PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1271971)

Clipboard (0)
None

Related Articles

1.  Sublethal Transient Global Ischemia Stimulates Migration of Neuroblasts and Neurogenesis in Mice 
Translational stroke research  2010;1(3):184-196.
Increasing evidence has shown the potential of neuronal plasticity in adult brain after injury. Neural proliferation can be triggered by a focal sublethal ischemic preconditioning event; whether mild global ischemia could cause neurogenesis has been not clear. The present study investigated stimulating effects of sublethal transient global ischemia (TGI) on endogenous neurogenesis and neuroblast migration in the subventricular zone (SVZ), dentate gyrus, and peri-infarct areas of the adult cortex. Adult mice of 129S2/Sv strain were subjected to 8-min bilateral common carotid artery ligation followed by 5-bromo-2′-deoxyuridine (BrdU; 50 mg/kg, intraperitoneal) administration every day until being sacrificed at 1–21 days after reperfusion. The mild TGI did not induce neuronal cell death for up to 7 days after TGI, as evidenced by negative terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining among NeuN-positive cells in the hippocampus and neocortex. In TGI animals, BrdU staining revealed enhanced proliferation of neuroblasts and their migration track from the SVZ into the striatum and neocortex. In the corpus callosum, there were more BrdU-positive cells in the TGI group in the first 2 days. Increasing numbers of BrdU-positive cells were seen 7–21 days later in the striatum and cortex of TGI mice. The cortex of TGI animals showed increased expression of erythropoietin, erythropoietin receptor, fibroblast growth factor 2, vascular endothelial growth factor, and phosphorylated Jun N-terminal kinase; the expression was peaked 2 to 3 days after reperfusion. BrdU and NeuN double staining in the dentate gyrus, striatum, and cortex implied increased neurogenesis induced by the TGI preconditioning. Doublecortin (DCX)-positive cells increased in the cortex of TGI mice, localized to cortical layers II, III, and V, and many stained positive for the mature neuronal markers NeuN, neurofilament, N-methyl-d-aspartic acid receptor subunit gene NR1, or the gamma-aminobutyric-acid-synthesizing enzyme glutamic acid decarboxylase (GAD67). The atypical localization of DCX-positive cells and the colabeling with mature neuronal markers suggested that, in addition to indentifying migrating neuroblasts, DCX might also be a stress marker in the cortex. It is suggested that the sublethal TGI-induced regenerative responses may contribute to the beneficial effects of ischemic preconditioning.
doi:10.1007/s12975-010-0016-6
PMCID: PMC3142584  PMID: 21792374
Transient global ischemia; Neuroblasts; Neurogenesis; Cell migration; Doublecortin (DCX); Subventricular zone (SVZ)
2.  Retinoic Acid and Environmental Enrichment Alter Subventricular Zone and Striatal Neurogenesis after Stroke 
Experimental neurology  2008;214(1):125-134.
Neurogenesis increases in the adult rodent forebrain subventricular zone (SVZ) after experimental stroke. Newborn neurons migrate to the injured striatum, but few survive long-term and little evidence exists to suggest that they integrate or contribute to functional recovery. One potential strategy to improve stroke recovery is to stimulate neurogenesis and integration of adult-born neurons by using treatments that enhance neurogenesis. We examined the influence of retinoic acid (RA), which stimulates neonatal SVZ and adult hippocampal neurogenesis, and environmental enrichment (EE), which enhances survival of adult-born hippocampal neurons. We hypothesized that the combination of RA and EE would promote survival of adult-generated SVZ-derived neurons and improve functional recovery after stroke. Adult rats underwent middle cerebral artery occlusion, received BrdU on days 5–11 after stroke and were treated with RA/EE, RA alone, EE/vehicle or vehicle alone and were killed 61 days after stroke. Rats underwent repeated MRI and behavioral testing. We found that RA/EE treatment preserved striatal and hemisphere tissue and increased SVZ neurogenesis as demonstrated by Ki67 and doublecortin (DCx) immunolabeling. All treatments influenced the location of BrdU- and DCx-positive cells in the post-stroke striatum. RA/EE increased the number of BrdU/NeuN-positive cells in the injured striatum but did not lead to improvements in behavioral function. These results demonstrate that combined pharmacotherapy and behavioral manipulation enhances post-stroke striatal neurogenesis and decreases infarct volume without promoting detectable functional recovery. Further study of the integration of adult-born neurons in the ischemic striatum is necessary to determine their restorative potential.
doi:10.1016/j.expneurol.2008.08.006
PMCID: PMC2896452  PMID: 18778705
subventricular zone; neurogenesis; stroke; focal ischemia; regeneration; doublecortin; retinoic acid; environmental enrichment; striatum; neural cell proliferation
3.  Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone 
BMC Neuroscience  2008;9:117.
Background
The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.
