PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (881242)

Clipboard (0)
None

Related Articles

1.  Induction of Apoptosis and Nonsteroidal Antiinflammatory Drug-Activated Gene 1 in Pancreatic Cancer Cells By A Glycyrrhetinic Acid Derivative 
Molecular carcinogenesis  2009;48(8):692-702.
Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic triterpenoid derived from glycyrrhetinic acid, a bioactive phytochemical in licorice, CDODA-Me inhibits growth of Panc1 and Panc28 pancreatic cancer cell lines and activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent transactivation in these cells. CDODA-Me also induced p21 and p27 protein expression and downregulates cyclin D1; however, these responses were receptor-independent. CDODA-Me induced apoptosis in Panc1 and Panc28 cells, and this was accompanied by receptor-independent induction of the proapoptotic proteins early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and activating transcription factor-3 (ATF3). Induction of NAG-1 and Egr-1 by CDODA-Me was dependent on activation of phosphatidylinositol-3-kinase (PI3-K) and/or p42 and p38 mitogen-activated protein kinase (MAPK) pathways but there were differences between Panc28 and Panc1 cells. Induction of NAG-1 in Panc28 cells was p38-MAPK- and PI3-K-dependent but Egr-1-independent, whereas induction in Panc1 cells was associated with activation of p38-MAPK, PI3-K and p42-MAPK and was only partially Egr-1-dependent. This is the first report of the induction of the proapoptotic protein NAG-1 in pancreatic cancer cells.
doi:10.1002/mc.20518
PMCID: PMC2746008  PMID: 19125423
CDODA-Me; pancreatic cancer; apoptosis
2.  Synthesis and Pro-Apoptotic Activity of Novel Glycyrrhetinic Acid Derivatives 
Chembiochem  2011;12(5):784-794.
Triterpenoids are used for medicinal purposes in many countries. Some, such as oleanolic and glycyrrhetinic acids, are known to be anti-inflammatory and anticarcinogenic. However, the biological activities of these naturally occurring molecules against their particular targets are weak, so the synthesis of new synthetic analogues with enhanced potency is needed. By combining modifications to both the A and C rings of 18βH-glycyrrhetinic acid, the novel synthetic derivative methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate was obtained. This derivative displays high antiproliferative activity in cancer cells, including a cell line with a multidrug-resistance phenotype. It causes cell death by inducing the intrinsic caspase-dependent apoptotic pathway.
doi:10.1002/cbic.201000618
PMCID: PMC3085123  PMID: 21328513
antitumor agents; apoptosis; biological activity; glycyrrhetinic acid derivatives; medicinal chemistry
3.  Unifying Mechanisms of Action of the Anticancer Activities of Triterpenoids and Synthetic Analogs 
Triterpenoids such as betulinic acid (BA) and synthetic analogs of oleanolic acid [2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO)] and glycyrrhetinic acid [2-cyano-3,11-dioxo-18β-oleana-1,12-dien-30-oc acid (CDODA)] are potent anticancer agents that exhibit antiproliferative, antiangiogenic, anti-inflammatory and pro-apoptotic activities. Although their effects on multiple pathways have been reported, unifying mechanisms of action have not been reported. Studies in this laboratory have now demonstrated that several triterpenoids including BA and some derivatives, celastrol, methyl ursolatee, β-boswellic acid derivatives, and the synthetic analogs CDDO, CDODA and their esters decreased expression of specificity protein (Sp) transcription factors and several pro-oncogenic Sp-regulated genes in multiple cancer cell lines. The mechanisms of this response are both compound- and cell context-dependent and include activation of both proteasome-dependent and -independent pathways. Triterpenoid-mediated induction of reactive oxygen species (ROS) has now been characterized as an important proteasome-independent pathway for downregulation of Sp transcription factors. ROS decreases expression of microRNA-27a (miR-27a) and miR-20a/miR-17-5p and this results in the induction of the transcriptional “Sp-repressors” ZBTB10 and ZBTB4, respectively, which in turn downregulate Sp and Sp-regulated genes. Triterpenoids also activate or deactive nuclear receptors and G-protein coupled receptors, and these pathways contribute to their antitumorigenic activity and may also play a role in targeting Sp1, Sp3 and Sp4 which are highly overexpressed in multiple cancers and appear to be important for maintaining the cancer phenotype.
