted with histone deacetylase inhibitors to kill glioblastoma and medulloblastoma cells. In a dose-dependent fashion sorafenib lethality was enhanced in multiple genetically disparate primary human glioblastoma isolates by the HDAC inhibitor sodium valproate (Depakote). Drug exposure reduced phosphorylation of p70 S6K and of mTOR. Similar data to that with valproate were also obtained using the HDAC inhibitor vorinostat (Zolinza). Sorafenib and valproate also interacted to kill medulloblastoma and PNET cell lines. Treatment with sorafenib and HDAC inhibitors radio-sensitized both GBM and medulloblastoma cell lines. Knock down of death receptor (CD95) expression protected GBM cells from the drug combination, as did overexpression of c-FLIP-s, BCL-XL and dominant negative caspase 9. Knock down of PDGFRα recapitulated the effect of sorafenib in combination with HDAC inhibitors. Collectively, our data demonstrate that the combination of sorafenib and HDAC inhibitors kills through activation of the extrinsic pathway, and could represent a useful approach to treat CNS-derived tumors.
doi:10.4161/cbt.19771
PMCID: PMC3679096  PMID: 22406992
HDAC inhibitor; Sorafenib; apoptosis; glioma
6.  Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation 
PLoS ONE  2014;9(3):e92764.
We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.
doi:10.1371/journal.pone.0092764
PMCID: PMC3961419  PMID: 24651472
7.  Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells 
The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose) polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP) expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs) decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.
doi:10.1155/2013/185158
PMCID: PMC3706064  PMID: 23864881
8.  Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models 
Molecular cancer therapeutics  2009;8(2):342-349.
Despite the availability of several Food and Drug Administration-approved drugs, advanced inoperable colorectal cancer remains incurable. In this study, we focused on the development of combined molecular targeted therapies against colon cancer by testing the efficacy of the combination of the histone deacetylase inhibitor vorinostat with the proteasome inhibitor bortezomib to determine if this resulted in synergistic antitumor effects against colorectal cancer. The effects of the histone deacetylase inhibitor vorinostat in combination with the proteasome inhibitor bortezomib on the growth of two colorectal cancer cell lines were assessed with regard to proliferation, cell cycle arrest, and apoptosis. Treatment with the combination of vorinostat and bortezomib resulted in a synergistic decrease in proliferation of both colorectal cancer cell lines compared with treatment with single agents alone. This inhibition was associated with a synergistic increase in apoptosis as measured by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase. In addition, we observed an increase in the proapoptotic protein BIM and in the number of cells arrested in the G2-M phase of the cell cycle. Although p21 levels were significantly increased, short hairpin RNA knockdown of p21 did not lead to changes in proliferation in response to the combination of drugs, indicating that although p21 is a target of these drugs, it is not required to mediate their antiproliferative effects. These data indicate that combination treatment with vorinostat and bortezomib result in synergistic antiproliferative and proapoptotic effects against colon cancer cell lines, providing a rational basis for the clinical use of this combination for the treatment of colorectal cancer.
doi:10.1158/1535-7163.MCT-08-0534
PMCID: PMC2813767  PMID: 19174560
9.  Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems 
Purpose
Histone deacetylase (HDAC) inhibition causes transcriptional activation or repression of several genes that in turn can influence the biodistribution of other chemotherapeutic agents. Here, we hypothesize that the combination of vorinostat, a HDAC inhibitor, with 131I-metaiodobenzylguanidine (MIBG) would lead to preferential accumulation of the latter in neuroblastoma (NB) tumors via increased expression of the human norepinephrine transporter (NET).
Experimental Design
In vitro and in vivo experiments examined the effect of vorinostat on the expression of NET, an uptake transporter for 131I-MIBG. Human NB cell lines (Kelly and SH-SY-5Y) and NB1691luc mouse xenografts were employed. The upregulated NET protein was characterized for its effect on 123I-MIBG biodistribution.