Intranasal administration is a noninvasive and valid method for delivery of neuropeptides into the brain, to bypass the BBB. We investigated the effect of treatment with intranasal transforming growth factor-β1 (TGF-β1) on neurogenesis in the adult mouse SVZ following focal ischemia. The modified Neurological Severity Scores (NSS) test was used to evaluate neurological function, and infarct volumes were determined from hematoxylin-stained sections. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) labeling was performed at 7 days after middle cerebral artery occlusion (MCAO). Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) and neuron- or glia-specific markers for identifying neurogenesis in the SVZ at 7, 14, 21, 28 days after MCAO.
Results
Intranasal treatment of TGF-β1 shows significant improvement in neurological function and reduction of infarct volume compared with control animals. TGF-β1 treated mice had significantly less TUNEL-positive cells in the ipsilateral striatum than that in control groups. The number of BrdU-incorporated cells in the SVZ and striatum was significantly increased in the TGF-β1 treated group compared with control animals at each time point. In addition, numbers of BrdU- labeled cells coexpressed with the migrating neuroblast marker doublecortin (DCX) and the mature neuronal marker neuronal nuclei (NeuN) were significantly increased after intranasal delivery of TGF-β1, while only a few BrdU labeled cells co-stained with glial fibrillary acidic protein (GFAP).
Conclusion
Intranasal administration of TGF-β1 reduces infarct volume, improves functional recovery and enhances neurogenesis in mice after stroke. Intranasal TGF-β1 may have therapeutic potential for cerebrovascular disorders.
doi:10.1186/1471-2202-9-117
PMCID: PMC2637876  PMID: 19077183
4.  Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke 
Journal of neuroscience research  2010;88(15):3275-3281.
Cerebrolysin is a peptide preparation mimicking the action of neurotrophic factors and has beneficial effects on neurodegenerative diseases and stroke. The present study investigated the effect of Cerebrolysin on neurogenesis in a rat model of embolic middle cerebral artery occlusion (MCAo). Treatment with Cerebrolysin at doses of 2.5 and 5 ml/kg significantly increased the number of bromodeoxyuridine positive (BrdU+) subventricular zone (SVZ) neural progenitor cells and doublecortin (DCX) immunoreactivity (migrating neuroblasts) in the ipsilateral SVZ and striatal ischemic boundary 28 days after stroke when the treatment was initiated 24h after stroke. The treatment also reduced TUNEL+ cells by ~50% in the ischemic boundary. However, treatment with Cerebrolysin at a dose of 2.5 ml/kg initiated at 24 and 48h did not significantly reduce infarct volume, but substantially improved neurological outcomes measured by an array of behavioral tests 21 and 28 days after stroke. Incubation of SVZ neural progenitor cells from ischemic rats with Cerebrolysin dose dependently augmented BrdU+ cells and increased the number of Tuj1+ cells (a marker of immature neurons). Blockage of the PI3K/Akt pathway abolished Cerebrolysin-increased BrdU+ cells. Moreover, Cerebrolysin treatment promoted neural progenitor cell migration. Collectively, these data indicate that Cerebrolysin treatment when initiated 24 and 48h after stroke enhances neurogenesis in the ischemic brain and improves functional outcome and that Cerebrolysin-augmented proliferation, differentiation, and migration of adult SVZ neural progenitor cells contribute to Cerebrolysin-induced neurogenesis, which may be related to improvement of neurological outcome. The PI3K/Akt pathway mediates Cerebrolysin-induced progenitor cell proliferation.
doi:10.1002/jnr.22495
PMCID: PMC3073377  PMID: 20857512
Cerebrolysin; neurogenesis; MCAO; rats
5.  Wnt Signaling Enhances Neurogenesis and Improves Neurological Function after Focal Ischemic Injury 
PLoS ONE  2012;7(7):e40843.
Stroke potently stimulates cell proliferation in the subventricular zone of the lateral ventricles with subsequent neuroblast migration to the injured striatum and cortex. However, most of the cells do not survive and mature. Extracellular Wnt proteins promote adult neurogenesis in the neurogenic niches. The aim of the study was to examine the efficacy of Wnt signaling on neurogenesis and functional outcome after focal ischemic injury. Lentivirus expressing Wnt3a-HA (LV-Wnt3a-HA) or GFP (LV-GFP) was injected into the striatum or subventricular zone of mice. Five days later, focal ischemic injury was induced by injection of the vasoconstrictor endothelin-1 into the striatum of the same hemisphere. Treatment with LV-Wnt3a-HA into the striatum significantly enhanced functional recovery after ischemic injury and increased the number of BrdU-positive cells that differentiated into mature neurons in the ischemic striatum by day 28. Treatment with LV-Wnt3a-HA into the subventricular zone significantly enhanced functional recovery from the second day after injury and increased the number of immature neurons in the striatum and subventricular zone. This was accompanied by reduced dissemination of the neuronal injury. Our data indicate that Wnt signaling appears to contribute to functional recovery after ischemic injury by increasing neurogenesis or neuronal survival in the striatum.
doi:10.1371/journal.pone.0040843
PMCID: PMC3398894  PMID: 22815838
6.  Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice 
PLoS ONE  2014;9(2):e87284.
Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.
doi:10.1371/journal.pone.0087284
PMCID: PMC3913619  PMID: 24503654
7.  The Effect of Continuous Epidural Electrical Stimulation on Neuronal Proliferation in Cerebral Ischemic Rats 
Annals of Rehabilitation Medicine  2013;37(3):301-310.
Objective
To investigate the effect of electrical stimulation (ES) on the recovery of motor skill and neuronal cell proliferation.
Methods
The male Sprague-Dawley rats were implanted with an epidural electrode over the peri-ischemic area after photothrombotic stroke in the dominant sensorimotor cortex. All rats were randomly assigned into the ES group and control group. The behavioral test of a single pellet reaching task (SPRT) and neurological examinations including the Schabitz's photothrombotic neurological score and the Menzies test were conducted for 2 weeks. After 14 days, coronal sections were obtained and immunostained for neuronal cell differentiation markers including bromodeoxyuridine (BrdU), neuron-specific nuclear protein (NeuN), and doublecortin (DCX).
Results
On the SPRT, the motor function in paralytic forelimbs of the ES group was significantly improved. There were no significant differences in neurological examinations and neuronal cell differentiation markers except for the significantly increased number of DCX+ cells in the corpus callosum of the ES group (p<0.05). But in the ES group, the number of NeuN+ cells in the ischemic cortex and the number of NeuN+ cells and DCX+ cells in the ischemic striatum tended to increase. In the ES group, NeuN+ cells in the ischemic hemisphere and DCX+ cells and BrdU+ cells in the opposite hemisphere tended to increase compared to those in the contralateral.
Conclusion
The continuous epidural ES of the ischemic sensorimotor cortex induced a significant improvement in the motor function and tended to increase neural cell proliferation in the ischemic hemisphere and the neural regeneration in the opposite hemisphere.
doi:10.5535/arm.2013.37.3.301
PMCID: PMC3713286  PMID: 23869327
Cerebral ischemia; Electrical stimulation; Stroke; Cell proliferation; Motor skills
8.  Amount But Not Pattern Of Protective Sensory Stimulation Alters Recovery After Permanent Middle Cerebral Artery Occlusion 
Background and Purpose
Using a rodent model of ischemia (permanent middle cerebral artery occlsion; pMCAO), our lab previously demonstrated that 4.27 minutes of patterned single whisker stimulation delivered over 120 minutes can fully protect from impending damage when initiated within two hours of pMCAO (“early”). When initiated three hours post-pMCAO (“late”), stimulation resulted in irreversible damage. Here we investigate the effect of altering pattern, distribution, or amount of stimulation in this model.
Methods
We assessed the cortex using functional imaging and histological analysis with altered stimulation treatment protocols. In two groups of animals we administered the same number of whisker deflections but in a random rather than patterned fashion, distributed either over 120 minutes or condensed into 10 minutes post-pMCAO. We also tested increased (full whisker array versus single whisker) stimulation.
Results
Early random whisker stimulation (condensed or dispersed) resulted in protection equivalent to early patterned stimulation. Early full whisker array patterned stimulation also resulted in complete protection, but promoted faster recovery. Late full whisker array patterned stimulation however, resulted in loss of evoked function and infarct volumes larger than those sustained by single whisker counterparts.
Conclusions
When induced early on after ischemic insult, stimulus-evoked cortical activity, irrespective of the parameters of peripheral stimulation that induced it, seems to be the important variable for neuroprotection.
doi:10.1161/STROKEAHA.110.607135
PMCID: PMC3141731  PMID: 21317269
neuroprotection; brain ischemia; brain recovery; basic science; animal models; imaging
9.  Citalopram Enhances Neurovascular Regeneration and Sensorimotor Functional Recovery after Ischemic Stroke in Mice 
Neuroscience  2013;247:1-11.
Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors (SSRIs) after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10 mg/kg, i.p.) was injected 24 hrs after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone towards the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of the ischemic brain.
doi:10.1016/j.neuroscience.2013.04.011
PMCID: PMC3916088  PMID: 23590907
Ischemic stroke; SSRI; Citalopram; Neurogenesis; Angiogenesis
10.  17β-Estradiol Attenuates Poststroke Depression and Increases Neurogenesis in Female Ovariectomized Rats 
BioMed Research International  2013;2013:392434.