PMCID: PMC3532564  PMID: 22583404
Sp transcription factors; downregulation; reactive oxygen species
4.  CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer 
Cancers  2010;2(4):1779-1793.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2) and wild-type K-ras (BxPC3) pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR) signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt) and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR). Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity.
doi:10.3390/cancers2041779
PMCID: PMC3143824  PMID: 21799944
pancreatic cancer; CDDO-Me; apoptosis; Akt/mTOR signaling pathway
5.  CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer 
Cancers  2010;2(4):1779-1793.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2) and wild-type K-ras (BxPC3) pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR) signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt) and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR). Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity.
doi:10.3390/cancers2041779
PMCID: PMC3143824  PMID: 21799944
pancreatic cancer; CDDO-Me; apoptosis; Akt/mTOR signaling pathway
6.  Antitumor Agents 255. Novel Glycyrrhetinic Acid-Dehydrozingerone Conjugates as Cytotoxic Agents 
Bioorganic & medicinal chemistry  2007;15(18):6193-6199.
Esterification of glycyrrhetinic acid (GA) with dehydrozingerone (DZ) resulted in a novel cytotoxic GA-DZ conjugate. Based on this exciting finding, we conjugated eleven different DZ analogs with GA or other triterpenoids, including oleanoic acid (OA) or ursolic acid (UA). In an in vitro anticancer assay using nine different human tumor cell lines, most of the GA-DZ conjugates showed significant potency. Particularly, compounds 5, 29, and 30 showed significant cytotoxic effects against LN-Cap, 1A9, and KB cells with ED50 values of 0.6, 0.8, and 0.9 μM, respectively. Similar conjugates between DZ and OA or UA were inactive suggesting that the GA component is critical for activity. Notably, although GA-DZ conjugates showed potent cytotoxic activity, the individual components (GA and DZ analogs) were inactive. Thus, GA-DZ conjugates are new chemical entities and represent interesting hits for anticancer drug discovery and development.
doi:10.1016/j.bmc.2007.06.027
PMCID: PMC2034305  PMID: 17591444
Glycyrrhetinic acid; Dehydrozingerone; Conjugation; Cytotoxicity
7.  INHIBITION OF PITUITARY TUMOR-TRANSFORMING GENE-1 IN THYROID CANCER CELLS BY DRUGS THAT DECREASE SPECIFICITY PROTEINS 
Molecular carcinogenesis  2011;50(9):655-667.
Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) and the corresponding 2-trifluoromethyl analog (CF3DODA-Me) are derived synthetically from the triterpenoid glycyrrhetinic acid, a major component of licorice. CDODA-Me and CF3DODA-Me inhibited growth of highly invasive ARO, DRO, K-18 and HTh-74 thyroid cancer cells and this was due, in part, to decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 that are overexpressed in these cells. CDODA-Me and CF3DODA-Me also decreased expression of Sp-dependent genes, such as survivin and vascular endothelial growth factor, and induced apoptosis. In addition, pituitary tumor-transforming gene-1 (PTTG-1) protein and mRNA levels were also decreased in thyroid cancer cells treated with CDODA-Me or CF3DODA-Me and this was accompanied by decreased expression of PTTG-1-dependent c-Myc and fibroblast growth factor 2 genes. RNA interference studies against Sp1, Sp3 and Sp4 proteins showed that in thyroid cancer cells, PTTG-1 was an Sp-dependent gene. This study demonstrates for the first time that drugs, such as CDODA-Me and CF3DODA-Me, that decrease Sp protein expression also downregulate PTTG-1 in thyroid cancer cells and therefore have potential for clinical treatment of thyroid cancer and other endocrine neoplasias where PTTG-1 is a major pro-oncogenic factor.
doi:10.1002/mc.20738
PMCID: PMC3128656  PMID: 21268135
PTTG-1; Sp proteins; thyroid cancer; anticancer agents
8.  Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity 
Tetrahedron  2008;64(51):11541-11548.