Results
Preincubation of NB cell lines, Kelly and SH-SY-5Y, with vorinostat caused dose-dependent increases in NET mRNA and protein levels. Accompanying this was a corresponding dose-dependent increase in MIBG uptake in NB cell lines. Four-fold and 2.5 fold increases were observed in Kelly and SH-SY-5Y cells, respectively, pre-treated with vorinostat in comparison to untreated cells. Similarly, NB xenografts, created by intravenous tail vein injection of NB1691-luc, and harvested from nude mice livers treated with vorinostat (150 mg/kg i.p.) showed substantial increases in NET protein expression. Maximal effect of vorinostat pretreatment in NB xenografts on 123I-MIBG biodistribution was observed in tumors that exhibited enhanced uptake in vorinostat treated (0.062 ± 0.011 μCi/(mg tissue-dose injected)) versus untreated mice (0.022 ± 0.003 μCi/(mg tissue-dose injected); p < 0.05).
Conclusions
The results of our study provide preclinical evidence that vorinostat treatment can enhance NB therapy with 131I-MIBG.
doi:10.1158/1078-0432.CCR-10-2949
PMCID: PMC3247296  PMID: 21421857
norepinephrine transporter; MIBG; Vorinostat; histone deacetylase inhibitor; neuroblastoma xenograft; biodistribution
10.  Sorafenib exerts anti-glioma activity in vitro and in vivo 
Neuroscience letters  2010;478(3):165-170.
Despite conventional treatment strategies glioblastoma, the most common malignant primary brain has a bad prognosis with median survival times of 12-15 month. In this study, the efficacy of sorafenib (Nexavar, BAY43-9006), a multikinase inhibitor, on glioblastoma cells was evaluated both in vitro and in vivo. Treatment of established or patient-derived glioblastoma cells with low concentrations of sorafenib caused a dramatic dose dependent inhibition of proliferation (IC50, 1.5 uM) and induction of apoptosis and autophagy. Sorafenib inhibited phosphorylation of signal transducer and activator of transcription 3 (Stat3) and expression of cyclins, D and E. In contrast, AKT was not modulated by sorafenib. Most important, systemic delivery of Sorafenib was well tolerated, and significantly suppressed intracranial glioma growth via inhibition of cell proliferation, induction of apoptosis and autophagy, and reduction of angiogenesis. Furthermore, intracranial growth inhibition by sorafenib was accompanied by a significant reduction in ph-Stat3 (Tyr 705) levels. In summary, sorafenib has potent anti-glioma activity in vitro and in vivo.
doi:10.1016/j.neulet.2010.05.009
PMCID: PMC3198851  PMID: 20470863
Glioma; Sorafenib; Stat3; apoptosis; autophagy
11.  OSU-03012 Stimulates PKR-Like Endoplasmic Reticulum-Dependent Increases in 70-kDa Heat Shock Protein Expression, Attenuating Its Lethal Actions in Transformed Cells 
Molecular pharmacology  2008;73(4):1168-1184.
We have further defined mechanism(s) by which 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide [OSU-03012 (OSU)], a derivative of the cyclooxygenase-2 (COX2) inhibitor celecoxib but lacking COX2 inhibitory activity, kills transformed cells. In cells lacking expression of protein kinase R-like endoplasmic reticulum kinase (PERK-/-), the lethality of OSU was attenuated. OSU enhanced the expression of Beclin 1 and ATG5 and cleavage of pro-caspase 4 in a PERK-dependent fashion and promoted the Beclin 1- and ATG5-dependent formation of vacuoles containing LC3, followed by a subsequent caspase 4-dependent cleavage of cathepsin B and a cathepsin B-dependent formation of low pH intracellular vesicles; cathepsin B was activated and released into the cytosol and genetic suppression of caspase 4, cathepsin B, or apoptosis-inducing factor function significantly suppressed cell killing. In parallel, OSU caused PERK-dependent increases in 70-kDa heat shock protein (HSP70) expression and decreases in 90-kDa heat shock protein (HSP90) and Grp78/BiP expression. Changes in HSP70 expression were post-transcriptional. Knockdown or small-molecule inhibition of HSP70 expression enhanced OSU toxicity, and overexpression of HSP70 suppressed OSU-induced low pH vesicle formation and lethality. Our data demonstrate that OSU-03012 causes cell killing that is dependent on PERK-induced activation of multiple toxic proteases. OSU-03012 also increased expression of HSP70 in a PERK-dependent fashion, providing support for the contention that OSU-03012-induced PERK signaling promotes both cell survival and cell death processes.
doi:10.1124/mol.107.042697
PMCID: PMC2674576  PMID: 18182481
12.  Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma 
Cancer immunology, immunotherapy : CII  2012;62(4):10.1007/s00262-012-1380-8.