Studies have linked neurogenesis to the beneficial actions of specific antidepressants. However, whether 17β-estradiol (E2), an antidepressant, can ameliorate poststroke depression (PSD) and whether E2-mediated improvement of PSD is associated with neurogenesis are largely unexplored. In the present study, we found that depressive-like behaviors were observed at the first week after focal ischemic stroke in female ovariectomized (OVX) rats, as measured by sucrose preference and open field test, suggesting that focal cerebral ischemia could induce PSD. Three weeks after middle cerebral artery occlusion (MCAO), rats were treated with E2 for consecutive 14 days. We found that E2-treated rats had significantly improving ischemia-induced depression-like behaviors in the forced-swimming test and sucrose preference test, compared to vehicle-treated group. In addition, we also found that BrdU- and doublecortin (DCX)-positive cells in the dentate gyrus of the hippocampus and the subventricular zone (SVZ) were significantly increased in ischemic rats after E2 treatment, compared to vehicle-treated group. Our data suggest that focal cerebral ischemia can induce PSD, and E2 can ameliorate PSD. In addition, newborn neurons in the hippocampus may play an important role in E2-mediated antidepressant like effect after ischemic stroke.
doi:10.1155/2013/392434
PMCID: PMC3838842  PMID: 24307996
11.  Status Epilepticus During Old Age is not Associated With Enhanced Hippocampal Neurogenesis 
Hippocampus  2008;18(9):931-944.
Increased production of new neurons in the adult dentate gyrus (DG) by neural stem/progenitor cells (NSCs) following acute seizures or status epilepticus (SE) is a well known phenomenon. However, it is unknown whether NSCs in the aged DG have similar ability to upregulate neurogenesis in response to SE. We examined DG neurogenesis after the induction of continuous stages III-V seizures (SE) for over 4 h in both young adult (5-months old) and aged (24-months old) F344 rats. The seizures were induced through 2–4 graded intraperitoneal injections of the excitotoxin kainic acid (KA). Newly born cells in the DG were labeled via daily intraperitoneal injections of the 5′-bromodeoxyuridine (BrdU) for 12 days, which commenced shortly after the induction of SE in KA-treated rats. New cells and neurons in the subgranular zone (SGZ) and the granule cell layer (GCL) were analyzed at 24 h after the last BrdU injection using BrdU and doublecortin (DCX) immunostaining, BrdU-DCX and BrdU-NeuN dual immunofluorescence and confocal microscopy, and stereological cell counting. Status epilepticus enhanced the numbers of newly born cells (BrdU+ cells) and neurons (DCX+ neurons) in young adult rats. In contrast, similar seizures in aged rats, though greatly increased the number of newly born cells in the SGZ/GCL, failed to increase neurogenesis due to a greatly declined neuronal fate-choice decision of newly born cells. Only 9% of newly born cells in the SGZ/GCL differentiated into neurons in aged rats that underwent SE, in comparison to the 76% neuronal differentiation observed in age-matched control rats. Moreover, the number of newly born cells that migrate abnormally into the dentate hilus (i.e., ectopic granule cells) after SE in the aged hippocampus is 92% less than that observed in the young adult hippocampus after similar SE. Thus, SE fails to increase the addition of new granule cells to the GCL in the aged DG, despite a considerable upregulation in the production of new cells, and SE during old age leads to much fewer ectopic granule cells. These results have clinical relevance because earlier studies have implied that both increased and abnormal neurogenesis occurring after SE in young animals contributes to chronic epilepsy development.
doi:10.1002/hipo.20449
PMCID: PMC3612499  PMID: 18493929
adult neurogenesis; aging; 5′-bromodeoxyuridine; DG; dentate neurogenesis; doublecortin; kainic acid; neural stem cells; rat; stem cell proliferation; stem cell differentiation
12.  Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts 
BMC Neuroscience  2010;11:146.
Background
It is well known that focal ischemia increases neurogenesis in the adult dentate gyrus of the hippocampal formation but the cellular mechanisms underlying this proliferative response are only poorly understood. We here investigated whether precursor cells which constitutively proliferate before the ischemic infarct contribute to post-ischemic neurogenesis. To this purpose, transgenic mice expressing green fluorescent protein (GFP) under the control of the nestin promoter received repetitive injections of the proliferation marker bromodeoxyuridine (BrdU) prior to induction of cortical infarcts. We then immunocytochemically analyzed the fate of these BrdU-positive precursor cell subtypes from day 4 to day 28 after the lesion.
Results
Quantification of BrdU-expressing precursor cell populations revealed no alteration in number of radial glia-like type 1 cells but a sequential increase of later precursor cell subtypes in lesioned animals (type 2a cells at day 7, type 3 cells/immature neurons at day 14). These alterations result in an enhanced survival of mature neurons 4 weeks postinfarct.
Conclusions
Focal cortical infarcts recruit dentate precursor cells generated already before the infarct and significantly contribute to an enhanced neurogenesis. Our findings thereby increase our understanding of the complex cellular mechanisms of postlesional neurogenesis.
doi:10.1186/1471-2202-11-146
PMCID: PMC2993721  PMID: 21083887
13.  Axonal Dynamics of Excitatory and Inhibitory Neurons in Somatosensory Cortex 
PLoS Biology  2010;8(6):e1000395.
Electrophysiology-delivery of fluorescent viral vectors-and two-photon microscopy were used to demonstrate the rapidity of axonal restructuring of both excitatory and inhibitory neurons in rodent cortical layer II/III following alterations in sensory experience.
Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.
