Search tips
Search criteria

Results 1-25 (1148770)

Clipboard (0)

Related Articles

1.  IL-13Rα1 Expression on β-Cell–Specific T Cells in NOD Mice 
Diabetes  2011;60(6):1716-1725.
Immunotherapy using peptides from the β-cell antigen GAD65 can preserve glucose homeostasis in diabetes-prone NOD mice; however, the precise mechanisms that arrest islet-reactive T cells remain unresolved. Our previous work revealed that a dominant GAD65 epitope contained two overlapping I-Ag7–restricted determinants, 524-538 and 530-543, with the former associated with amelioration of hyperglycemia. Here, we sought to discover whether p524-538–specific T cells could directly regulate islet-reactive T cells.
Prediabetic NOD mice were used to determine the relationship between peptide p524-538–induced interleukin (IL)-13 and regulation of islet autoimmunity. Pancreatic lymph node (PLN) cells from mice at distinct stages of islet inflammation, peri-insulitis versus invasive insulitis, were harvested to establish the expression pattern of IL-13 receptor α1 (IL-13Rα1) on islet-associated T cells.
Peptide p524-538 preferentially induced IL-13–producing T cells that antagonized the release of γ-interferon by spontaneously arising GAD65 autoimmunity, and recombinant human IL-13 inhibited proliferation of islet-reactive clonotypic T cells. A subset of CD4+ T cells in NOD and NOD.BDC2.5 T cell receptor transgenic mice expressed functional IL-13Rα1, which induced phosphorylation of signal transducer and activator of transcription 6 in the presence of cognate cytokine. Notably, the number of IL-13Rα1+ T cells was heightened in the PLN of young NOD mice when compared with older female counterparts with advanced insulitis. Immunization with p524-538 preserved IL-13Rα1 expression on PLN T cells.
IL-13 may be important for regulating autoimmunity in the early stages of insulitis, and the loss of IL-13Rα1 on islet-reactive T cells may be a biomarker for fading regional immune regulation and progression to overt diabetes.
PMCID: PMC3114389  PMID: 21617187
2.  Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. 
Journal of Clinical Investigation  1992;90(3):741-748.
The purpose of this study was to determine the effect of dendritic cell (DC) transfers on the incidence of diabetes in female nonobese diabetic (NOD) mice. Groups of 4-wk-old NOD female mice were given a single foot pad of DCs (70-90% purity) isolated from the draining lymph nodes (LN) of the pancreas (PLN), the cervical LNs, or the axillary/inguinal LNs. In addition, other groups of NOD mice received purified spleen DCs, purified PLN T cells (the major contaminating population in DC preparations), or the injection vehicle PBS. All groups were monitored for diabetes for one year. Significant protection from diabetes was observed in NOD mice receiving greater than 1 x 10(4) PLN DCs in comparison to mice receiving other DCs populations, PLN T cells, or PBS (P less than 0.05). The pancreata of NOD mice that received PLN DCs demonstrated significantly lower levels of lymphocytic infiltration in the islets that age-sex matched nondiabetic female NOD control mice (P less than 0.05). LN cells from nondiabetic NOD mice that received PLN DC protected irradiated female recipients from the adoptive transfer of diabetes to a greater degree than LN cells from age and sex matched nondiabetic female NOD mice that did not receive PLN DC transfers at 36 d (P = 0.014) and at 1 yr (P = 0.0015) after transfer. These data suggest that the PLN DC transfers are able to modulate autoimmunity and limit diabetes expression in the NOD mouse. PLN DCs transfers may regulate autoimmunity by the induction of regulatory cells.