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid and boswellic acids, by modification of A-ring with a cyano- and enone- functionalities, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid.
doi:10.1016/j.tet.2008.10.035
PMCID: PMC2900779  PMID: 20622928
9.  Oncogenic MicroRNA-27a Is A Target For Anticancer Agent Methyl 2-Cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in Colon Cancer Cells 
Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic derivative of glycyrrhetinic acid, a triterpenoid phytochemical found in licorice extracts. CDODA-Me inhibited growth of RKO and SW480 colon cancer cells and this was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein and mRNA and several Sp-dependent genes including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1 or Flt-1). CDODA-Me also induced apoptosis, arrested RKO and SW480 cells at G2/M, and inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts. CDODA-Me decreased expression of microRNA-27a (miR-27a), and this was accompanied by increased expression of two miR-27a-regulated mRNAs, namely ZBTB10 (an Sp repressor) and Myt-1 which catalyzes phosphorylation of cdc2 to inhibit progression of cells through G2/M. Both CDODA-Me and antisense miR-27a induced comparable responses in RKO and SW480 cells, suggesting that the potent anticarcinogenic activity of CDODA-Me is due to repression of oncogenic miR-27a.
doi:10.1002/ijc.24530
PMCID: PMC2766353  PMID: 19582879
CDODA-Me; anticarcinogenicity; miR-27a; colon cancer; cell cycle
10.  Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum 
FEBS Open Bio  2014;4:229-239.
Graphical abstract
Highlights
•Ursolic acid inhibits cell-surface expression of ICAM-1.•Ursolic acid induces accumulation of high-mannose-type ICAM-1 in ER.•Ursolic acid induces morphological changes of Golgi apparatus.•Ursolic acid inhibits intracellular trafficking of proteins.
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum.
doi:10.1016/j.fob.2014.02.009
PMCID: PMC3958921  PMID: 24649404
BSA, bovine serum albumin; Endo H, endoglycosidase H; ER, endoplasmic reticulum; HRP, horseradish peroxidase; HUVEC, human umbilical vein endothelial cells; ICAM-1, intercellular adhesion molecule-1; IκB, inhibitor of nuclear factor κB; IL-1, interleukin-1; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NF-κB, nuclear factor κB; PBS, phosphate-buffered saline; PNGase F, peptide: N-glycosidase F; Glycosylation; Golgi apparatus; Intercellular adhesion molecule-1; Intracellular trafficking; Ursolic acid
11.  Evaluation of antimicrobial activity of extracts of Tibouchina candolleana (melastomataceae), isolated compounds and semi-synthetic derivatives against endodontic bacteria 
Brazilian Journal of Microbiology  2012;43(2):793-799.
This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.
doi:10.1590/S1517-83822012000200045
PMCID: PMC3768843  PMID: 24031892
Tibouchina candolleana; ursolic acid; antimicrobial activity
12.  (3β,18β,20β)-N-Eth­oxy­carbonyl­methyl-3-nitrato-11-oxoolean-12-ene-29-carboxamide methanol monosolvate 
The title compound, C34H52N2O7·CH4O, is the methanol solvate of a difunctionalized derivative of the therapeutic agent 18β-glycyrrhetinic acid, a penta­cyclic triterpene. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring in a half-chair conformation. This moiety is substituted by a nitrate ester group and an O-ethyl­glycine group. In the crystal, the nonsolvent mol­ecules are packed parallel to (010) in a herringbone fashion with the nitrato, ethyl­glycine and methanol-O atom being proximate. The methanol solvent mol­ecule is anchored via a donated O—H⋯Oac­yl and an accepted N—H⋯O hydrogen bond, giving rise to infinite zigzag chains of hydrogen bonds parallel to [100]. Two weak intermolecular C—H⋯O interactions to the methanol and to an acyl oxygen establish links along [100] and [010], respectively.