Author Summary
The adult brain is capable of learning new tasks and being shaped by new experiences. Evidence for experience-dependent plasticity of the adult cerebral cortex is seen in the functional rearrangement of cortical maps of sensory input and in the formation of new connections following alteration of sensory experience. The barrel cortex of the rodent receives sensory input from the whiskers and is an ideal model for examining the influence of experience on cortical function and circuitry. In the current study, we asked how experience alters cortical circuitry by examining excitatory and inhibitory axons within the adult whisker barrel cortex before and after plucking of a whisker and hence removal of its sensory input. By combining delivery of genes encoding fluorescent proteins, under the control of cell-type specific promoters, with two-photon imaging, we were able to directly examine subpopulations of axons and to determine when and to what extent experience altered specific connections in the adult living brain. Following whisker plucking we observed both the retraction of existing connections and an exuberant amount of growth of new axons. Axonal restructuring occurred rapidly and continued to undergo changes over the following weeks, with reciprocal sprouting of axons of excitatory neurons located in non-deprived cortex and of inhibitory neurons located in deprived cortex. The changes in the inhibitory circuits preceded those seen for excitatory connections.
doi:10.1371/journal.pbio.1000395
PMCID: PMC2885981  PMID: 20563307
14.  FIBROBLAST GROWTH FACTOR 2 ENHANCES STRIATAL AND NIGRAL NEUROGENESIS IN THE ACUTE 1-METHYL-4-PHENYL-1,2,3, 6-TETRAHYDROPYRIDINE MODEL OF PARKINSON’S DISEASE 
Neuroscience  2008;153(3):664-670.
In response to injury, endogenous precursors in the adult brain can proliferate and generate new neurons, which may have the capacity to replace dysfunctional or dead cells. Although injury-induced neurogenesis has been demonstrated in animal models of stroke, Alzheimer’s disease (AD) and Huntington’s disease (HD), studies of Parkinson’s disease (PD) have produced conflicting results. In this study, we investigated the ability of adult mice to generate new neurons in response to the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes selective degeneration of nigrostriatal dopamine neurons. MPTP lesions increased the incorporation of 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdU), as well as the number of cells that co-expressed BrdU and the immature neuronal marker doublecortin (DCX), in two neuroproliferative regions—the subgranular zone of the dentate gyrus (DG) and the rostral subventricular zone (SVZ). BrdU-labeled, DCX-expressing cells were not found in the substantia nigra (SN) of MPTP-treated mice, where neuronal cell bodies are destroyed, but were present in increased numbers in the striatum, where SN neurons lost in PD normally project. Fibroblast growth factor-2 (FGF-2), which enhances neurogenesis in a mouse model of HD, also increased the number of BrdU/DCX-immunopositive cells in the SN of MPTP-treated mice. Thus, MPTP-induced brain injury increases striatal neurogenesis and, in combination with FGF-2 treatment, also stimulates neurogenesis in SN.
doi:10.1016/j.neuroscience.2008.02.063
PMCID: PMC2864598  PMID: 18407421
fibroblast growth factor; Parkinson’s disease; proliferation; progenitor; striatum; substantia nigra
15.  Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia 
Background
The acute phase protein pentraxin 3 (PTX3) is a new biomarker of stroke severity and is a key regulator of oedema resolution and glial responses after cerebral ischaemia, emerging as a possible target for brain repair after stroke. Neurogenesis and angiogenesis are essential events in post-stroke recovery. Here, we investigated for the first time the role of PTX3 in neurogenesis and angiogenesis after stroke.
Methods
PTX3 knockout (KO) or wild-type (WT) mice were subjected to experimental cerebral ischaemia (induced by middle cerebral artery occlusion (MCAo)). Poststroke neurogenesis was assessed by nestin, doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining, whereas angiogenesis was assessed by BrdU, vascular endothelial growth factor receptor 2 (VEGFR2) and PECAM-1 immunostaining. In vitro neurogenesis and angiogenesis assays were carried out on neurospheres derived from WT or interleukin-1β (IL-1β) KO mice, and mouse endothelial cell line bEnd.5 respectively. Behavioural function was assessed in WT and PTX3 KO mice using open-field, motor and Y-maze tests.
Results
Neurogenesis was significantly reduced in the dentate gyrus (DG) of the hippocampus of PTX3 KO mice, compared to WT mice, 6 days after MCAo. In addition, recombinant PTX3 was neurogenic in vitro when added to neurospheres, which was mediated by IL-1β. In vivo poststroke angiogenesis was significantly reduced in PTX3 KO mice compared to WT mice 14 days after MCAo, as revealed by reduced vascular density, less newly formed blood vessels and decreased expression of VEGFR2. In vitro, recombinant PTX3 induced marked endothelial cellular proliferation and promoted formation of tube-like structures of endothelial cell line bEnd.5. Finally, a lack of PTX3 potentiated motor deficits 14 days after MCAo.