Hepatocellular carcinoma (HCC) is a difficult to treat cancer characterized by poor tumor immunity with only one approved systemic drug, sorafenib. If novel combination treatments are to be developed with immunological agents, the effects of sorafenib on tumor immunity are important to understand. In this study, we investigate the impact of sorafenib on the CD4+CD25− effector T cells (Teff) and CD4+CD25+ regulatory T cells (Tregs) from patients with HCC. We isolated Teff and Treg from peripheral mononuclear cells of HCC patients to determineimmune reactivity by thymidine incorporation, ELISA and flow cytometry. Teff cultured alone or with Treg were supplemented with different concentrations of sorafenib. The effects of sorafenib on Teff responses were dose-dependent. Pharmacologic doses of sorafenib decreased Teff activation by down regulating CD25 surface expression. In contrast, sub-pharmacologic concentrations of sorafenib resulted in Teff activation. These low doses of sorafenib in the Teff cultures led to a significant increase in Teff proliferation, IL2 secretion and up-regulation of CD25 expression on the cell surface. In addition, low doses of sorafenib in the suppression Teff/Treg cocultures restored Teff responses by eliminating Treg suppression. The loss of Treg suppressive function correlated with an increase in IL2 and IL6 secretion. Our findings showthat sub-pharmacologic doses of sorafenib impact subsets of T cells differently, selectively increasing Teff activation while blocking Treg function. In conclusion, this study describes novel immune activating properties of low doses of sorafenib by promoting immune responsiveness in patients with HCC.
doi:10.1007/s00262-012-1380-8
PMCID: PMC3863727  PMID: 23223899
Sorafenib; T cell; Regulatory T cells; Hepatocellular carcinoma; HCV
13.  Sorafenib and pemetrexed toxicity in cancer cells is mediated via SRC-ERK signaling 
Cancer Biology & Therapy  2012;13(9):793-803.
The present studies sought to further understand how the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib interact to kill tumor cells. Sorafenib activated SRC, and via SRC the drug combination activated ERK1/2. Expression of dominant negative SRC or dominant negative MEK1 abolished drug-induced ERK1/2 activation, together with drug-induced autophagy, acidic lysosome formation, and tumor cell killing. Protein phosphatase 2A is an important regulator of the ERK1/2 pathway. Fulvestrant resistant MCF7 cells expressed higher levels of the PP2A inhibitor SET/I2PP2A, had lower endogenous PP2A activity, and had elevated basal ERK1/2 activity compared with their estrogen dependent counterparts. Overexpression of I2PP2A blocked drug-induced activation of ERK1/2 and tumor cell killing. PP2A can be directly activated by ceramide and SET/I2PP2A can be inhibited by ceramide. Inhibition of the de novo ceramide synthase pathway blocked drug-induced ceramide generation, PP2A activation and tumor cell killing. Collectively these findings demonstrate that ERK1/2 plays an essential role downstream of SRC in pemetrexed and sorafenib lethality and that PP2A plays an important role in regulating this process.
doi:10.4161/cbt.20562
PMCID: PMC3679099  PMID: 22673740
ERK; I2PP2A; PP2A; SRC; autophagy; ceramide; pemetrexed; sorafenib
14.  INHIBITION OF MEK/ERK1/2 SENSITIZES LYMPHOMA CELLS TO SORAFENIB-INDUCED APOPTOSIS 
Leukemia research  2010;34(3):379-386.
