PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (988615)

Clipboard (0)
None

Related Articles

1.  Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy 
Molecular Pain  2009;5:14.
Background
Neuropathic pain caused by peripheral nerve injury is a chronic disorder that represents a significant clinical challenge because the pathological mechanisms have not been fully elucidated. Several studies have suggested the involvement of various sodium channels, including tetrodotoxin-resistant NaV1.8, in affected dorsal root ganglion (DRG) neurons. We have hypothesized that altered local expression of NaV1.8 in the peripheral axons of DRG neurons could facilitate nociceptive signal generation and propagation after neuropathic injury.
Results
After unilateral sciatic nerve entrapment injury in rats, compound action potential amplitudes were increased in both myelinated and unmyelinated fibers of the ipsilateral sciatic nerve. Tetrodotoxin resistance of both fiber populations and sciatic nerve NaV1.8 immunoreactivity were also increased. Further analysis of NaV1.8 distribution revealed that immunoreactivity and mRNA levels were decreased and unaffected, respectively, in the ipsilateral L4 and L5 DRG; however sciatic nerve NaV1.8 mRNA showed nearly an 11-fold ipsilateral increase. Nav1.8 mRNA observed in the sciatic nerve was likely of axonal origin since it was not detected in non-neuronal cells cultured from nerve tissue. Absence of changes in NaV1.8 mRNA polyadenylation suggests that increased mRNA stability was not responsible for the selective peripheral mRNA increase. Furthermore, mRNA levels of NaV1.3, NaV1.5, NaV1.6, NaV1.7, and NaV1.9 were not significantly different between ipsilateral and contralateral nerves. We therefore propose that selective NaV1.8 mRNA axonal transport and local up-regulation could contribute to the hyperexcitability of peripheral nerves in some neuropathic pain states.
Conclusion
Cuff entrapment injury resulted in significantly elevated axonal excitability and increased NaV1.8 immunoreactivity in rat sciatic nerves. The concomitant axonal accumulation of NaV1.8 mRNA may play a role in the pathogenesis of this model of neuropathic pain.
doi:10.1186/1744-8069-5-14
PMCID: PMC2667430  PMID: 19320998
2.  Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors 
Molecular Pain  2012;8:42.
Background
The polypeptide hormone calcitonin is clinically well known for its ability to relieve neuropathic pain such as spinal canal stenosis, diabetic neuropathy and complex regional pain syndrome. Mechanisms for its analgesic effect, however, remain unclear. Here we investigated the mechanism of anti-hyperalgesic action of calcitonin in a neuropathic pain model in rats.
Results
Subcutaneous injection of elcatonin, a synthetic derivative of eel calcitonin, relieved hyperalgesia induced by chronic constriction injury (CCI). Real-time reverse transcriptase-polymerase chain reaction analysis revealed that the CCI provoked the upregulation of tetrodotoxin (TTX)-sensitive Nav.1.3 mRNA and downregulation of TTX-resistant Nav1.8 and Nav1.9 mRNA on the ipsilateral dorsal root ganglion (DRG), which would consequently increase the excitability of peripheral nerves. These changes were reversed by elcatonin. In addition, the gene expression of the calcitonin receptor and binding site of 125I-calcitonin was increased at the constricted peripheral nerve tissue but not at the DRG. The anti-hyperalgesic effect and normalization of sodium channel mRNA by elcatonin was parallel to the change of the calcitonin receptor expression. Elcatonin, however, did not affect the sensitivity of nociception or gene expression of sodium channel, while it suppressed calcitonin receptor mRNA under normal conditions.
Conclusions
These results suggest that the anti-hyperalgesic action of calcitonin on CCI rats could be attributable to the normalization of the sodium channel expression, which might be exerted by an unknown signal produced at the peripheral nerve tissue but not by DRG neurons through the activation of the calcitonin receptor. Calcitonin signals were silent in the normal condition and nerve injury may be one of triggers for conversion of a silent to an active signal.
doi:10.1186/1744-8069-8-42
PMCID: PMC3517395  PMID: 22676202
Elcatonin; Calcitonin; Peripheral nerve excitability; Neuropathic pain; CCI model; Na+ channel; Analgesia
3.  Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury 
Molecular Pain  2006;2:27.