Conclusions
These results indicate that PTX3 mediates neurogenesis and angiogenesis and contributes to functional recovery after stroke, highlighting a key role of PTX3 as a mediator of brain repair and suggesting that PTX3 could be used as a new target for stroke therapy.
doi:10.1186/s12974-014-0227-y
PMCID: PMC4308938  PMID: 25616391
Stroke; Inflammation; Pentraxin-3; Interleukin-1; Neurogenesis; Angiogenesis; Brain repair; Post-stroke recovery
16.  Notch1 Signaling Modulates Neuronal Progenitor Activity in the Subventricular Zone in Response to Aging and Focal Ischemia 
Aging cell  2013;12(6):10.1111/acel.12134.
Neurogenesis diminishes with aging and ischemia-induced neurogenesis also occurs, but reduced in aged brain. Currently, the cellular and molecular pathways mediating these effects remain largely unknown. Our previous study has shown that Notch1 signaling regulates neurogenesis in subventricular zone (SVZ) of young-adult brain after focal ischemia, but whether a similar effect occurs in aged normal and ischemic animals is unknown. Here, we used normal and ischemic aged rat brains to investigate whether Notch1 signaling was involved in the reduction of neurogenesis in response to aging and modulates neurogenesis in aged brains after focal ischemia. By Western blot, we found that Notch1 and Jagged1 expression in the SVZ of aged brain was significantly reduced compared with young-adult brain. Consistently, the activated form of Notch1(Notch intracellular domain;NICD) expression was also declined. Immunohistochemistry confirmed that expression and activation of Notch1 signaling in the SVZ of aged brain were reduced. Double or triple immunostaining showed that that Notch1 was mainly expressed in DCX-positive cells, whereas Jagged1 was predominantly expressed in astroglial cells in the SVZ of normal aged rat brain. In addition, disruption or activation of Notch1 signaling altered the number of proliferating cells labeled by bromodeoxyuridine (BrdU) and doublecortin (DCX) in the SVZ of aged brain. Moreover, ischemia-induced cell proliferation in the SVZ of aged brain was enhanced by activating the Notch1 pathway, and was suppressed by inhibiting the Notch1 signaling. Reduced infarct volume and improved motor deficits were also observed in Notch1 activator-treated aged ischemic rats. Our data suggest that Notch1 signaling modulates the SVZ neurogenesis in aged brain in normal and ischemic conditions.
doi:10.1111/acel.12134
PMCID: PMC3838489  PMID: 23834718
Notch1 signaling pathway; aged rat brain; neurogenesis; focal cerebral ischemia
17.  Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia 
Neural Regeneration Research  2014;9(9):912-918.
Endogenous neural stem cells become “activated” after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine (BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.
doi:10.4103/1673-5374.133136
PMCID: PMC4146222  PMID: 25206911
nerve regeneration; brain ischemia; neural stem cell; neural precursor cell; hypoxiainducible factor 1α; vascular endothelial growth factor; microenvironment; photothrombosis; neural regeneration
18.  Neurogenesis Response of Middle-Aged Hippocampus to Acute Seizure Activity 
PLoS ONE  2012;7(8):e43286.
Acute Seizure (AS) activity in young adult age conspicuously modifies hippocampal neurogenesis. This is epitomized by both increased addition of new neurons to the granule cell layer (GCL) by neural stem/progenitor cells (NSCs) in the dentate subgranular zone (SGZ), and greatly enhanced numbers of newly born neurons located abnormally in the dentate hilus (DH). Interestingly, AS activity in old age does not induce such changes in hippocampal neurogenesis. However, the effect of AS activity on neurogenesis in the middle-aged hippocampus is yet to be elucidated. We examined hippocampal neurogenesis in middle-aged F344 rats after a continuous AS activity for >4 hrs, induced through graded intraperitoneal injections of the kainic acid. We labeled newly born cells via daily intraperitoneal injections of the 5′-bromodeoxyuridine (BrdU) for 12 days, commencing from the day of induction of AS activity. AS activity enhanced the addition of newly born BrdU+ cells by 5.6 fold and newly born neurons (expressing both BrdU and doublecortin [DCX]) by 2.2 fold to the SGZ-GCL. Measurement of the total number of DCX+ newly born neurons also revealed a similar trend. Furthermore, AS activity increased DCX+ newly born neurons located ectopically in the DH (2.7 fold increase and 17% of total newly born neurons). This rate of ectopic migration is however considerably less than what was observed earlier for the young adult hippocampus after similar AS activity. Thus, the plasticity of hippocampal neurogenesis to AS activity in middle age is closer to its response observed in the young adult age. However, the extent of abnormal migration of newly born neurons into the DH is less than that of the young adult hippocampus after similar AS activity. These results also point out a highly divergent response of neurogenesis to AS activity between middle age and old age.
doi:10.1371/journal.pone.0043286
PMCID: PMC3422269  PMID: 22912847
19.  Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice 
Introduction
Ischemic stroke is a leading cause of death and disability, but treatment options are severely limited. Cell therapy offers an attractive strategy for regenerating lost tissues and enhancing the endogenous healing process. In this study, we investigated the use of human embryonic stem cell-derived neural precursors as a cell therapy in a murine stroke model.