PMCID: PMC329925  PMID: 1522229
3.  The B10 Idd9.3 locus mediates accumulation of functionally superior CD137pos T regulatory cells in the NOD Type 1 diabetes model 
CD137 is a T cell costimulatory molecule encoded by the prime candidate gene (designated Tnfrsf9) in NOD.B10 Idd9.3 congenic mice protected from type one diabetes (T1D). NOD T cells show decreased CD137-mediated T cell signaling compared to NOD.B10 Idd9.3 T cells, but it has been unclear how this decreased CD137 T cell signaling could mediate susceptibility to T1D. We and others have shown that a subset of T regulatory cells (Tregs) constitutively expresses CD137 (whereas T effectors do not, and only express CD137 briefly after activation). Here we show that the B10 Idd9.3 region intrinsically contributes to accumulation of CD137pos Tregs with age. NOD.B10 Idd9.3 mice showed significantly increased percentages and numbers of CD137pos peripheral Tregs compared to NOD mice. Moreover, Tregs expressing the B10 Idd9.3 region preferentially accumulated in mixed bone marrow chimeric mice reconstituted with allotypically marked NOD and NOD.B10 Idd9.3 bone marrow. We demonstrate a possible significance of increased numbers of CD137pos Tregs by showing functional superiority of FACS purified CD137pos Tregs in vitro compared to CD137neg Tregs in T cell suppression assays. Increased functional suppression was also associated with increased production of the alternatively spliced CD137 isoform, soluble CD137, which has been shown to suppress T cell proliferation. We show for the first time that CD137pos Tregs are the primary cellular source of soluble CD137. NOD.B10 Idd9.3 mice showed significantly increased serum soluble CD137 compared to NOD mice with age, consistent with their increased numbers of CD137pos Tregs with age. These studies demonstrate the importance of CD137pos Tregs in T1D and offer a new hypothesis for how the NOD Idd9.3 region could act to increase T1D susceptibility.
PMCID: PMC3505683  PMID: 23066155
4.  Dendritic Cells Transduced to Express Interleukin 4 Reduce Diabetes Onset in Both Normoglycemic and Prediabetic Nonobese Diabetic Mice 
PLoS ONE  2010;5(7):e11848.
We and others have previously demonstrated that treatment with bone marrow derived DC genetically modified to express IL-4 reduce disease pathology in mouse models of collagen-induced arthritis and delayed-type hypersensitivity. Moreover, treatment of normoglycemic NOD mice with bone marrow derived DC, genetically modified to express interleukin 4 (IL-4), reduces the onset of hyperglycemia in a significant number of animals. However, the mechanism(s) through which DC expressing IL-4 function to prevent autoimmune diabetes and whether this treatment can reverse disease in pre-diabetic NOD mice are unknown.
Methodology/Principal Findings
DC were generated from the bone marrow of NOD mice and transduced with adenoviral vectors encoding soluble murine IL-4 (DC/sIL-4), a membrane-bound IL-4 construct, or empty vector control. Female NOD mice were segregated into normoglycemic (<150mg/dL) and prediabetic groups (between 150 and 250 mg/dL) on the basis of blood glucose measurements, and randomized for adoptive transfer of 106 DC via a single i.v. injection. A single injection of DC/sIL-4, when administered to normoglycemic 12-week old NOD mice, significantly reduced the number of mice that developed diabetes. Furthermore, DC/sIL-4, but not control DC, decreased the number of mice progressing to diabetes when given to prediabetic NOD mice 12–16 weeks of age. DC/sIL-4 treatment also significantly reduced islet mononuclear infiltration and increased the expression of FoxP3 in the pancreatic lymph nodes of a subset of treated animals. Furthermore, DC/sIL-4 treatment altered the antigen-specific Th2:Th1 cytokine profiles as determined by ELISPOT of splenocytes in treated animals.
Adoptive transfer of DC transduced to express IL-4 into both normoglycemic and prediabetic NOD mice is an effective treatment for T1D.
PMCID: PMC2912295  PMID: 20686610
5.  Diminished Adenosine A1 Receptor Expression in Pancreatic α-Cells May Contribute to the Pathology of Type 1 Diabetes 
Diabetes  2013;62(12):4208-4219.
Prediabetic NOD mice exhibit hyperglucagonemia, possibly due to an intrinsic α-cell defect. Here, we show that the expression of a potential glucagon inhibitor, the adenosine A1 receptor (Adora1), is gradually diminished in α-cells of NOD mice, autoantibody-positive (AA+) and overtly type 1 diabetic (T1D) patients during the progression of disease. We demonstrated that islet inflammation was associated with loss of Adora1 expression through the alternative splicing of Adora1. Expression of the spliced variant (Adora1-Var) was upregulated in the pancreas of 12-week-old NOD versus age-matched NOD.B10 (non–diabetes-susceptible) control mice and was detected in the pancreas of AA+ patients but not in control subjects or overtly diabetic patients, suggesting that inflammation drives the splicing of Adora1. We subsequently demonstrated that Adora1-Var expression was upregulated in the islets of NOD.B10 mice after exposure to inflammatory cytokines and in the pancreas of NOD.SCID mice after adoptive transfer of activated autologous splenocytes. Adora1-Var encodes a dominant-negative N-terminal truncated isoform of Adora1. The splicing of Adora1 and loss of Adora1 expression on α-cells may explain the hyperglucagonemia observed in prediabetic NOD mice and may contribute to the pathogenesis of human T1D and NOD disease.