Peripheral nerve injury is known to up-regulate the expression of rapidly-repriming Nav1.3 sodium channel within first-order dorsal root ganglion neurons and second-order dorsal horn nociceptive neurons, but it is not known if pain-processing neurons higher along the neuraxis also undergo changes in sodium channel expression. In this study, we hypothesized that after peripheral nerve injury, third-order neurons in the ventral posterolateral (VPL) nucleus of the thalamus undergo changes in expression of sodium channels. To test this hypothesis, adult male Sprague-Dawley rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, when allodynia and hyperalgesia were evident, in situ hybridization and immunocytochemical analysis revealed up-regulation of Nav1.3 mRNA, but no changes in expression of Nav1.1, Nav1.2, or Nav1.6 in VPL neurons, and unit recordings demonstrated increased background firing, which persisted after spinal cord transection, and evoked hyperresponsiveness to peripheral stimuli. These results demonstrate that injury to the peripheral nervous system induces alterations in sodium channel expression within higher-order VPL neurons, and suggest that misexpression of the Nav1.3 sodium channel increases the excitability of VPL neurons injury, contributing to neuropathic pain.
doi:10.1186/1744-8069-2-27
PMCID: PMC1563449  PMID: 16916452
4.  Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells 
BMC Cancer  2010;10:216.
Background
Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8.
Methods
Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed.
Results
Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain.
Conclusions
These findings suggest that Nav1.8 plays a role in the development and maintenance of bone cancer pain.
doi:10.1186/1471-2407-10-216
PMCID: PMC2894792  PMID: 20482896
5.  Antisense-Mediated Knockdown of NaV1.8, but Not NaV1.9, Generates Inhibitory Effects on Complete Freund's Adjuvant-Induced Inflammatory Pain in Rat 
PLoS ONE  2011;6(5):e19865.
Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in sensory neurons were known as key pain modulators. Comparing with the widely reported NaV1.8, roles of NaV1.9 on inflammatory pain are poorly studied by antisense-induced specific gene knockdown. Here, we used molecular, electrophysiological and behavioral methods to examine the effects of antisense oligodeoxynucleotide (AS ODN) targeting NaV1.8 and NaV1.9 on inflammatory pain. Following complete Freund's adjuvant (CFA) inflammation treatment, NaV1.8 and NaV1.9 in rat dorsal root ganglion (DRG) up-regulated mRNA and protein expressions and increased sodium current densities. Immunohistochemical data demonstrated that NaV1.8 mainly localized in medium and small-sized DRG neurons, whereas NaV1.9 only expressed in small-sized DRG neurons. Intrathecal (i.t.) delivery of AS ODN was used to down-regulate NaV1.8 or NaV1.9 expressions confirmed by immunohistochemistry and western blot. Unexpectedly, behavioral tests showed that only NaV1.8 AS ODN, but not NaV1.9 AS ODN could reverse CFA-induced heat and mechanical hypersensitivity. Our data indicated that TTX-R sodium channels NaV1.8 and NaV1.9 in primary sensory neurons played distinct roles in CFA-induced inflammatory pain and suggested that antisense oligodeoxynucleotide-mediated blocking of key pain modulator might point toward a potential treatment strategy against certain types of inflammatory pain.
doi:10.1371/journal.pone.0019865
PMCID: PMC3091880  PMID: 21572961
6.  RET Signaling is Required for Survival and Normal Function of Non-Peptidergic Nociceptors 
Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA and half express the GDNF Family Ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors has been extensively studied and NGF/TrkA signaling is a well established mediator of pain. The GFLs are analgesic in models of neuropathic pain emphasizing the importance of understanding the physiological function of GFL/Ret signaling in nociceptors. However, perinatal lethality of Ret-null mice has precluded the study of the physiological role of GFL/Ret signaling in the survival, maintenance and function of nociceptors in viable mice. We deleted Ret exclusively in nociceptors by crossing nociceptor-specific Nav1.8 Cre and Ret conditional mice to produce Ret-Nav1.8 conditional knock out (CKO) mice. Loss of Ret exclusively in nociceptors results in a reduction in nociceptor number and size indicating Ret signaling is important for the survival and trophic support of these cells. Ret-Nav1.8 CKO mice exhibit reduced epidermal innervation, but normal central projections. In addition, Ret-Nav1.8 CKO mice have increased sensitivity to cold and increased formalin-induced pain, demonstrating that Ret signaling modulates the function of nociceptors in vivo. Enhanced inflammation-induced pain may be mediated by decreased Prostatic Acid Phosphatase (PAP) as PAP levels are markedly reduced in Ret-Nav1.8 CKO mice. The results of this study identify the physiological role of endogenous Ret signaling in the survival and function of nociceptors.
doi:10.1523/JNEUROSCI.5930-09.2010
PMCID: PMC2850282  PMID: 20237269
Ret; neurotrophic factor; GDNF; pain; inflammation; nociceptor
7.  Pain without Nociceptors? Nav1.7-Independent Pain Mechanisms 
Cell Reports  2014;6(2):301-312.