Methods
Neural precursors were derived from human embryonic stem cells by using a fully adherent SMAD inhibition protocol employing small molecules. The efficiency of neural induction and the ability of these cells to further differentiate into neurons were assessed by using immunocytochemistry. Whole-cell patch-clamp recording was used to demonstrate the electrophysiological activity of human embryonic stem cell-derived neurons. Neural precursors were transplanted into the core and penumbra regions of a focal ischemic stroke in the barrel cortex of mice. Animals received injections of bromodeoxyuridine to track regeneration. Neural differentiation of the transplanted cells and regenerative markers were measured by using immunohistochemistry. The adhesive removal test was used to determine functional improvement after stroke and intervention.
Results
After 11 days of neural induction by using the small-molecule protocol, over 95% of human embryonic stem-derived cells expressed at least one neural marker. Further in vitro differentiation yielded cells that stained for mature neuronal markers and exhibited high-amplitude, repetitive action potentials in response to depolarization. Neuronal differentiation also occurred after transplantation into the ischemic cortex. A greater level of bromodeoxyuridine co-localization with neurons was observed in the penumbra region of animals receiving cell transplantation. Transplantation also improved sensory recovery in transplant animals over that in control animals.
Conclusions
Human embryonic stem cell-derived neural precursors derived by using a highly efficient small-molecule SMAD inhibition protocol can differentiate into electrophysiologically functional neurons in vitro. These cells also differentiate into neurons in vivo, enhance regenerative activities, and improve sensory recovery after ischemic stroke.
doi:10.1186/scrt292
PMCID: PMC3854684  PMID: 23928330
Human embryonic stem cell; Neural precursor; Electrophysiology; Stem cell; Cell therapy; Ischemic stroke; Neurogenesis; Small molecule
20.  Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat 
Experimental Neurology  2011;233(2):821-828.
Previous studies have demonstrated that moderate hypothermia reduces histopathological damage and improves behavioral outcome after experimental traumatic brain injury (TBI). Further investigations have clarified the mechanisms underlying the beneficial effects of hypothermia by showing that cooling reduces multiple cell injury cascades. The purpose of this study was to determine whether hypothermia could also enhance endogenous reparative processes following TBI such as neurogenesis and the replacement of lost neurons. Male Sprague-Dawley rats underwent moderate fluid-percussion brain injury and then were randomized into normothermia (37°C) or hypothermia (33°C) treatment. Animals received injections of 5-bromo-2′-deoxyuridine (BrdU) to detect mitotic cells after brain injury. After 3 or 7 days, animals were perfusion-fixed and processed for immunocytochemistry and confocal analysis. Sections were stained for markers selective for cell proliferation (BrdU), neuroblasts and immature neurons (doublecortin), and mature neurons (NeuN) and then analyzed using non-biased stereology to quantify neurogenesis in the dentate gyrus (DG). At 7 days after TBI, both normothermic and hypothermic TBI animals demonstrated a significant increase in the number of BrdU-immunoreactive cells in the DG as compared to sham-operated controls. At 7 days post-injury, hypothermia animals had a greater number of BrdU (ipsilateral cortex) and doublecortin (ipsilateral and contralateral cortex) immunoreactive cells in the DG as compared to normothermia animals. Because adult neurogenesis following injury may be associated with enhanced functional recovery, these data demonstrate that therapeutic hypothermia sustains the increase in neurogenesis induced by TBI and this may one of the mechanisms by which hypothermia promotes reparative strategies in the injured nervous system.
doi:10.1016/j.expneurol.2011.12.008
PMCID: PMC3272120  PMID: 22197046
Dentate gyrus; Doublecortin; Fluid-percussion; Hypothermia; Neurogenesis; Traumatic brain injury
21.  The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain 
Journal of neurochemistry  2009;110(4):1226-1240.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. The present study demonstrated that post-insult treatment with an HDAC inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2′-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid-neural cell adhesion molecule (PSA-NCAM), nestin, GFAP, phospho-CREB, and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and PSA-NCAM was observed in multiple regions after ischemia, and SB treatment upregulated protein levels of BDNF, phospho-CREB and GFAP. Intraventricular injection of K252a, a TrkB receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that HDAC inhibitor-induced cell proliferation, migration and differentiation require BDNF-TrkB signaling and may contribute to SB’s long-term beneficial effects after ischemic injury.
doi:10.1111/j.1471-4159.2009.06212.x
PMCID: PMC2726719  PMID: 19549282
HDAC inhibitors; cerebral ischemia; neurogenesis; BrdU; BDNF; K252a
22.  P2X7 Receptor Inhibition Increases CNTF in the Subventricular Zone, But Not Neurogenesis or Neuroprotection After Stroke in Adult Mice 
Translational stroke research  2013;4(5):10.1007/s12975-013-0265-2.
Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40–60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.
doi:10.1007/s12975-013-0265-2
PMCID: PMC3846398  PMID: 24312160
Ciliary neurotrophic factor; Mice; Neurogenesis; Neuroprotection; P2X7 purinergic receptor; Stroke
23.  Temporal precision in population—but not individual neuron—dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex 
Cortical reorganization following sensory deprivation is characterized by alterations in the connectivity between neurons encoding spared and deprived cortical inputs. The extent to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however, is largely unknown. We quantified changes in the functional connectivity between layer V neurons in the vibrissal primary somatosensory cortex (vSI) (barrel cortex) of rats following sensory deprivation. One week after chronic implantation of a microelectrode array in vSI, sensory-evoked activity resulting from mechanical deflections of individual whiskers was recorded (control data) after which two whiskers on the contralateral side were paired by sparing them while trimming all other whiskers on the rat's mystacial pad. The rats' environment was then enriched by placing novel objects in the cages to encourage exploratory behavior with the spared whiskers. Sensory-evoked activity in response to individual stimulation of spared whiskers and adjacent re-grown whiskers was then recorded under anesthesia 1–2 days and 6–7 days post-trimming (plasticity data). We analyzed spike trains within 100 ms of stimulus onset and confirmed previously published reports documenting changes in receptive field sizes in the spared whisker barrels. We analyzed the same data using Dynamic Bayesian Networks (DBNs) to infer the functional connectivity between the recorded neurons. We found that DBNs inferred from population responses to stimulation of each of the spared whiskers exhibited graded increase in similarity that was proportional to the pairing duration. A significant early increase in network similarity in the spared-whisker barrels was detected 1–2 days post pairing, but not when single neuron responses were examined during the same period. These results suggest that rapid reorganization of cortical neurons following sensory deprivation may be mediated by an STDP mechanism.
doi:10.3389/fncom.2014.00155
PMCID: PMC4243556  PMID: 25505407
effective connectivity; whisker pairing; barrel cortex; experience-dependent plasticity; Dynamic Bayesian Network
24.  Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb 
Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle and subgranular zone (SGZ) of the dentate gyrus (DG). We examined whether cholecystokinin (CCK) through actions mediated by CCK1 receptors (CCK1R) is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 h prior to death or by immunoreactivity against Ki67, were reduced by 37 and 42%, respectively, in female (but not male) mice lacking CCK1Rs (CCK1R−/−) compared to wild-type (WT). Generation of neuroblasts in the SVZ and rostral migratory stream (RMS) was also affected, since the number of doublecortin (DCX)-immunoreactive (ir) neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R−/− mice, BrdU-positive (+), and Ki67-ir cells were reduced by 38 and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R−/− mice was examined. In the OB granule cell layer (GCL), the number of neuronal nuclei (NeuN)-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI) was similar. Compared to WT, the granule cell layer of the DG in female CCK1R−/− mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL) of CCK1R−/− female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is altered.
doi:10.3389/fncel.2013.00013
PMCID: PMC3584826  PMID: 23459364
cholecystokinin 1 receptor; neurogenesis; subventricular zone; rostral migratory stream; olfactory bulb; subgranular zone; interneurons; survival
25.  Neurogenesis Decreases with Age in the Canine Hippocampus and Correlates with Cognitive Function 
New neurons are continually produced in the adult mammalian brain from progenitor cells located in specific brain regions, including the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. We hypothesized that neurogenesis occurs in the canine brain and is reduced with age. We examined neurogenesis in the hippocampus of 5 young and 5 aged animals using doublecortin (DCX) and bromodeoxyuridine (BrdU) immunostaining. The total unilateral number of new neurons in the canine SGZ and granule cell layer (GCL) was estimated using stereological techniques based upon unbiased principles of systematic uniformly random sampling. Animals received 25 mg/kg of BrdU once a day for 5 days and were euthanized 9 days after the last injection. We found evidence of neurogenesis in the canine brain and that cell genesis and neurogenesis are greatly reduced in the SGZ/GCL of aged animals compared to young. We further tested the hypothesis that an antioxidant fortified food or behavioral enrichment would improve neurogenesis in the aged canine brain and neurogenesis may correlate with cognitive function. Aged animals were treated for 2.8 years and tissue was available for 6 that received the antioxidant food, 5 that received the enrichment and 6 receiving both treatments. There were no significant differences in the absolute number of DCX or DCX-BrdU neurons or BrdU nuclei between the treatment groups compared to control animals. The number of DCX-positive neurons and double labeled DCX-BrdU-positive neurons, but not BrdU-positive nuclei alone, significantly correlated with performance on several cognitive tasks including spatial memory and discrimination learning. These results suggest that new neurons in the aged canine dentate gyrus may participate in modulating cognitive functions.
doi:10.1016/j.nlm.2007.05.001
PMCID: PMC2173881  PMID: 17587610
Canine; brain; aging; hippocampus; neurogenesis; antioxidants; enrichment

Results 1-25 (1271971)