Interactions between the multi-kinase inhibitor sorafenib and MEK1/2 inhibitors were investigated in DLBCL cells. Sorafenib (3 – 10µM) triggered apoptosis in multiple GC and ABC lymphoma cells. Unexpectedly, sorafenib did not cause sustained ERK1/2 inactivation, and in SUDHL-6 and -16 cells, triggered ERK1/2 activation. Marginally toxic MEK1/2 inhibitor concentrations (5µM PD184352) abrogated ERK1/2 activation in sorafenib-treated cells and synergistically potentiated apoptosis. MEK1 shRNA transfection also significantly increased sorafenib-mediated lethality. Sorafenib/PD184352 co-administration accelerated Mcl-1 down-regulation without upregulating BimEL. Finally, ectopic Mcl-1 expression attenuated sorafenib/PD184352-mediated apoptosis. Together, these findings provide a theoretical basis for potentiating sorafenib anti-lymphoma activity by MEK1/2 inhibitors.
doi:10.1016/j.leukres.2009.07.013
PMCID: PMC3150480  PMID: 20117835
Lymphoma; sorafenib; PD184352; MEK1/2/ERK1/2; Mcl-1
15.  Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells 
Cancer Biology & Therapy  2013;14(11):1039-1049.
In the present study we show that histone deacetylase inhibitors (HDACIs) enhance the anti-tumor effects of melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) in human renal carcinoma cells. Similar data were obtained in other GU tumor cells. Combination of these two agents resulted in increased autophagy that was dependent on expression of ceramide synthase 6, with HDACIs enhancing MDA-7/IL-24 toxicity by increasing generation of ROS and Ca2+. Knock down of CD95 protected cells from HDACI and MDA-7/IL-24 lethality. Sorafenib treatment further enhanced (HDACI + MDA-7/IL-24) lethality. Anoikis resistant renal carcinoma cells were more sensitive to MDA-7/IL-24 that correlated with elevated SRC activity and tyrosine phosphorylation of CD95. We employed a recently constructed serotype 5/3 adenovirus, which is more effective than a serotype 5 virus in delivering mda-7/IL-24 to renal carcinoma cells and which conditionally replicates (CR) in tumor cells expressing MDA-7/IL-24 by virtue of placing the adenoviral E1A gene under the control of the cancer-specific promoter progression elevated gene-3 (Ad.5/3-PEG-E1A-mda-7; CRAd.5/3-mda-7, Ad.5/3-CTV), to define efficacy in renal carcinoma cells. Ad.5/3-CTV decreased the growth of renal carcinoma tumors to a significantly greater extent than did a non-replicative virus Ad.5/3-mda-7. In contralateral uninfected renal carcinoma tumors Ad.5/3-CTV also decreased the growth of tumors to a greater extent than did Ad.5/3-mda-7. In summation, our data demonstrates that HDACIs enhance MDA-7/IL-24-mediated toxicity and tumor specific adenoviral delivery and viral replication of mda-7/IL-24 is an effective pre-clinical renal carcinoma therapeutic.
doi:10.4161/cbt.26110
PMCID: PMC3925659  PMID: 24025359
MDA-7/IL-24; HDACI; ceramide; apoptosis; bystander; cytokine; ROS; caspase; animal study
16.  Clusterin inhibition using OGX-011 synergistically enhances antitumour activity of sorafenib in a human renal cell carcinoma model 
British Journal of Cancer  2012;106(12):1945-1952.
Background:
The objective of this study was to investigate whether the therapeutic activity of sorafenib could be enhanced by combining with OGX-011, an antisense oligodeoxynucleotide (ODN) targeting clusterin, in renal cell carcinoma (RCC).
Methods:
We investigated the effects of combined treatment with OGX-011 and sorafenib on a human RCC ACHN model both in vitro and in vivo.
Results:
Although clusterin expression was increased by sorafenib, additional treatment of ACHN with OGX-011 significantly blocked the upregulation of clusterin induced by sorafenib. Despite the lack of a significant effect on the growth of ACHN, OGX-011 synergistically enhanced the sensitivity to sorafenib, reducing the IC50 by >50%. Apoptotic changes were intensively detected in ACHN after combined treatment with OGX-011 and a sublethal dose of sorafenib, but not either agent alone. Furthermore, this combined treatment resulted in the marked downregulation of phosphorylated Akt and p44/42 mitogen-activated protein kinase in ACHN compared with treatment with either agent alone. In vivo systemic administration of OGX-011 plus sorafenib significantly decreased the ACHN tumour volume compared with control ODN plus sorafenib.
Conclusion:
Combined use with OGX-011 may be useful in enhancing the cytotoxic effect of sorafenib on RCC by inducing apoptosis and inactivating major signal transduction pathways.
doi:10.1038/bjc.2012.209
PMCID: PMC3388571  PMID: 22588555
renal cell carcinoma; sorafenib; clusterin; OGX-011
17.  Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with Sorafenib 
Hepatology (Baltimore, Md.)  2012;56(6):2363-2374.
