PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (508406)

Clipboard (0)
None

Related Articles

1.  Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping 
BMC Genomics  2011;12:396.
Background
Cucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.
Results
Using two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F2- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.
Conclusions
Comparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of Cucumis species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.
doi:10.1186/1471-2164-12-396
PMCID: PMC3199783  PMID: 21816110
Cucumber; Melon; Cucumis; Microsatellite; Comparative mapping; Chromosome evolution
2.  Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy 
BMC Plant Biology  2010;10:246.
Background
Cucumis melo (melon) belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has a high intra-specific genetic variation, morphologic diversity and a small genome size (454 Mb), which make it suitable for a great variety of molecular and genetic studies. A number of genetic and genomic resources have already been developed, such as several genetic maps, BAC genomic libraries, a BAC-based physical map and EST collections. Sequence information would be invaluable to complete the picture of the melon genomic landscape, furthering our understanding of this species' evolution from its relatives and providing an important genetic tool. However, to this day there is little sequence data available, only a few melon genes and genomic regions are deposited in public databases. The development of massively parallel sequencing methods allows envisaging new strategies to obtain long fragments of genomic sequence at higher speed and lower cost than previous Sanger-based methods.
Results
In order to gain insight into the structure of a significant portion of the melon genome we set out to perform massive sequencing of pools of BAC clones. For this, a set of 57 BAC clones from a double haploid line was sequenced in two pools with the 454 system using both shotgun and paired-end approaches. The final assembly consists of an estimated 95% of the actual size of the melon BAC clones, with most likely complete sequences for 50 of the BACs, and a total sequence coverage of 39x. The accuracy of the assembly was assessed by comparing the previously available Sanger sequence of one of the BACs against its 454 sequence, and the polymorphisms found involved only 1.7 differences every 10,000 bp that were localized in 15 homopolymeric regions and two dinucleotide tandem repeats. Overall, the study provides approximately 6.7 Mb or 1.5% of the melon genome. The analysis of this new data has allowed us to gain further insight into characteristics of the melon genome such as gene density, average protein length, or microsatellite and transposon content. The annotation of the BAC sequences revealed a high degree of collinearity and protein sequence identity between melon and its close relative Cucumis sativus (cucumber). Transposon content analysis of the syntenic regions suggests that transposition activity after the split of both cucurbit species has been low in cucumber but very high in melon.
Conclusions
The results presented here show that the strategy followed, which combines shotgun and BAC-end sequencing together with anchored marker information, is an excellent method for sequencing specific genomic regions, especially from relatively compact genomes such as that of melon. However, in agreement with other results, this map-based, BAC approach is confirmed to be an expensive way of sequencing a whole plant genome. Our results also provide a partial description of the melon genome's structure. Namely, our analysis shows that the melon genome is highly collinear with the smaller one of cucumber, the size difference being mainly due to the expansion of intergenic regions and proliferation of transposable elements.
doi:10.1186/1471-2229-10-246
PMCID: PMC3095328  PMID: 21073723
3.  Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types 
BMC Genomics  2010;11:384.
Background
Cucumber, Cucumis sativus L., is an economically and nutritionally important crop of the Cucurbitaceae family and has long served as a primary model system for sex determination studies. Recently, the sequencing of its whole genome has been completed. However, transcriptome information of this species is still scarce, with a total of around 8,000 Expressed Sequence Tag (EST) and mRNA sequences currently available in GenBank. In order to gain more insights into molecular mechanisms of plant sex determination and provide the community a functional genomics resource that will facilitate cucurbit research and breeding, we performed transcriptome sequencing of cucumber flower buds of two near-isogenic lines, WI1983G, a gynoecious plant which bears only pistillate flowers, and WI1983H, a hermaphroditic plant which bears only bisexual flowers.
Result
Using Roche-454 massive parallel pyrosequencing technology, we generated a total of 353,941 high quality EST sequences with an average length of 175bp, among which 188,255 were from gynoecious flowers and 165,686 from hermaphroditic flowers. These EST sequences, together with ~5,600 high quality cucumber EST and mRNA sequences available in GenBank, were clustered and assembled into 81,401 unigenes, of which 28,452 were contigs and 52,949 were singletons. The unigenes and ESTs were further mapped to the cucumber genome and more than 500 alternative splicing events were identified in 443 cucumber genes. The unigenes were further functionally annotated by comparing their sequences to different protein and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 343 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified ~200 differentially expressed genes between flowers of WI1983G and WI1983H and provided novel insights into molecular mechanisms of plant sex determination process. Furthermore, a set of SSR motifs and high confidence SNPs between WI1983G and WI1983H were identified from the ESTs, which provided the material basis for future genetic linkage and QTL analysis.