Summary
Nav1.7, a peripheral neuron voltage-gated sodium channel, is essential for pain and olfaction in mice and humans. We examined the role of Nav1.7 as well as Nav1.3, Nav1.8, and Nav1.9 in different mouse models of chronic pain. Constriction-injury-dependent neuropathic pain is abolished when Nav1.7 is deleted in sensory neurons, unlike nerve-transection-related pain, which requires the deletion of Nav1.7 in sensory and sympathetic neurons for pain relief. Sympathetic sprouting that develops in parallel with nerve-transection pain depends on the presence of Nav1.7 in sympathetic neurons. Mechanical and cold allodynia required distinct sets of neurons and different repertoires of sodium channels depending on the nerve injury model. Surprisingly, pain induced by the chemotherapeutic agent oxaliplatin and cancer-induced bone pain do not require the presence of Nav1.7 sodium channels or Nav1.8-positive nociceptors. Thus, similar pain phenotypes arise through distinct cellular and molecular mechanisms. Therefore, rational analgesic drug therapy requires patient stratification in terms of mechanisms and not just phenotype.
Graphical Abstract
Highlights
•Phenotypically identical pain models have different underlying molecular mechanisms•Nav1.7 expression is required for sympathetic sprouting after neuronal damage•Oxaliplatin and cancer-induced bone pain are both Nav1.7-independent•Deleting Nav1.7 in adult mice reverses nerve damage-induced neuropathic pain
Wood and colleagues describe two pain syndromes that occur in the absence of Nav1.7, a sodium channel considered to be essential for pain perception and olfaction in humans. They provide evidence that pain phenotypes such as cold and mechanical allodynia can arise through distinct cell and molecular mechanisms after nerve injury in mouse peripheral sensory neurons. The existence of redundant mechanistically distinct peripheral pain mechanisms may help to explain recent difficulties with the development of new analgesic drugs.
doi:10.1016/j.celrep.2013.12.033
PMCID: PMC3969273  PMID: 24440715
8.  CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons 
Background
Inflammation or nerve injury-induced upregulation and release of chemokine CC chemokine ligand 2 (CCL2) within the dorsal root ganglion (DRG) is believed to enhance the activity of DRG nociceptive neurons and cause hyperalgesia. Transient receptor potential vanilloid receptor 1 (TRPV1) and tetrodotoxin (TTX)-resistant Nav1.8 sodium channels play an essential role in regulating the excitability and pain transmission of DRG nociceptive neurons. We therefore tested the hypothesis that CCL2 causes peripheral sensitization of nociceptive DRG neurons by upregulating the function and expression of TRPV1 and Nav1.8 channels.
Methods
DRG neuronal culture was prepared from 3-week-old Sprague–Dawley rats and incubated with various concentrations of CCL2 for 24 to 36 hours. Whole-cell voltage-clamp recordings were performed to record TRPV1 agonist capsaicin-evoked inward currents or TTX-insensitive Na+ currents from control or CCL2-treated small DRG sensory neurons. The CCL2 effect on the mRNA expression of TRPV1 or Nav1.8 was measured by real-time quantitative RT-PCR assay.
Results
Pretreatment of CCL2 for 24 to 36 hours dose-dependently (EC50 value = 0.6 ± 0.05 nM) increased the density of capsaicin-induced currents in small putative DRG nociceptive neurons. TRPV1 mRNA expression was greatly upregulated in DRG neurons preincubated with 5 nM CCL2. Pretreating small DRG sensory neurons with CCL2 also increased the density of TTX-resistant Na+ currents with a concentration-dependent manner (EC50 value = 0.7 ± 0.06 nM). The Nav1.8 mRNA level was significantly increased in DRG neurons pretreated with CCL2. In contrast, CCL2 preincubation failed to affect the mRNA level of TTX-resistant Nav1.9. In the presence of the specific phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 or Akt inhibitor IV, CCL2 pretreatment failed to increase the current density of capsaicin-evoked inward currents or TTX-insensitive Na+ currents and the mRNA level of TRPV1 or Nav1.8.