Mutations in polycystins (PC1 or PC2) are a cause of polycystic liver disease (PLD-ADPKD). In PC2-defective mice, cAMP/PKA-dependent activation of the Ras/Raf/MEK-ERK1/2 pathway stimulates the growth of liver cysts. To test the hypothesis that sorafenib, a Raf-inhibitor used for the treatment of liver and kidney cancers, inhibits liver cysts growth in PC-2 defective mice, we treated PC2 (i.e., Pkd2flox/−:pCxCreERTM, abbreviated as Pkd2cKO) mice with sorafenib-tosylate for 8 weeks (20–60 mg/kg/day). Sorafenib caused an unexpected increase in liver cyst area, cell proliferation (Ki67) and expression of pERK compared to Pkd2cKO mice treated with vehicle. When given to epithelial cells isolated from liver cysts of Pkd2cKO mice (Pkd2cKO-cells), sorafenib progressively stimulated pERK1/2 and cell proliferation (MTS and BrdU) at doses between 0.001 and 1 µM; but, both pERK1/2 and cell proliferation significantly decreased at the dose of 10 µM. Raf kinase activity assay showed that, while B-Raf is inhibited by sorafenib in both WT and Pkd2cKO cells, Raf-1 is inhibited in WT cells, but is significantly stimulated in Pkd2cKO cells. In Pkd2cKO-cells pretreated with a PKA inhibitor (PKI 1µM) and in mice treated with octreotide in combination with sorafenib, the paradoxical activation of Raf/ERK1/2 was abolished and cyst growth was inhibited.
Conclusions
In PC2-defective cells, sorafenib inhibits B-Raf, but paradoxically activates Raf-1, resulting in increased ERK1/2 phosphorylation, cell proliferation and cyst growth in vivo. These effects are consistent with the ability of Raf-inhibitors to transactivate Raf-1 when a PKA-activated Ras promotes Raf-1/B-Raf heterodimerization, and are inhibited by interfering with cAMP/PKA signaling both in vitro and in vivo, as shown by the reduction of liver cysts in mice treated with combined octreotide and sorafenib.
doi:10.1002/hep.25872
PMCID: PMC3460040  PMID: 22653837
Cholangiocytes; Polycystic Liver Diseases; Kinase Inhibitors; PKA; cAMP
18.  Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells 
We observed a 53% response rate in non-small cell lung cancer (NSCLC) patients treated with vorinostat plus paclitaxel/carboplatin in a Phase I trial. Studies were undertaken to investigate the mechanism (s) underlying this activity. Growth inhibition was assessed in NSCLC cells by MTT assay after 72 h of continuous drug exposure. Vorinostat (1 µM) inhibited growth by: 17±7% in A549, 28±6% in 128-88T, 39±8% in Calu1, and 41±7% in 201T cells. Vorinostat addition to carboplatin or paclitaxel led to significantly greater growth inhibition than chemotherapy alone in all 4 cell lines. Vorinostat (1 µM) synergistically increased the growth inhibitory effects of carboplatin/paclitaxel in 128-88T cells. When colony formation was measured after drug withdrawal, vorinostat significantly increased the effects of carboplatin but not paclitaxel. The % colony formation was: control 100%; 1 µM vorinostat 83% ± 10%; 5 µM carboplatin, 41% ± 11%; carboplatin/vorinostat, 8% ± 4%; 2 nM paclitaxel, 53% ± 11%; paclitaxel/vorinostat 46% ± 21%. In A549 and 128-88T, vorinostat potentiated carboplatin induction of gamma-H2AX (a DNA damage marker) and increased α-tubulin acetylation (a marker for stabilized mictrotubules). In A549, combination of vorinostat with paclitaxel resulted in a synergistic increase in α-tubulin acetylation, which reversed upon drug wash-out. We conclude that vorinostat interacts favorably with carboplatin and paclitaxel in NSCLC cells, which may explain the provocative response observed in our clinical trial. This likely involves a vorinostat-mediated irreversible increase in DNA damage in the case of carboplatin and a reversible increase in microtubule stability in the case of paclitaxel.
doi:10.1002/ijc.24759
PMCID: PMC2795066  PMID: 19621389
Vorinostat; paclitaxel; carboplatin; histone deacetylase; non-small cell lung cancer
19.  Recombinant Human Acid Sphingomyelinase as an Adjuvant to Sorafenib Treatment of Experimental Liver Cancer 
PLoS ONE  2013;8(5):e65620.