Conclusion
A large set of EST sequences were generated from cucumber flower buds of two different sex types. Differentially expressed genes between these two different sex-type flowers, as well as putative SSR and SNP markers, were identified. These EST sequences provide valuable information to further understand molecular mechanisms of plant sex determination process and forms a rich resource for future functional genomics analysis, marker development and cucumber breeding.
doi:10.1186/1471-2164-11-384
PMCID: PMC2897810  PMID: 20565788
4.  Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.) 
BMC Genomics  2010;11:569.
Background
Cucumber, Cucumis sativus L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber.
Results
A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar, grapevine and rice), and was richest in AT dinucleotides. Using an electronic PCR strategy, we investigated the polymorphism between 9930 and Gy14 at 1,006 SSR loci, and found unexpectedly high degree of polymorphism (48.3%) between the two genotypes. The level of polymorphism seems to be positively associated with the number of repeat units in the microsatellite. The in silico PCR results were validated empirically in 660 of the 1,006 SSR loci. In addition, primer sequences for more than 83,000 newly-discovered cucumber microsatellites, and their exact positions in the Gy14 genome assembly were made publicly available.
Conclusions
The cucumber genome is rich in microsatellites; AT and AAG are the most abundant repeat motifs in genomic and EST sequences of cucumber, respectively. Considering all the species investigated, some commonalities were noted, especially within the monocot and dicot groups, although the distribution of motifs and the frequency of certain repeats were characteristic of the species examined. The large number of SSR markers developed from this study should be a significant contribution to the cucurbit research community.
doi:10.1186/1471-2164-11-569
PMCID: PMC3091718  PMID: 20950470
5.  Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon 
BMC Genomics  2011;12:252.
Background
Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited.
Result
We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences.
Conclusion
The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns.
doi:10.1186/1471-2164-12-252
PMCID: PMC3118787  PMID: 21599934
6.  Genetic Diversity and Population Structure of Cucumber (Cucumis sativus L.) 
PLoS ONE  2012;7(10):e46919.
Knowing the extent and structure of genetic variation in germplasm collections is essential for the conservation and utilization of biodiversity in cultivated plants. Cucumber is the fourth most important vegetable crop worldwide and is a model system for other Cucurbitaceae, a family that also includes melon, watermelon, pumpkin and squash. Previous isozyme studies revealed a low genetic diversity in cucumber, but detailed insights into the crop's genetic structure and diversity are largely missing. We have fingerprinted 3,342 accessions from the Chinese, Dutch and U.S. cucumber collections with 23 highly polymorphic Simple Sequence Repeat (SSR) markers evenly distributed in the genome. The data reveal three distinct populations, largely corresponding to three geographic regions. Population 1 corresponds to germplasm from China, except for the unique semi-wild landraces found in Xishuangbanna in Southwest China and East Asia; population 2 to Europe, America, and Central and West Asia; and population 3 to India and Xishuangbanna. Admixtures were also detected, reflecting hybridization and migration events between the populations. The genetic background of the Indian germplasm is heterogeneous, indicating that the Indian cucumbers maintain a large proportion of the genetic diversity and that only a small fraction was introduced to other parts of the world. Subsequently, we defined a core collection consisting of 115 accessions and capturing over 77% of the SSR alleles. Insight into the genetic structure of cucumber will help developing appropriate conservation strategies and provides a basis for population-level genome sequencing in cucumber.
doi:10.1371/journal.pone.0046919
PMCID: PMC3470563  PMID: 23071663
7.  A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci 
BMC Plant Biology  2013;13:53.
Background
Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci.
Results
From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes.
Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome.
Conclusions
Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of these RGHs in the Cucumis lineage. The 1,681-locus consensus genetic-physical map developed and the RGHs identified and characterized herein are valuable genomics resources that may have many applications such as quantitative trait loci identification, map-based gene cloning, association mapping, marker-assisted selection, as well as assembly of a more complete cucumber genome.
doi:10.1186/1471-2229-13-53
PMCID: PMC3626583  PMID: 23531125
Cucumber; Cucumis sativus; NB-LRR; Resistance gene homolog; Genetic mapping; Comparative mapping; Map integration
8.  Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.) 
BMC Plant Biology  2004;4:9.
Background
Despite the great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic microsatellite enriched libraries can be an efficient alternative for marker development in such species.