Conclusions
Our results showed that CCL2 increased the function and mRNA level of TRPV1 channels and Nav1.8 sodium channels in small DRG sensory neurons via activating the PI3K/Akt signaling pathway. These findings suggest that following tissue inflammation or peripheral nerve injury, upregulation and release of CCL2 within the DRG could facilitate pain transmission mediated by nociceptive DRG neurons and could induce hyperalgesia by upregulating the expression and function of TRPV1 and Nav1.8 channels in DRG nociceptive neurons.
doi:10.1186/1742-2094-9-189
PMCID: PMC3458897  PMID: 22870919
CC chemokine ligand 2; Dorsal root ganglion neurons; Transient receptor potential vanilloid receptor 1; Tetrodotoxin-resistant Nav1.8 sodium channel
9.  Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers 
Molecular Pain  2014;10:19.
Background
Dysregulation of voltage-gated sodium channels (Navs) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Navs under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Navs mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments.
Results
A strong downregulation was observed for every Navs isoform expressed except for Nav1.2; even Nav1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Navs were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Navs isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG.
Conclusions
The complex regulation of Navs, together with the anatomical rostral shift of the DRG harboring injured fibers in C57BL/6 J mice, emphasize that caution is necessary and preliminary anatomical experiments should be carried out for gene and protein expression studies after SNI in mouse strains.
doi:10.1186/1744-8069-10-19
PMCID: PMC4007621  PMID: 24618114
Activating transcription factor 3 (ATF3); Dorsal root ganglia (DRG); Nerve injury; Neuropathic pain; Quantitative real time polymerase chain reaction (qRT-PCR); Sciatic nerve; Spared nerve injury (SNI); Spinal nerve ligation (SNL); Voltage-gated sodium channels (Navs)
10.  Correlation of the electrophysiological profiles and sodium channel transcripts of individual rat dorsal root ganglia neurons 
Voltage gated sodium channels (Nav channels) play an important role in nociceptive transmission. They are intimately tied to the genesis and transmission of neuronal firing. Five different isoforms (Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) have been linked to nociceptive responses. A change in the biophysical properties of these channels or in their expression levels occurs in different pathological pain states. However, the precise involvement of the isoforms in the genesis and transmission of nociceptive responses is unknown. The aim of the present study was to investigate the synergy between the different populations of Nav channels that give individual neurons a unique electrophysical profile. We used the patch-clamp technique in the whole-cell configuration to record Nav currents and action potentials from acutely dissociated small diameter DRG neurons (<30 μm) from adult rats. We also performed single cell qPCR on the same neurons. Our results revealed that there is a strong correlation between Nav currents and mRNA transcripts in individual neurons. A cluster analysis showed that subgroups formed by Nav channel transcripts by mRNA quantification have different biophysical properties. In addition, the firing frequency of the neurons was not affected by the relative populations of Nav channel. The synergy between populations of Nav channel in individual small diameter DRG neurons gives each neuron a unique electrophysiological profile. The Nav channel remodeling that occurs in different pathological pain states may be responsible for the sensitization of the neurons.
doi:10.3389/fncel.2014.00285
PMCID: PMC4168718  PMID: 25285069
voltage-gated sodium channel; neuronal excitability; pain; biophysical properties; dorsal root ganglia neurons
11.  Reduced expression and activation of voltage-gated sodium channels contributes to blunted baroreflex sensitivity in heart failure rats 
Journal of neuroscience research  2010;88(15):3337-3349.
Voltage-gated sodium (Nav) channels are responsible for initiation and propagation of action potential in the neurons. To explore the mechanisms for chronic heart failure (CHF)-induced baroreflex dysfunction, we measured the expression and current density of Nav channel subunits (Nav1.7, Nav1.8, and Nav1.9) in the aortic baroreceptor neurons and investigated the role of Nav channels on aortic baroreceptor neuron excitability and baroreflex sensitivity in sham and CHF rats. CHF was induced by left coronary artery ligation. The development of CHF (6–8 weeks after the coronary ligation) was confirmed by hemodynamic and morphological characteristics. Immunofluorescent data indicated that Nav1.7 was expressed in A-type (myelinated) and C-type (unmyelinated) nodose neurons but Nav1.8 and Nav1.9 were expressed only in C-type nodose neurons. Real-time RT-PCR and western blot data showed that CHF reduced mRNA and protein expression levels of Nav channels in nodose neurons. In addition, using the whole cell patch-clamp technique, we found that Nav current density and cell excitability of the aortic baroreceptor neurons were lower in CHF rats than that in sham rats. Aortic baroreflex sensitivity was blunted in anesthetized CHF rats, compared with that in sham rats. Furthermore, Nav channel activator (rATX II, 100 nM) significantly enhanced Nav current density and cell excitability of aortic baroreceptor neurons and improved aortic baroreflex sensitivity in CHF rats. These results suggest that reduced expression and activation of the Nav channels is involved in the attenuation of baroreceptor neuron excitability, which subsequently contributes to the impairment of baroreflex in CHF state.