Background
Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third leading cause of cancer death worldwide. The only approved systemic treatment for unresectable HCC is the oral kinase inhibitor, sorafenib. Recombinant human acid sphingomyelinase (rhASM), which hydrolyzes sphingomyelin to ceramide, is an orphan drug under development for the treatment of Type B Niemann-Pick disease (NPD). Due to the hepatotropic nature of rhASM and its ability to generate pro-apoptotic ceramide, this study evaluated the use of rhASM as an adjuvant treatment with sorafenib in experimental models of HCC.
Methodology/Principal Findings
In vitro, rhASM/sorafenib treatment reduced the viability of Huh7 liver cancer cells more than sorafenib. In vivo, using a subcutaneous Huh7 tumor model, mouse survival was increased and proliferation in the tumors decreased to a similar extent in both sorafenib and rhASM/sorafenib treatment groups. However, combined rhASM/sorafenib treatment significantly lowered tumor volume, increased tumor necrosis, and decreased tumor blood vessel density compared to sorafenib. These results were obtained despite poor delivery of rhASM to the tumors. A second (orthotopic) model of Huh7 tumors also was established, but modest ASM activity was similarly detected in these tumors compared to healthy mouse livers. Importantly, no chronic liver toxicity or weight loss was observed from rhASM therapy in either model.
Conclusions/Significance
The rhASM/sorafenib combination exhibited a synergistic effect on reducing the tumor volume and blood vessel density in Huh7 xenografts, despite modest activity of rhASM in these tumors. No significant increases in survival were observed from the rhASM/sorafenib treatment. The poor delivery of rhASM to Huh7 tumors may be due, at least in part, to low expression of mannose receptors. The safety and efficacy of this approach, together with the novel findings regarding enzyme targeting, merits further investigation.
doi:10.1371/journal.pone.0065620
PMCID: PMC3665770  PMID: 23724146
20.  The Monoclonal Antibody CH12 Enhances the Sorafenib-Mediated Growth Inhibition of Hepatocellular Carcinoma Xenografts Expressing Epidermal Growth Factor Receptor Variant III1 
Neoplasia (New York, N.Y.)  2012;14(6):509-518.
The multikinase inhibitor sorafenib is the first oral agent to show activity against human hepatocellular carcinoma (HCC). Although the clinical application of sorafenib has shown good tolerability in the studied populations, it also causes multiple human dose-limiting toxicities. Thus, there is a strong need to reduce the overall dose of sorafenib. We have reported that the epidermal growth factor receptor variant III (EGFRvIII) expression can decrease the sensitivity of HCC cells to chemotherapeutic drugs. Therefore, we sought to explore whether EGFRvIII can affect the sensitivity of HCC cells to sorafenib. In this study, we observed that EGFRvIII expression significantly decreased the sensitivity of HCC cells to sorafenib. To enhance the antitumor effect and reduce the overall dose of sorafenib, we evaluated the combined effects of CH12, a monoclonal antibody against EGFRvIII, and sorafenib on the growth of HCC cells expressing EGFRvIII in vitro and in vivo. The results showed that, when CH12 was combined with sorafenib, the tumor growth suppression effect was significantly increased, and the concentration of sorafenib required for growth inhibition was substantially reduced. Mechanistically, the combination could more noticeably downregulate the phosphorylation of constitutively active extracellular signal-regulated kinase (ERK), Akt (Thr308), and signal transducer and activator of transcription 3 (STAT3) than sorafenib alone. Collectively, these findings demonstrate that CH12 interacts additively with sorafenib to strongly inhibit the tumor growth of HCC xenografts expressing EGFRvIII by enhancing the sorafenib-mediated inhibition of the MEK/ERK, phosphoinositide 3-kinase/AKT, and STAT3 pathways.