Results
Seven hundred clones containing microsatellite sequences from a Tsp-AG/TC microsatellite enriched library were identified and one-hundred and forty-four primer pairs designed and synthesized. When 67 microsatellite markers were tested on a panel of melon and other cucurbit accessions, 65 revealed DNA polymorphisms among the melon accessions. For some cucurbit species, such as Cucumis sativus, up to 50% of the melon microsatellite markers could be readily used for DNA polymophism assessment, representing a significant reduction of marker development costs. A random sample of 25 microsatellite markers was extracted from the new microsatellite marker set and characterized on 40 accessions of melon, generating an allelic frequency database for the species. The average expected heterozygosity was 0.52, varying from 0.45 to 0.70, indicating that a small set of selected markers should be sufficient to solve questions regarding genotype identity and variety protection. Genetic distances based on microsatellite polymorphism were congruent with data obtained from RAPD marker analysis. Mapping analysis was initiated with 55 newly developed markers and most primers showed segregation according to Mendelian expectations. Linkage analysis detected linkage between 56% of the markers, distributed in nine linkage groups.
Conclusions
Genomic library microsatellite enrichment is an efficient procedure for marker development in melon. One-hundred and forty-four new markers were developed from Tsp-AG/TC genomic library. This is the first reported attempt of successfully using enriched library for microsatellite marker development in the species. A sample of the microsatellite markers tested proved efficient for genetic analysis of melon, including genetic distance estimates and identity tests. Linkage analysis indicated that the markers developed are dispersed throughout the genome and should be very useful for genetic analysis of melon.
doi:10.1186/1471-2229-4-9
PMCID: PMC419974  PMID: 15149552
9.  A high-resolution cucumber cytogenetic map integrated with the genome assembly 
BMC Genomics  2013;14:461.
Background
High-resolution cytogenetic map can provide not only important biological information on genome organization but also solid foundation for genetic and genomic research. The progress in the molecular and cytogenetic studies has created the basis for developing the cytogenetic map in cucumber (Cucumis sativus L.).
Results
Here, the cytogenetic maps of four cucumber chromosomes (chromosomes 1, 3–5) were constructed by fluorescence in situ hybridization (FISH) analysis on cucumber pachytene chromosomes. Together with our previously constructed cytogenetic maps of three cucumber chromosomes (chromosomes 2, 6–7), cucumber has a complete cytogenetic map with 76 anchoring points between the genetic, the cytogenetic and the draft genome assembly maps. To compare our pachytene FISH map directly to the genetic linkage and draft genome assembly maps, we used a standardized map unit—relative map position (RMP) to produce the comparative map alignments. The alignments allowed a global view of the relationship of genetic and physical distances along each cucumber chromosome, and accuracy and coverage of the draft genome assembly map.
Conclusions
We demonstrated a good correlation between positions of the markers in the linkage and physical maps, and essentially complete coverage of chromosome arms by the draft genome assembly. Our study not only provides essential information for the improvement of sequence assembly but also offers molecular tools for cucumber genomics research, comparative genomics and evolutionary study.
doi:10.1186/1471-2164-14-461
PMCID: PMC3710503  PMID: 23834562
10.  A set of EST-SNPs for map saturation and cultivar identification in melon 
BMC Plant Biology  2009;9:90.
Background
There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs.
Results
EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) × 'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able to distinguish all the accessions and cultivars.
Conclusion
This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers discovered using ESTs. The PI 161375 × 'Piel de sapo' melon genetic map has around 700 markers, of which more than 500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers, and these markers may also be useful for cultivar identification in Occidental melon varieties.
doi:10.1186/1471-2229-9-90
PMCID: PMC2722630  PMID: 19604363
11.  The Cucurbit Images (1515–1518) of the Villa Farnesina, Rome 
Annals of Botany  2006;97(2):165-176.
• Background The gorgeous frescoes organized by the master Renaissance painter Raphael Sanzio (1483–1520) and illustrating the heavenly adventures of Cupid and Psyche were painted between 1515 and 1518 to decorate the Roman villa (now known as the Villa Farnesina) of the wealthy Sienese banker Agostino Chigi (1466–1520). Surrounding these paintings are festoons of fruits, vegetables and flowers painted by Giovanni Martini da Udine (1487–1564), which include over 170 species of plants. A deconstruction and collation of the cucurbit images in the festoons makes it possible to evaluate the genetic diversity of cucurbits in Renaissance Italy 500 years ago.