doi:10.1107/S1600536812012561
PMCID: PMC3344161  PMID: 22606164
13.  Inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cells is ROS-dependent 
Oleanolic acid-derived synthetic triterpenoids are broad spectrum antiproliferative and antitumorigenic agents. In this study, we investigated the role of reactive oxygen species (ROS) in induction of apoptosis and inhibition of prosurvival Akt, NF-κB and mTOR signaling proteins by methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic cancer cells. Micromolar concentrations of CDDO-Me inhibited proliferation and induced apoptosis in MiaPaCa-2 and Panc-1 pancreatic cancer cells. Treatment with CDDO-Me caused the generation of hydrogen peroxide and superoxide anion and pretreatment of cells with NADPH oxidase inhibitor diphylene iodonium (DPI) or respiratory chain complex 1 inhibitor rotenone prevented ROS generation. Pretreatment with N-acetylcysteine (NAC) or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the antiproliferative effects of CDDO-Me. Likewise, NAC prevented the induction of apoptosis (annexin V-FITC binding and cleavage of PARP-1 and procaspases-3,-8 and -9) and reversed the loss of mitochondrial membrane potential and release of cytochrome c from mitochondria by CDDO-Me. CDDO-Me down-regulated p-Akt, p-mTOR and NF-κB (p65) but increased the activation of Erk1/2 and NAC blocked the modulation of these cell signaling proteins by CDDO-Me. Thus, the results of this study indicate that the antiproliferative and apoptosis inducing effects of CDDO-Me are mediated through a ROS-dependent mechanism and the role of ROS in modulation of signaling proteins by CDDO-Me warrants further investigation.
PMCID: PMC3846287  PMID: 22946344
Pancreatic cancer; CDDO-Me; apoptosis; ROS; Akt; NF-κB; mTOR; Erk1/2
14.  Effects of Ursolic Acid and its Analogues on Soybean 15-Lipoxygenase Activity and the Proliferation Rate of A human Gastric Tumour Cell Line 
Mediators of Inflammation  1994;3(3):181-184.
The authors have previously isolated and purified ursolic acid from heather flowers (Calluna vulgarts). This terpene was found to inhibit HL-60 leukaemic cell proliferation and arachidonic acid oxidative metabolism in various cell species. The effects of ursolic acid and its analogues on soybean 15-lipoxygenase activity and on the proliferation of a human gastric tumour cell line (HGT), have been assessed. These triterpenes inhibited soybean 15-lipoxygenase at its optimal activity (pH 9). The proliferation ofHGT was decreased in a dose-dependent manner. At 20 μM the rank order is: ursolic acid > uvaol > oleanolic acid > methyl ursolate. The carboxylic group at the C28 position of ursolic acid appears to be implicated in the inhibition of both lipoxygenase activity and cell proliferation. Thus methylation of this group decreases these two inhibitory properties. Oleanolic acid, which differs by the position of one methyl group (C20 instead of C19) is less inhibitory than ursolic acid. The lipophilicity of the terpene is also implicated since uvaol appears to be more inhibitory than methyl ursolate.
doi:10.1155/S0962935194000244
PMCID: PMC2367043  PMID: 18472939
15.  Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway*  
Objective: To investigate the effects of ursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory effects of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 μmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P<0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P<0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer.
doi:10.1631/jzus.B0920149
PMCID: PMC2738836  PMID: 19735099
Colon cancer; Ursolic acid; Epidermal growth factor receptor (EGFR); Mitogen-activated protein kinase (MAPK); Apoptosis
16.  STRUCTURE-DEPENDENT ACTIVATION OF NR4A2 (Nurr1) BY 1,1-BIS(3′-INDOLYL)-1-(AROMATIC)METHANE ANALOGS IN PANCREATIC CANCER CELLS 
Biochemical pharmacology  2012;83(10):1445-1455.
NR4A2 (Nurr 1) is an orphan nuclear receptor with no known endogenous ligands and is highly expressed in many cancer cell lines including Panc1 and Panc28 pancreatic cancer cells. Structure-dependent activation of NR4A2 by a series of 1,1-bis(3′-indolyl)-1-(aromatic)methane (C-DIM) analogs was determined in pancreatic cancer cells transfected with yeast GAL4-Nurr1 chimeras and a UASx5-luc reporter gene or constructs containing response elements that bind NR4A2. Among 23 different structural analogs, phenyl groups containing p-substituted trifluoromethyl, t-butyl, cyano, bromo, iodo and trifluoromethoxy groups were the most active compounds in transactivation assay. The p-bromophenyl analog (DIM-C-pPhBr) was used as a model for structure-activity studies among a series of ortho-, meta- and para-bromophenyl isomers and the corresponding indole 2- and N-methyl analogs. Results show that NR4A2 activation was maximal with the p-bromophenyl analog and methylation of the indole NH group abrogated activity. Moreover, using GAL4-Nurr1 (full length) or GAL-Nurr1-A/B and GAL4-Nurr1-(C-F) chimeras expressing N- and C-terminal domains of Nurr1, respectively, DIM-C-pPhBr activated all three constructs and these responses were differentially affected by kinase inhibitors. DIM-C-pPhBr also modulated expression of several Nurr1-regulated genes in pancreatic cancer cells including vasoactive intestinal peptide (VIP), and the immunohistochemical and western blot analyses indicated that DIM-C-pPhBr activates nuclear NR4A2.