PMCID: PMC3394193  PMID: 22787432
21.  Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells 
Cell Death & Disease  2013;4(2):e485-.
We investigated the molecular mechanisms underlying the effect of sorafenib and SC-59, a novel sorafenib derivative, on hepatocellular carcinoma (HCC). Sorafenib activated autophagy in a dose- and time-dependent manner in the HCC cell lines PLC5, Sk-Hep1, HepG2 and Hep3B. Sorafenib downregulated phospho-STAT3 (P-STAT3) and subsequently reduced the expression of myeloid cell leukemia-1 (Mcl-1). Inhibition of Mcl-1 by sorafenib resulted in disruption of the Beclin 1-Mcl-1 complex; however, sorafenib did not affect the amount of Beclin 1, suggesting that sorafenib treatment released Beclin 1 from binding with Mcl-1. Silencing of SHP-1 by small interference RNA (siRNA) reduced the effect of sorafenib on P-STAT3 and autophagy. Ectopic expression of Mcl-1 abolished the effect of sorafenib on autophagy. Knockdown of Beclin 1 by siRNA protected the cells from sorafenib-induced autophagy. Moreover, SC-59, a sorafenib derivative, had a more potent effect on cancer cell viability than sorafenib. SC-59 downregulated P-STAT3 and induced autophagy in all tested HCC cell lines. Furthermore, our in vivo data showed that both sorafenib and SC-59 inhibited tumor growth, downregulated P-STAT3, enhanced the activity of SHP-1 and induced autophagy in PLC5 tumors, suggesting that sorafenib and SC-59 activate autophagy in HCC. In conclusion, sorafenib and SC-59 induce autophagy in HCC through a SHP-1-STAT3-Mcl-1-Beclin 1 pathway.
doi:10.1038/cddis.2013.18
PMCID: PMC3734819  PMID: 23392173
SC-59; sorafenib; STAT3; HCC
22.  Sorafenib-Induced Apoptosis of Chronic Lymphocytic Leukemia Cells Is Associated with Downregulation of RAF and Myeloid Cell Leukemia Sequence 1 (Mcl-1) 
Molecular Medicine  2011;18(1):19-28.
We have previously shown that sorafenib, a multikinase inhibitor, exhibits cytotoxic effects on chronic lymphocytic leukemia (CLL) cells. Because the cellular microenvironment can protect CLL cells from drug-induced apoptosis, it is important to evaluate the effect of novel drugs in this context. Here we characterized the in vitro cytotoxic effects of sorafenib on CLL cells and the underlying mechanism in the presence of marrow stromal cells (MSCs) and nurselike cells (NLCs). One single dose of 10 μmol/L or the repeated addition of 1 μmol/L sorafenib caused caspase-dependent apoptosis and reduced levels of phosphorylated B-RAF, C-RAF, extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3) and myeloid cell leukemia sequence 1 (Mcl-1) in CLL cells in the presence of the microenvironment. We show that the RAF/mitogen-activated protein kinase kinase (MEK)/ERK pathway can modulate Mcl-1 expression and contribute to CLL cell viability, thereby associating so-rafenib cytotoxicity to its impact on RAF and Mcl-1. To evaluate if the other targets of sorafenib can affect CLL cell viability and contribute to sorafenib-mediated cytotoxicity, we tested the sensitivity of CLL cells to several kinase inhibitors specific for these targets. Our data show that RAF and vascular endothelial growth factor receptor (VEGFR) but not KIT, platelet-derived growth factor receptor (PDGFR) and FMS-like tyrosine kinase 3 (FLT3) are critical for CLL cell viability. Taken together, our data suggest that sorafenib exerts its cytotoxic effect likely via inhibition of the VEGFR and RAF/MEK/ERK pathways, both of which can modulate Mcl-1 expression in CLL cells. Furthermore, sorafenib induced apoptosis of CLL cells from fludarabine refractory patients in the presence of NLCs or MSCs. Our results warrant further clinical exploration of sorafenib in CLL.
doi:10.2119/molmed.2011.00164
PMCID: PMC3269641  PMID: 21979753
23.  PI-103 and Sorafenib Inhibit Hepatocellular Carcinoma Cell Proliferation by Blocking Ras/Raf/MAPK and PI3K/AKT/mTOR Pathways 
Anticancer research  2010;30(12):4951-4958.