PMCID: PMC3837064  PMID: 24264405
6.  Immunomodulatory Function of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Type 1 Diabetes1 
Human clinical trials in type 1 diabetes (T1D) patients using mesenchymal stem cells (MSC) are presently underway without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in NOD mice. In comparison to NOD mice, BALB/ c-MSC mice were found to express higher levels of the negative costimulatory molecule PD-L1 and to promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e., nonobese resistant mice or BALB/c), but not from NOD mice, delayed the onset of diabetes when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC temporarily resulted in reversal of hyperglycemia in 90% of NOD mice (p = 0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit. We also noted soft tissue and visceral tumors in NOD-MSC-treated mice, which were uniquely observed in this setting (i.e., no tumors were present with BALB/c- or nonobese resistant mice-MSC transfer). The importance of this observation remains to be explored in humans, as inbred mice such as NOD may be more susceptible to tumor formation. These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and, potentially, for other autoimmune disorders.
PMCID: PMC3895445  PMID: 19561093
7.  Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity 
BMC Medical Genomics  2009;2:63.
Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting β cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process.
Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed.
The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D.
Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.
PMCID: PMC2763872  PMID: 19799787
8.  Mechanism Underlying Defective Interferon Gamma-Induced IDO Expression in Non-obese Diabetic Mouse Fibroblasts 
PLoS ONE  2012;7(5):e37747.
Indoleamine 2,3-dioxygenase (IDO) can locally suppress T cell-mediated immune responses. It has been shown that defective self-tolerance in early prediabetic female non-obese diabetic (NOD) mice can be attributed to the impaired interferon-gamma (IFN-γ)- induced IDO expression in dendritic cells of these animals. As IFN-γ can induce IDO in both dendritic cells and fibroblasts, we asked the question of whether there exists a similar defect in IFN-γ-induced IDO expression in NOD mice dermal fibroblasts. To this end, we examined the effect of IFN-γ on expression of IDO and its enzymatic activity in NOD dermal fibroblasts. The results showed that fibroblasts from either prediabetic (8 wks of age) female or male, and diabetic female or male (12 and 24 wks of age respectively) NOD mice failed to express IDO in response to IFN-γ treatment. To find underlying mechanisms, we scrutinized the IFN- γ signaling pathway and investigated expression of other IFN-γ-modulated factors including major histocompatibility complex class I (MHC-I) and type I collagen (COL-I). The findings revealed a defect of signal transducer and activator of transcription 1 (STAT1) phosphorylation in NOD cells relative to that of controls. Furthermore, we found an increase in MHC-I and suppression of COL-I expression in fibroblasts from both NOD and control mice following IFN-γ treatment; indicating that the impaired response to IFN-γ in NOD fibroblasts is specific to IDO gene. Finally, we showed that an IFN-γ-independent IDO expression pathway i.e. lipopolysaccharide (LPS)-mediated-c-Jun kinase is operative in NOD mice fibroblast. In conclusion, the findings of this study for the first time indicate that IFN-γ fails to induce IDO expression in NOD dermal fibroblasts; this may partially be due to defective STAT1 phosphorylation in IFN-γ-induced-IDO signaling pathway.
PMCID: PMC3360620  PMID: 22662207
9.  Interleukin-1β Produced in Response to Islet Autoantigen Presentation Differentiates T-Helper 17 Cells at the Expense of Regulatory T-Cells 
Diabetes  2010;60(1):248-257.
The effectiveness of tolerizing immunotherapeutic strategies, such as anti-CD40L or dendritic cells (DCs), is greater when administered to young nonobese diabetic (NOD) mice than at peak insulitis. RelBlo DCs, generated in the presence of an nuclear factor-κB inhibitor, induce T-regulatory (Treg) cells and suppress inflammation in a model of rheumatoid arthritis. Interleukin (IL)-1β is overexpressed in humans and mice at risk of type 1 diabetes, dysregulates Treg cells, and accelerates diabetes in NOD mice. We investigated the relationship between IL-1β production and the response to RelBlo DCs in the prediabetic period.