doi:10.1002/jnr.22483
PMCID: PMC2953570  PMID: 20857502
Aortic baroreceptor neuron; Baroreflex; Heart failure; Sodium channel
12.  Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain 
The Journal of Clinical Investigation  2013;123(7):3002-3013.
Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Navs remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Navs, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury–induced neuropathic pain was used, and an Nav1.7-specific inhibitor, ProTxII, allowed the isolation of Nav1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Nav1.7 and Nav1.8 currents. The redistribution of Nav1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L–/–). SNS-Nedd4L–/– mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Nav1.7 and Nav1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Navs and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.
doi:10.1172/JCI68996
PMCID: PMC3696561  PMID: 23778145
13.  Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation 
Background
Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation.
Methods
Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats.
Results
Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain.
Conclusions
Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
doi:10.1186/1742-2094-11-45
PMCID: PMC4007624  PMID: 24606981
Aβ-fibers; Allodynia; Complete Freund’s adjuvant; Electrophysiology; Sodium channel blocker
14.  NOVEL mRNA ISOFORMS OF THE SODIUM CHANNELS Nav1.2, Nav1.3 AND Nav1.7 ENCODE PREDICTED TWO-DOMAIN, TRUNCATED PROTEINS 
Neuroscience  2008;155(3):797-808.
The expression of voltage-gated sodium channels is regulated at multiple levels, and in this study we addressed the potential for alternative splicing of the Nav1.2, Nav1.3, Nav1.6 and Nav1.7 mRNAs. We isolated novel mRNA isoforms of Nav1.2 and Nav1.3 from adult mouse and rat dorsal root ganglia (DRG), Nav1.3 and Nav1.7 from adult mouse brain, and Nav1.7 from neonatal rat brain. These alternatively spliced isoforms introduce an additional exon (Nav1.2 exon 17A and topologically equivalent Nav1.7 exon 16A) or exon pair (Nav1.3 exons 17A and 17B) that contain an in-frame stop codon and result in predicted two-domain, truncated proteins. The mouse and rat orthologous exon sequences are highly conserved (94-100% identities), as are the paralogous Nav1.2 and Nav1.3 exons (93% identity in mouse) to which the Nav1.7 exon has only 60% identity. Previously, Nav1.3 mRNA has been shown to be upregulated in rat DRG following peripheral nerve injury, unlike the downregulation of all other sodium channel transcripts. Here we show that the expression of Nav1.3 mRNA containing exons 17A and 17B is unchanged in mouse following peripheral nerve injury (axotomy), whereas total Nav1.3 mRNA expression is upregulated by 33% (P=0.003), suggesting differential regulation of the alternatively spliced transcripts. The alternatively spliced rodent exon sequences are highly conserved in both the human and chicken genomes, with 77-89% and 72-76% identities to mouse, respectively. The widespread conservation of these sequences strongly suggests an additional level of regulation in the expression of these channels, that is also tissue-specific.
doi:10.1016/j.neuroscience.2008.04.060
PMCID: PMC2726981  PMID: 18675520
DRG; brain; alternative splicing; Scn2a; Scn3a; Scn9a
15.  Early Painful Diabetic Neuropathy Is Associated with Differential Changes in Tetrodotoxin-sensitive and -resistant Sodium Channels in Dorsal Root Ganglion Neurons in the Rat* 
The Journal of biological chemistry  2004;279(28):29341-29350.
Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4–8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Nav1.3 (TTX-S) and Nav1.7 (TTX-S) and decreases in the expression of Nav1.6 (TTX-S) and Nav1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Nav1.6 and Nav1.8 increased in response to diabetes. In addition, increased tyrosine phosphorylation of Nav1.6 and Nav1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.
doi:10.1074/jbc.M404167200
PMCID: PMC1828032  PMID: 15123645
16.  Single-cell analysis of sodium channel expression in dorsal root ganglion neurons 
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 µm) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 µm) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, Nav1.7) and TTX-R (Nav1.8, Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, Nav1.9) sensory neurons.
doi:10.1016/j.mcn.2010.08.017
PMCID: PMC3005531  PMID: 20816971
Sodium channel; dorsal root ganglia; single-cell RT-PCR; Necl-1; NF200; peripherin
17.  Nav1.9 Channel Contributes to Mechanical and Heat Pain Hypersensitivity Induced by Subacute and Chronic Inflammation 
PLoS ONE  2011;6(8):e23083.
Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.
doi:10.1371/journal.pone.0023083
PMCID: PMC3155549  PMID: 21857998
18.  Varicella-Zoster Viruses Associated with Post-Herpetic Neuralgia Induce Sodium Current Density Increases in the ND7-23 Nav-1.8 Neuroblastoma Cell Line 
PLoS ONE  2013;8(1):e51570.
Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells.
doi:10.1371/journal.pone.0051570
PMCID: PMC3561399  PMID: 23382806
19.  Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice 
Molecular Pain  2006;2:33.
Changes in sodium channel activity and neuronal hyperexcitability contribute to neuropathic pain, a major clinical problem. There is strong evidence that the re-expression of the embryonic voltage-gated sodium channel subunit Nav1.3 underlies neuronal hyperexcitability and neuropathic pain.
Here we show that acute and inflammatory pain behaviour is unchanged in global Nav1.3 mutant mice. Surprisingly, neuropathic pain also developed normally in the Nav1.3 mutant mouse. To rule out any genetic compensation mechanisms that may have masked the phenotype, we investigated neuropathic pain in two conditional Nav1.3 mutant mouse lines. We used Nav1.8-Cre mice to delete Nav1.3 in nociceptors at E14 and NFH-Cre mice to delete Nav1.3 throughout the nervous system postnatally. Again normal levels of neuropathic pain developed after nerve injury in both lines. Furthermore, ectopic discharges from damaged nerves were unaffected by the absence of Nav1.3 in global knock-out mice. Our data demonstrate that Nav1.3 is neither necessary nor sufficient for the development of nerve-injury related pain.
doi:10.1186/1744-8069-2-33
PMCID: PMC1630424  PMID: 17052333
20.  Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability 
Molecular Pain  2010;6:35.
Background
A direct role of sodium channels in pain has recently been confirmed by establishing a monogenic link between SCN9A, the gene which encodes sodium channel Nav1.7, and pain disorders in humans, with gain-of-function mutations causing severe pain syndromes, and loss-of-function mutations causing congenital indifference to pain. Expression of sodium channel Nav1.8 in DRG neurons has also been shown to be essential for the manifestation of mutant Nav1.7-induced neuronal hyperexcitability. These findings have confirmed key roles of Nav1.7 and Nav1.8 in pain and identify these channels as novel targets for pain therapeutic development. Ranolazine preferentially blocks cardiac late sodium currents at concentrations that do not significantly reduce peak sodium current. Ranolazine also blocks wild-type Nav1.7 and Nav1.8 channels in a use-dependent manner. However, ranolazine's effects on gain-of-function mutations of Nav1.7 and on DRG neuron excitability have not been investigated. We used voltage- and current-clamp recordings to evaluate the hypothesis that ranolazine may be effective in regulating Nav1.7-induced DRG neuron hyperexcitability.
Results
We show that ranolazine produces comparable block of peak and ramp currents of wild-type Nav1.7 and mutant Nav1.7 channels linked to Inherited Erythromelalgia and Paroxysmal Extreme Pain Disorder. We also show that ranolazine, at a clinically-relevant concentration, blocks high-frequency firing of DRG neurons expressing wild-type but not mutant channels.
Conclusions
Our data suggest that ranalozine can attenuate hyperexcitability of DRG neurons over-expressing wild-type Nav1.7 channels, as occurs in acquired neuropathic and inflammatory pain, and thus merits further study as an alternative to existing non-selective sodium channel blockers.
doi:10.1186/1744-8069-6-35
PMCID: PMC2898769  PMID: 20529343
21.  Neurotrophic factor changes in the rat thick skin following chronic constriction injury of the sciatic nerve 
Molecular Pain  2012;8:1.