Background
Aberrant Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study reports how sorafenib (a multi-kinase inhibitor) and PI-103 (a dual PI3K/mTOR inhibitor) alone and in combination inhibit the proliferation of the HCC cell line, Huh7.
Materials and Methods
Huh7 proliferation was assayed by 3H-thymidine incorporation and by MTT assay. Western blot was used to detect phosphorylation of the key enzymes in the Ras/Raf and PI3K pathways.
Results
Sorafenib and PI-103, as single agents, inhibited Huh7 proliferation and epidermal growth factor (EGF)-stimulated Huh7 proliferation in a dose-dependent fashion; the combination of sorafenib and PI-103 produced synergistic effects. EGF increased phosphorylation of MEK and ERK, key Ras/Raf downstream signaling proteins; this activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) and mTOR phosphorylation. EGF-stimulated activation of PI3K/AKT/mTOR pathway components was inhibited by PI-103. PI-103 is a potent inhibitor of AKT (Ser473) phosphorylation; in contrast, rapamycin stimulated AKT(Ser473) phosphorylation. It was found that PI-103, as a single agent, stimulated MEK and ERK phosphorylation. However, the combination of sorafenib and PI-103 caused inhibition of all the tested kinases in the Ras/Raf and PI3K pathways.
Conclusion
The combination of sorafenib and PI-103 can significantly inhibit EGF-stimulated Huh7 proliferation by blocking both Ras/Raf/MAPK and PI3K/AKT/mTOR pathways.
PMCID: PMC3141822  PMID: 21187475
Epidermal growth factor; PI-103; rapamycin; mTOR complex 1; mTOR complex 2; negative feedback loop
24.  Oxidative stress and ERK1/2 phosphorylation as predictors of outcome in hepatocellular carcinoma patients treated with sorafenib plus octreotide LAR 
Cell Death & Disease  2011;2(4):e150-.
We reported a relevant activity of the combination between sorafenib and octreotide long-acting release (LAR) in advanced hepatocellular carcinoma (HCC) patients. In this work, we have studied if oxidative stress in both serum and peripheral blood mononuclear cells (PBMC) and pERK activation status in PBMC could be predictive of response. In the 20 responsive patients, the decrease of reactive oxygen species levels was already detectable after 10 days (T10) from the beginning of sorafenib administration, and this effect was enhanced by the combined treatment with sorafenib+octreotide LAR (T21). This effect correlated with the modulation of superoxide dismutase (SOD) activity (physiological scavenger of O2−) and of serum nitric oxide (NO) levels. Sorafenib alone induced an increase of about 40% of NO levels and of about two-fold of SOD activity in responsive patients, and both effects were significantly potentiated by the combined treatment. We found a gradual reduction of Erk1/2 activity, as evaluated by cytofluorimetric analysis, in 15 responsive patients reaching about 50% maximal decrease at T21. On the other hand, in 17 resistant patients, Erk1/2 activity was about 80% increased at T21. The determination of both the oxidative stress status and pERK activity in PBMC has high value in the prediction of response to sorafenib+octreotide therapy in HCC patients.
doi:10.1038/cddis.2011.34
PMCID: PMC3122065  PMID: 21525937
Erk phosphorylation; hepatocellular carcinoma; octreotide LAR; oxidative stress; sorafenib; superoxide dismutase
25.  PERK in beta cell biology and insulin biogenesis 
PERK (EIF2AK3) was originally discovered as a major component of the Unfolded Protein Response (UPR). PERK deficiency results in permanent neonatal diabetes, which was initially thought to be caused by a failure to regulate ER stress in insulin-secreting beta cells, culminating in beta cell death. However, subsequent studies found that low beta cell mass was due to reduced cell proliferation, rather than increased apoptosis. Genetic and cellular studies of Perk-deficient beta cells showed that PERK was critically required for ER functions including proinsulin trafficking and quality control, unrelated to the ER stress pathway. Under normal physiological conditions, changes in ER calcium levels, mediated by glucose and other insulin secretagogues, regulate PERK activity for the purpose of controlling insulin biogenesis.
doi:10.1016/j.tem.2010.08.005
PMCID: PMC2991375  PMID: 20850340

Results 1-25 (814938)