We injected RelBlo DCs subcutaneously into 4- or 14-week-old NOD mice and tracked the incidence of diabetes and effect on Treg cell function. We measured the expression of proinflammatory cytokines by stimulated splenocytes and unstimulated islets from mice of different ages and strains and proliferative and cytokine responses of T effectors to Treg in vitro.
Tolerizing RelBlo DCs significantly inhibited diabetes progression when administered to 4-week-old but not 14-week-old mice. IL-1β production by NOD splenocytes and mRNA expression by islets increased from 6 to 16 weeks of age when major histocompatibility complex (MHC)-restricted islet antigen presentation to autoreactive T-cells occurred. IL-1 reduced the capacity of Treg cells to suppress effector cells and promoted their conversion to Th17 cells. RelBlo DCs exacerbated the IL-1–dependent decline in Treg function and promoted Th17 conversion.
IL-1β, generated by islet-autoreactive cells in MHC-susceptible mice, accelerates diabetes by differentiating Th17 at the expense of Treg. Tolerizing DC therapies can regulate islet autoantigen priming and prevent diabetes, but progression past the IL-1β/IL-17 checkpoint signals the need for other strategies.
PMCID: PMC3012178  PMID: 20980463
10.  I-E+ nonobese diabetic mice develop insulitis and diabetes 
The development of type I diabetes in the nonobese diabetic (NOD) mouse is under the control of multiple genes, one or more of which is linked to the major histocompatibility complex (MHC). The MHC class II region has been implicated in disease development, with expression of an I-E transgene in NOD mice shown to provide protection from insulitis and diabetes. To examine the effect of expressing an I-E+ or I-E- non-NOD MHC on the NOD background, three I-E+ and three I-E- NOD MHC congenic strains (NOD.H-2i5, NOD.H-2k, and NOD.H-2h2, and NOD.H-2h4, NOD.H-2i7, and NOD.H-2b, respectively) were developed. Of these strains, both I-E+ NOD.H-2h2 and I-E- NOD.H-2h4 mice developed insulitis, but not diabetes. The remaining four congenic strains were free of insulitis and diabetes. These results indicate that in the absence of the NOD MHC, diabetes fails to develop. Each NOD MHC congenic strain was crossed with the NOD strain to produce I-E+ and I-E- F1 mice; these mice thus expressed one dose of the NOD MHC and one dose of a non-NOD MHC on the NOD background. While a single dose of a non-NOD MHC provided a large degree of disease protection to all of the F1 strains, a proportion of I-E+ and I-E- F1 mice aged 5-12 mo developed insulitis and cyclophosphamide-induced diabetes. When I-E+ F1 mice were aged 9-17 mo, spontaneous diabetes developed as well. These data are the first to demonstrate that I-E+ NOD mice develop diabetes, indicating that expression of I-E in NOD mice is not in itself sufficient to prevent insulitis or diabetes. In fact, I-E- F1 strains were no more protected from diabetes than I-E+ F1 strains, suggesting that other non-NOD MHC- linked genes are important in protection from disease. Finally, transfer of NOD bone marrow into irradiated I-E+ F1 recipients resulted in high incidences of diabetes, indicating that expression of non-NOD MHC products in the thymus, in the absence of expression in bone marrow- derived cells, is not sufficient to provide protection from diabetes.
PMCID: PMC2191185  PMID: 8350054
11.  Alterations of renal phenotype and gene expression profiles due to protein overload in NOD-related mouse strains 
BMC Nephrology  2005;6:17.
Despite multiple causes, Chronic Kidney Disease is commonly associated with proteinuria. A previous study on Non Obese Diabetic mice (NOD), which spontaneously develop type 1 diabetes, described histological and gene expression changes incurred by diabetes in the kidney. Because proteinuria is coincident to diabetes, the effects of proteinuria are difficult to distinguish from those of other factors such as hyperglycemia. Proteinuria can nevertheless be induced in mice by peritoneal injection of Bovine Serum Albumin (BSA). To gain more information on the specific effects of proteinuria, this study addresses renal changes in diabetes resistant NOD-related mouse strains (NON and NOD.B10) that were made to develop proteinuria by BSA overload.
Proteinuria was induced by protein overload on NON and NOD.B10 mouse strains and histology and microarray technology were used to follow the kidney response. The effects of proteinuria were assessed and subsequently compared to changes that were observed in a prior study on NOD diabetic nephropathy.