Background
Cutaneous peripheral neuropathies have been associated with changes of the sensory fiber innervation in the dermis and epidermis. These changes are mediated in part by the increase in local expression of trophic factors. Increase in target tissue nerve growth factor has been implicated in the promotion of peptidergic afferent and sympathetic efferent sprouting following nerve injury. The primary source of nerve growth factor is cells found in the target tissue, namely the skin. Recent evidence regarding the release and extracellular maturation of nerve growth factor indicate that it is produced in its precursor form and matured in the extracellular space. It is our hypothesis that the precursor form of nerve growth factor should be detectable in those cell types producing it. To date, limitations in available immunohistochemical tools have restricted efforts in obtaining an accurate distribution of nerve growth factor in the skin of naïve animals and those with neuropathic pain lesions. It is the objective of this study to delineate the distribution of the precursor form of nerve growth factor to those cell types expressing it, as well as to describe its distribution with respect to those nerve fibers responsive to it.
Results
We observed a decrease in peptidergic fiber innervation at 1 week after the application of a chronic constriction injury (CCI) to the sciatic nerve, followed by a recovery, correlating with TrkA protein levels. ProNGF expression in CCI animals was significantly higher than in sham-operated controls from 1-4 weeks post-CCI. ProNGF immunoreactivity was increased in mast cells at 1 week post-CCI and, at later time points, in keratinocytes. P75 expression within the dermis and epidermis was significantly higher in CCI-operated animals than in controls and these changes were localized to neuronal and non-neuronal cell populations using specific markers for each.
Conclusions
We describe proNGF expression by non-neuronal cells over time after nerve injury as well as the association of NGF-responsive fibers to proNGF-expressing target tissues. ProNGF expression increases following nerve injury in those cell types previously suggested to express it.
doi:10.1186/1744-8069-8-1
PMCID: PMC3269365  PMID: 22233577
sciatic nerve; nerve growth factor; chronic constriction injury; mast cell; peptidergic; p75; Schwann cell
22.  Protein kinase B/Akt is required for complete Freund’s adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons 
Voltage-gated sodium channels (Nav) are essential for the generation and conduction of action potentials. Peripheral inflammation increases the expression of Nav1.7 and Nav1.8 in dorsal root ganglion (DRG) neurons, suggesting that they participate in the induction and maintenance of chronic inflammatory pain. However, how Nav1.7 and Nav1.8 are regulated in the DRG under inflammatory pain conditions remains unclear. Using a complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain model and Western blot analysis, we found that phosphorylated Akt (p-Akt) was significantly increased in the ipsilateral L4/5 DRGs of rats on days 3 and 7 after intraplantar CFA injection. Immunohistochemistry showed that the percentage of p-Akt-positive neurons in the DRG was also significantly increased in the ipsilateral L4/5 DRGs at these times. Moreover, CFA injection increased the colocalization of p-Akt with Nav1.7 and Nav1.8 in L4/5 DRG neurons. Pretreatment of rats with an intrathecal injection of Akt inhibitor IV blocked CFA-induced thermal hyperalgesia and CFA-induced increases in Nav1.7 and Nav1.8 in the L4/5 DRGs on day 7 after CFA injection. Our findings suggest that the Akt pathway participates in inflammation-induced upregulation of Nav1.7 and Nav1.8 expression in DRG neurons. This participation might contribute to the maintenance of chronic inflammatory pain.
Perspective
This article presents that inhibition of Akt blocks CFA-induced thermal hyperalgesia and CFA-induced increases in dorsal root ganglion Nav1.7 and Nav1.8. These findings have potential implications for use of Akt inhibitors to prevent and/or treat persistent inflammatory pain.
doi:10.1016/j.jpain.2013.01.778
PMCID: PMC3672264  PMID: 23642408
Nav1.7; Nav1.8; Akt; Dorsal root ganglion; Inflammatory pain
23.  Differing alterations of sodium currents in small dorsal root ganglion neurons after ganglion compression and peripheral nerve injury 
Molecular Pain  2008;4:20.
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.
doi:10.1186/1744-8069-4-20
PMCID: PMC2427019  PMID: 18513405
24.  PKC–NF-κB are involved in CCL2-induced Nav1.8 expression and channel function in dorsal root ganglion neurons 
Bioscience Reports  2014;34(3):e00111.