doi:10.1016/j.bcp.2012.02.021
PMCID: PMC3408083  PMID: 22405837
DIM analogs; NR4A2/Nurr1; structure-activity
17.  Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease 
PLoS ONE  2012;7(6):e39332.
Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.
doi:10.1371/journal.pone.0039332
PMCID: PMC3379974  PMID: 22745735
18.  Synthesis and Proteasome Inhibition of Glycyrrhetinic Acid Derivatives 
Bioorganic & medicinal chemistry  2008;16(14):6696-6701.
This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3 µM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC50 of 0.22 µM, which was approximately 100-fold more potent than glycyrrhetinic acid.
doi:10.1016/j.bmc.2008.05.078
PMCID: PMC2579312  PMID: 18562200
Glycyrrhetinic acid; proteasome inhibitor; triterpene
19.  Propargylaminyl 3α-hy­droxy-11-oxo-18β-olean-12-en-29-oate 
The title compound, C33H49NO3, is the propargyl­amide of 18β-glycyrrhetinic acid, a penta­cyclic triterpenoid of inter­est as a therapeutic agent. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring C in a half-chair conformation. In the crystal, the terminal N-propargylcarboxamide group has remarkable structural effects on weak hydrogen-bond-like inter­actions. Particularly noteworthy are an inter­molecular O—H⋯π inter­action accepted side-on by the terminal alkyne group [O⋯C = 3.097 (2) and 3.356 (2) Å] and a short inter­molecular C—H⋯O inter­action [C⋯O = 3.115 (2) Å] donated by the alkyne C—H group. An N—H⋯O [N⋯O = 3.251 (2) Å] and a Calkyl—H⋯O [C⋯O = 3.254 (2) Å] interaction complement the crystal structure.
doi:10.1107/S1600536811043534
PMCID: PMC3247445  PMID: 22220063
20.  Inhibition of Telomerase Activity by Oleanane Triterpenoid CDDO-Me in Pancreatic Cancer Cells is ROS-Dependent 
Molecules (Basel, Switzerland)  2013;18(3):3250-3265.
Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a synthetic derivative of oleanolic acid, a triterpene, with apoptosis-inducing activity in a wide range of cancer cells. Induction of apoptosis by CDDO-Me is associated with the generation of reactive oxygen species (ROS) and inhibition of telomerase activity. In the present study, we investigated the role of ROS in inhibition of telomerase by CDDO-me. Treatment of MiaPaCa-2 and Panc-1 pancreatic cancer cell lines with CDDO-Me induced the production of hydrogen peroxide and superoxide anions and inhibited the telomerase activity. Pretreatment of cells with N-acetylcycsteine, a general purpose antioxidant or overexpression of glutathione peroxidase (GPx) or superoxide dismutase-1 (SOD-1) blocked the telomerase inhibitory activity of CDDO-Me. Furthermore, blocking ROS generation also prevented the inhibition of hTERT gene expression, hTERT protein production and expression of a number of hTERT–regulatory proteins by CDDO-Me (e.g., c-Myc, Sp1, NF-κB and p-Akt). Data also showed that Akt plays an important role in the activation of telomerase activity. Together, these data suggest that inhibition of telomerase activity by CDDO-Me is mediated through a ROS-dependent mechanism; however, more work is needed to fully understand the role of ROS in down-regulation of hTERT gene and hTERT-regulatory proteins by CDDO-Me.
doi:10.3390/molecules18033250
PMCID: PMC3632053  PMID: 23486104
pancreatic cancer; CDDO-Me; ROS; hTERT; telomerase activity
21.  Chemical constituents and biological studies of Origanum vulgare Linn. 
Pharmacognosy Research  2011;3(2):143-145.