Overload treatment significantly modified the renal phenotype and out of 5760 clones screened, 21 and 7 kidney transcripts were respectively altered in the NON and NOD.B10. Upregulated transcripts encoded signal transduction genes, as well as markers for inflammation (Calmodulin kinase beta). Down-regulated transcripts included FKBP52 which was also down-regulated in diabetic NOD kidney. Comparison of transcripts altered by proteinuria to those altered by diabetes identified mannosidase 2 alpha 1 as being more specifically induced by proteinuria.
By simulating a component of diabetes, and looking at the global response on mice resistant to the disease, by virtue of a small genetic difference, we were able to identify key factors in disease progression. This suggests the power of this approach in unraveling multifactorial disease processes.
PMCID: PMC1334202  PMID: 16371158
12.  Metabolic Regulation in Progression to Autoimmune Diabetes 
PLoS Computational Biology  2011;7(10):e1002257.
Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes.
Author Summary
We have recently found that distinct metabolic disturbances precede β-cell autoimmunity in children who later progress to type 1 diabetes (T1D). Here we performed a murine study using non-obese diabetic (NOD) mice that recapitulated the protocol used in human, followed up by independent studies where NOD mice were studied in relation to risk of diabetes progression. We found that young female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum subgroup. The metabolic phenotypes observed in our study could be relevant as end points for studies investigating T1D pathogenesis and/or responses to interventions. By proceeding from a clinical study via metabolomics and modeling to an experimental model using a similar study design, then evolving further to tissue-specific studies, we hereby also present a conceptually novel approach to reversed translation that may be useful in future therapeutic studies in the context of prevention and treatment of T1D as well as of other diseases characterized by long prodromal periods.
PMCID: PMC3203065  PMID: 22046124
13.  Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes 
The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD mouse and are located on chromosomes 1, 3, and 11. In addition to the autoimmune diabetes which is caused by destruction of the insulin-producing beta cells in the pancreas, other manifestations of autoimmunity are seen in the NOD mouse. These include mononuclear cell inflammation of the submandibular and lacrimal glands, as well as the presence of circulating autoantibodies. To determine the effect of the non-MHC diabetogenic genes on the development of autoimmunity, we constructed the NOD.B10-H- 2b (NOD.H-2b) strain, which possesses the non-MHC diabetogenic genes from the NOD mouse, but derives its MHC from the C57BL/10 (B10) strain. The NOD.H-2b strain does not develop insulitis, cyclophosphamide- induced diabetes, or spontaneous diabetes. It does, however, develop extensive lymphocytic infiltrates in the pancreas and the submandibular glands that are primarily composed of Thy 1.2+ T cells and B220+ B cells. In addition, autoantibodies are present in NOD.H-2b mice which recognize the "polar antigen" on the insulin-secreting rat tumor line RINm38. These observations demonstrate that the non-MHC genes in the NOD strain, in the absence of the NOD MHC, significantly contribute to the development of autoimmunity. The contribution of a single dose of the NOD MHC to autoimmunity was assessed with a (NOD x NOD.H-2b)F1 cross. Although only approximately 3% of F1 females developed spontaneous diabetes, approximately 50% of both female and male F1 mice developed insulitis, and 25% of females and 17% of males became diabetic after treatment with cyclophosphamide. These data demonstrate that the MHC-linked diabetogenic genes of the NOD mouse are dominant with decreasing levels of penetrance for the following phenotypes: insulitis greater than cyclophosphamide-induced diabetes greater than spontaneous diabetes.
PMCID: PMC2119272  PMID: 1613467
14.  Analysis of the Role of  Variation of Major Histocompatibility Complex Class II Expression on Nonobese Diabetic (NOD) Peripheral T Cell Response  
The Journal of Experimental Medicine  1998;188(12):2267-2275.