CCL2 [chemokine (C–C motif) ligand 2] contributes to the inflammation-induced neuropathic pain through activating VGSC (voltage-gated sodium channel)-mediated nerve impulse conduction, but the underlying mechanism is currently unknown. Our study aimed to investigate whether PKC (protein kinase C)–NF-κB (nuclear factor κB) is involved in CCL2-induced regulation of voltage-gated sodium Nav1.8 currents and expression. DRG (dorsal root ganglion) neurons were prepared from adult male Sprague–Dawley rats and incubated with various concentration of CCL2 for 24 h. Whole-cell patch-clamps were performed to record the Nav1.8 currents in response to the induction by CCL2. After being pretreated with 5 and10 nM CCL2 for 16 h, CCR2 [chemokine (C–C motif) receptor 2] and Nav1.8 expression significantly increased and the peak currents of Nav1.8 elevated from the baseline 46.53±4.53 pA/pF to 64.28±3.12 pA/pF following 10 nM CCL2 (P<0.05). Compared with the control, significant change in Nav1.8 current density was observed when the CCR2 inhibitor INCB3344 (10 nM) was applied. Furthermore, inhibition of PKC by AEB071 significantly eliminated CCL2-induced elevated Nav1.8 currents. In vitro PKC kinase assays and autoradiograms suggested that Nav1.8 within DRG neurons was a substrate of PKC and direct phosphorylation of the Nav1.8 channel by PKC regulates its function in these neurons. Moreover, p65 expression was significantly higher in CCL2-induced neurons (P<0.05), and was reversed by treatment with INCB3344 and AEB071. PKC–NF-κB are involved in CCL2-induced elevation of Nav1.8 current density by promoting the phosphorylation of Nav1.8 and its expression.
Cytokine CCL2 is responsible for promoting voltage-gated sodium Nav1.8 current density and expression, which mediates nerve impulse conduction and induces inflammatory nociception. PKC phosphorylates Nav1.8 to increase its current density and PKC–NF-κB are involved in inducing the up-regulation of Nav1.8.
doi:10.1042/BSR20140005
PMCID: PMC4062041  PMID: 24724624
CCL2; CCR2; dorsal root ganglion (DRG); Nav1.8; nociception; PKC; CCL2, chemokine (C–C motif) ligand 2; CCR2, chemokine (C–C motif) receptor 2; DRG, dorsal root ganglion; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NF-κB, nuclear factor κB; PKC, protein kinase C; TEA-Cl, tetraethylammonium-Cl; TRPV1, transient receptor potential vanilloid 1; TTX-R, tetrodotoxin-resistant; VGSC, voltage-gated sodium channel
25.  Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain 
Molecular Pain  2013;9:42.
Background
IL-6 is a typical injury-induced mediator. Together with its receptors, IL-6 contributes to both induction and maintenance of neuropathic pain deriving from changes in activity of primary sensory neurons in dorsal root ganglia (DRG). We used in situ hybridization to provide evidence of IL-6 and IL-6 receptors (IL-6R and gp130) synthesis in DRG along the neuraxis after unilateral chronic constriction injury (CCI) of the sciatic nerve as an experimental model of neuropathic pain.
Results
All rats operated upon to create unilateral CCI displayed mechanical allodynia and thermal hyperalgesia in ipsilateral hind paws. Contralateral hind paws and forepaws of both sides exhibited only temporal and nonsignificant changes of sensitivity. Very low levels of IL-6 and IL-6R mRNAs were detected in naïve DRG. IL-6 mRNA was bilaterally increased not only in DRG neurons but also in satellite glial cells (SGC) activated by unilateral CCI. In addition to IL-6 mRNA, substantial increase of IL-6R mRNA expression occurred in DRG neurons and SGC following CCI, while the level of gp130 mRNA remained similar to that of DRG from naïve rats.
Conclusions
Here we evidence for the first time increased synthesis of IL-6 and IL-6R in remote cervical DRG nonassociated with the nerve injury. Our results suggest that unilateral CCI of the sciatic nerve induced not only bilateral elevation of IL-6 and IL-6R mRNAs in L4–L5 DRG but also their propagation along the neuraxis to remote cervical DRG as a general neuroinflammatory reaction of the nervous system to local nerve injury without correlation with signs of neuropathic pain. Possible functional involvement of IL-6 signaling is discussed.
doi:10.1186/1744-8069-9-42
PMCID: PMC3844395  PMID: 23953943
Cytokines; Contralateral reaction; IL-6 signaling; Neuroinflammation; Neuropathic pain; Unilateral nerve injury

Results 1-25 (988615)