Bioassay-guided isolation of methanolic extract of the leaves of Origanum vulgare Linn., yielded two protocatechuic acid ester derivatives, origanol A (1) and origanol B (2) along with ursolic acid (3), oleanolic acid (4), β-sitosterol (5), and triacontanol (6). Structures of the compound were established based on physical and spectral data (UV, IR, 1H and 13C NMR and mass). Origanol A (1) showed significant mushroom tyrosinase inhibition activity.
doi:10.4103/0974-8490.81964
PMCID: PMC3129025  PMID: 21772760
Origanum vulgare Linn.; origanol A and B; triterpene acids; tyrosinase inhibition; β-sitosterol
22.  Anti-Proliferative Activities and Apoptosis Induction by Triterpenes Derived from Eriobotrya japonica in Human Leukemia Cell Lines 
Eriobotrya japonica leaf is a traditional herbal medicine that contains numerous triterpenes, which have various pharmacological properties. In this study, we investigated the anti-proliferative activity of four triterpenes derived from E. japonica, including corosolic acid (CA), ursolic acid (UA), maslinic acid (MA) and oleanolic acid (OA), in human leukemia cell lines. CA showed the strongest anti-proliferative activity in all of the leukemia cell lines tested, but not in normal human skin fibroblast cell lines. To determine the mechanism underlying the anti-proliferative effect of CA, we examined the effect of CA on molecular events known as apoptosis induction. CA induced chromatin condensation, DNA fragmentation, sub-G1 phase DNA, activation of caspase-3, -8 and -9 and the cleavage of PARP in HL-60. CA also activated Bid and Bax, leading to the loss of mitochondrial membrane potential (Δψm) and cytochrome c release into the cytosol, whereas Bcl-2 and Bcl-xL were unaffected by CA. These results suggest that CA has an anti-proliferative effect on leukemia cells via the induction of apoptosis mediated by mitochondrial dysfunction and caspase activation. CA may be a potential chemotherapeutic agent for the treatment of human leukemia.
doi:10.3390/ijms14024106
PMCID: PMC3588088  PMID: 23429195
corosolic acid; Eriobotrya japonica; leukemia cells; apoptosis; anti-proliferation; caspase
23.  Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait 
Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials.
doi:10.3390/ijms12085319
PMCID: PMC3179168  PMID: 21954361
microwave; extraction; oleanolic acid; ursolic acid; Ligustrum lucidum
24.  Synthetic Oleanane Triterpenoid, CDDO-Me, Induces Apoptosis in Ovarian Cancer Cells by Inhibiting Prosurvival AKT/NF-κB/mTOR Signaling 
Anticancer research  2011;31(11):3673-3681.
Synthetic oleanane triterpenoids are novel agents which have shown strong antitumorigenic activity against a wide range of cancer types in vitro. The objective of the present study was to determine the anticancer activity of methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oate (CDDO-Me) derived from CDDO, a synthetic analog of oleanolic acid, and its mechanism of action in killing of human ovarian cancer cells. CDDO-Me strongly inhibited the growth of ovarian cancer cells by inducing apoptosis characterized by increased annexin V binding, cleavage of poly (ADP-ribose) polymerase (PARP-1) and procaspases-3, -8 and -9. In addition, CDDO-Me induced mitochondrial depolarization. Western blot analysis showed inhibition of prosurvival (antiapoptotic) phospho-AKT (p-AKT), nuclear factor kappa B (NF-κB) (p65) and phospho- mammalian target of rapamycin (p-mTOR) signaling proteins in cells treated with CDDO-Me. Abrogation of AKT which regulates both NF-κB and mTOR increased the sensitivity of tumor cells to CDDO-Me. Thus, these data showing strong growth-inhibitory and apoptosis-inducing activity of CDDO-Me for ovarian cancer cells through the inhibition of AKT/NF-κB/mTOR signaling pathway provide basis for evaluation of CDDO-Me for ovarian cancer.
PMCID: PMC3711099  PMID: 22110186
Ovarian cancer; methyl-2-cyano-3; 12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me); apoptosis; AKT; NF-κB; mTOR
25.  Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters 
Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.
doi:10.1093/ecam/nep007
PMCID: PMC3139965  PMID: 19228775

Results 1-25 (881242)