• Findings The festoons contain six species of Old World cucurbits, Citrullus lanatus (watermelon), Cucumis melo (melon), Cucumis sativus (cucumber), Ecballium elaterium (squirting cucumber), Lagenaria siceraria (bottle gourd) and Momordica balsamina (balsam apple), and two or three species of New World cucurbits, Cucurbita maxima, C. pepo and, perhaps, C. moschata (pumpkin, squash, gourd). The images of C. maxima are the first illustrations of this species in Europe.
doi:10.1093/aob/mcj025
PMCID: PMC2803371  PMID: 16314340
Citrullus lanatus; Cucumis melo; Cucumis sativus; Cucurbita maxima; Cucurbita pepo; Ecballium elaterium; Lagenaria siceraria; Momordica balsamina; Cucurbitaceae; Agostino Chigi; Giovanni Martini da Udine
12.  An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2 
BMC Genetics  2011;12:18.
Background
Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.).
Results
In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed.
Conclusions
Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.
doi:10.1186/1471-2156-12-18
PMCID: PMC3039625  PMID: 21272311
13.  A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.) 
BMC Plant Biology  2011;11:111.
Background
A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS).
Results
Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm.
Conclusions
Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).
doi:10.1186/1471-2229-11-111
PMCID: PMC3163537  PMID: 21797998
14.  Generation of a BAC-based physical map of the melon genome 
BMC Genomics  2010;11:339.
Background
Cucumis melo (melon) belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb), which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced.
Results
A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF) was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome) and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs) also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12%) of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/.
Conclusions
Here we report the construction of the first physical map of a Cucurbitaceae species described so far. The physical map was integrated with the genetic map so that a number of physical contigs, representing 12% of the melon genome, could be anchored to known genetic positions. The data presented is already helping to improve the quality of the melon genomic sequence available as a result of a project currently being carried out in Spain, adopting a whole genome shotgun approach based on 454 sequencing data.
doi:10.1186/1471-2164-11-339
PMCID: PMC2894041  PMID: 20509895
15.  Integration of High-Resolution Physical and Genetic Map Reveals Differential Recombination Frequency between Chromosomes and the Genome Assembling Quality in Cucumber 
PLoS ONE  2013;8(5):e62676.
Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.
doi:10.1371/journal.pone.0062676
PMCID: PMC3646037  PMID: 23671621
16.  Development of a Cucumis sativus TILLinG Platform for Forward and Reverse Genetics 
PLoS ONE  2014;9(5):e97963.
Background
Cucumber (Cucumis sativus) belongs to the Cucurbitaceae family that includes more than 800 species. The cucumber genome has been recently sequenced and annotated. Transcriptomics and genome sequencing of many plant genomes are providing information on candidate genes potentially related to agronomically important traits. To accelerate functional characterization of these genes in cucumber we have generated an EMS mutant population that can be used as a TILLinG platform for reverse genetics.
Principal Findings
A population of 3,331 M2 mutant seed families was generated using two EMS concentrations (0.5% and 0.75%). Genomic DNA was extracted from M2 families and eight-fold pooled for mutation detection by ENDO1 nuclease. To assess the quality of the mutant collection, we screened for induced mutations in five genes and identified 26 mutations. The average mutation rate was calculated as 1/1147 Kb giving rise to approximately 320 mutations per genome. We focused our characterization on three missense mutations, G33C, S238F and S249F identified in the CsACS2 sex determination gene. Protein modeling and crystallography studies predicted that mutation at G33 may affect the protein function, whereas mutations at S238 and S249 may not impair the protein function. As predicted, detailed phenotypic evaluation showed that the S238F and the S249F mutant lines had no sexual phenotype. In contrast, plants homozygous for the G33C mutation showed a complete sexual transition from monoecy to andromonoecy. This result demonstrates that TILLinG is a valuable tool for functional validation of gene function in crops recalcitrant to transgenic transformation.
Conclusions
We have developed a cucumber mutant population that can be used as an efficient reverse genetics tool. The cucumber TILLinG collection as well as the previously described melon TILLinG collection will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in cucurbits in general.
doi:10.1371/journal.pone.0097963
PMCID: PMC4024006  PMID: 24835852
17.  A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome 
PLoS ONE  2012;7(1):e29453.
As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.
doi:10.1371/journal.pone.0029453
PMCID: PMC3256148  PMID: 22247776
18.  Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin 
BMC Genomics  2011;12:424.
Background
The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits.
Results
The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively.
Conclusions
Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number and organisation, as well as in the features of the noncoding DNA. The transfer of nuclear DNA to the melon mitochondrial genome and the high proportion of repetitive DNA appear to explain the size of the largest mitochondrial genome reported so far.
doi:10.1186/1471-2164-12-424
PMCID: PMC3175227  PMID: 21854637
19.  Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly 
BMC Genomics  2015;16(1):4.
Background
The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds.
Results
A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed.
Conclusions
By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-014-1196-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-014-1196-3
PMCID: PMC4316794  PMID: 25612459
Melon; SNP; Genome; Scaffold; Pseudomolecules; FISH; Karyotype
20.  Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae) 
BMC Genomics  2011;12:104.
Background
Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding.
Results
We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions.
Conclusion
We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties.
doi:10.1186/1471-2164-12-104
PMCID: PMC3049757  PMID: 21310031
21.  Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding 
BMC Genomics  2011;12:467.
Background
Bottle gourd [Lagenaria siceraria (Mol.) Standl.] is an important cucurbit crop worldwide. Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation almost nothing has been known about the genome of this species thus far.
Results
We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522 singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle gourd and the model cucurbit cucumber (Cucumis sativus) revealed a 90% sequence similarity on average. Using the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal coordinates (PCo) analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the same or close origin did tend to cluster.
Conclusions
This work provides an initial basis for genome characterization, gene isolation and comparative genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes for efficient introduction of desired traits.
doi:10.1186/1471-2164-12-467
PMCID: PMC3188536  PMID: 21942996
22.  A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq) 
High-density genetic map provides an essential framework for accurate and efficient genome assembly and QTL fine mapping. Construction of high-density genetic maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. In this research, a high-density genetic map of cucumber (Cucumis sativus L.) was successfully constructed across an F2 population by a recently developed Specific Length Amplified Fragment sequencing (SLAF-seq) method. In total, 18.69 GB of data containing 93,460,000 paired-end reads were obtained after preprocessing. The average sequencing depth was 44.92 in the D8 (female parent), 42.16 in the Jin5-508 (male parent), and 5.01 in each progeny. 79,092 high-quality SLAFs were detected, of which 6784 SLAFs were polymorphic, and 1892 of the polymorphic markers met the requirements for constructing genetic map. The genetic map spanned 845.87 cm with an average genetic distance of 0.45 cm. It is a reliable linkage map for fine mapping and molecular breeding of cucumber for its high marker density and well-ordered markers.
doi:10.3389/fpls.2014.00768
PMCID: PMC4285734  PMID: 25610449
cucumber; F2 population; SLAF-seq; SNP; genetic map
23.  Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles 
BMC Genomics  2011;12:454.
Background
Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues.
Results
We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development.
Conclusion
We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.
doi:10.1186/1471-2164-12-454
PMCID: PMC3197533  PMID: 21936920
24.  The Cucurbits of Mediterranean Antiquity: Identification of Taxa from Ancient Images and Descriptions 
Annals of Botany  2007;100(7):1441-1457.
Background
A critical analysis was made of cucurbit descriptions in Dioscorides' De Materia Medica, Columella's De Re Rustica and Pliny's Historia Naturalis, works on medicine, agriculture and natural science of the 1st century ce, as well as the Mishna and Tosefta, compilations of rabbinic law derived from the same time period together with cucurbit images dating from antiquity including paintings, mosaics and sculpture. The goal was to identify taxonomically the Mediterranean cucurbits at the time of the Roman Empire.
Findings
By ancient times, long-fruited forms of Cucumis melo (melon) and Lagenaria siceraria (bottle gourd) were selected, cultivated and used as vegetables around the Mediterranean and, in addition, bottle-shaped fruits of L. siceraria were employed as vessels. Citrullus lanatus (watermelons) and round-fruited forms of Cucumis melo (melons) were also consumed, but less commonly. A number of cucurbit species, including Bryonia alba, B. dioica, Citrullus colocynthis and Ecballium elaterium, were employed for medicinal purposes. No unequivocal evidence was found to suggest the presence of Cucumis sativus (cucumber) in the Mediterranean area during this era. The cucumis of Columella and Pliny was not cucumber, as commonly translated, but Cucumis melo subsp. melo Flexuosus Group (snake melon or vegetable melon).
doi:10.1093/aob/mcm242
PMCID: PMC2759226  PMID: 17932073
Columella; De Re Rustica; Dioscorides; De Materia Medica; Pliny; Historia Naturalis; Mishna; Tosefta; plant iconography; Bryonia alba; Bryonia dioica; Citrullus colocynthis; Citrullus lanatus; Cucumis melo; Cucumis sativus; Ecballium elaterium; Lagenaria siceraria; Luffa cylindrica
25.  High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping 
BMC Genomics  2012;13:80.
Background
Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species.
The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL).
Results
We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations.
Conclusion
Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in the coding regions of genes involved in different physiological processes. The platform will also be useful for future mapping and diversity studies, and will be essential in order to accelerate the process of breeding new and better-adapted squash varieties.
doi:10.1186/1471-2164-13-80
PMCID: PMC3359225  PMID: 22356647

Results 1-25 (508406)