The current paradigm of major histocompatibility complex (MHC) and disease association suggests that efficient binding of autoantigens by disease-associated MHC molecules leads to a T cell–mediated immune response and resultant autoimmune sequelae. The data presented below offer a different model for this association of MHC with autoimmune diabetes. We used several mouse lines expressing different levels of I-Ag7 and I-Ak on the nonobese diabetic (NOD) background to evaluate the role of MHC class II in the previously described NOD T cell autoproliferation. The ratio of I-Ag7 to I-Ak expression correlated with the peripheral T cell autoproliferative phenotype in the mice studied. T cells from the NOD, [NOD × NOD.I-Anull]F1, and NOD I-Ak transgenic mice demonstrated autoproliferative responses (after priming with self-peptides), whereas the NOD.H2h4 (containing I-Ak) congenic and [NOD × NOD.H2h4 congenic]F1 mice did not. Analysis of CD4+ NOD I-Ak transgenic primed lymph node cells showed that autoreactive CD4+ T cells in the NOD I-Ak transgenic mice were restricted exclusively by I-Ag7. Considered in the context of the avidity theory of T cell activation and selection, the reported poor peptide binding capacity of NOD I-Ag7 suggested a new hypothesis to explain the effects of MHC class II expression on the peripheral autoimmune repertoire in NOD mice. This new explanation suggests that the association of MHC with diabetes results from “altered” thymic selection in which high affinity self-reactive (potentially autoreactive) T cells escape negative selection. This model offers an explanation for the requirement of homozygous MHC class II expression in NOD mice (and in humans) in susceptibility to insulin-dependent diabetes mellitus.
PMCID: PMC2212423  PMID: 9858513
nonobese diabetic; insulin-dependent diabetes mellitus; thymic selection; T cell receptor repertoire; major histocompatibility complex and disease
15.  Treg cells in pancreatic lymph nodes: the possible role in diabetogenesis and β cell regeneration in a T1D model 
Previously, we established a model in which physiologically adequate function of the autologous β cells was recovered in non-obese diabetic (NOD) mice after the onset of hyperglycemia by rendering them hemopoietic chimera. These mice were termed antea-diabetic. In the current study, we addressed the role of T regulatory (Treg) cells in the mechanisms mediating the restoration of euglycemia in the antea-diabetic NOD model. The data generated in this study demonstrated that the numbers of Treg cells were decreased in unmanipulated NOD mice, with the most profound deficiency detected in the pancreatic lymph nodes (PLNs). The impaired retention of the Treg cells in the PLNs correlated with the locally compromised profile of the chemokines involved in their trafficking, with the most prominent decrease observed in SDF-1. The amelioration of autoimmunity and restoration of euglycemia observed in the antea-diabetic mice was associated with restoration of the Treg cell population in the PLNs. These data indicate that the function of the SDF-1/CXCR4 axis and the retention of Treg cells in the PLNs have a potential role in diabetogenesis and in the amelioration of autoimmunity and β cell regeneration in the antea-diabetic model. We have demonstrated in the antea-diabetic mouse model that lifelong recovery of the β cells has a strong correlation with normalization of the Treg cell population in the PLNs. This finding offers new opportunities for testing the immunomodulatory regimens that promote accumulation of Treg cells in the PLNs as a therapeutic approach for type 1 diabetes (T1D).
PMCID: PMC4002217  PMID: 23042535
β cell regeneration; T regulatory cell trafficking; type 1 diabetes
16.  AAV8-Mediated Gene Transfer of Interleukin-4 to Endogenous β-Cells Prevents the Onset of Diabetes in NOD Mice 
We previously demonstrated that intra-peritoneal delivery of adeno-associated virus serotype 8 (AAV8) stably transduces the pancreas, including the β-cells in the endogenous islets. We also demonstrated the ability to deliver and express genes specifically in β-cells for at least 6 months using a murine insulin promoter (mIP) in a double-stranded, self-complementary AAV vector (dsAAV8-mIP). Here we evaluated the effects of dsAAV8-mIP mediated delivery of interleukin 4 (mIL-4) to endogenous β-cells in NOD mice. In 4 week old NOD mice, the extent of gene transfer and expression in endogenous β-cells following i.p. delivery of dsAAV8-mIP-eGFP was comparable to normal BALB/c mice. Furthermore, following i.p. delivery of dsAAV8-mIP-IL4, expression of mIL-4 was detected in islets isolated and cultured from the treated mice. AAV8-mIP mediated gene expression of mIL-4 to endogenous β-cells of 4 and 8 week old NOD mice prevented the onset of hyperglycemia in NOD mice and reduced the severity of insulitis. Moreover, expression of mIL-4 also maintained the level of CD4+CD25+FoxP3+ cells and adoptive co-transfer of splenocytes from diabetes-free IL-4 vector recipients and splenocytes from wild type diabetic NOD mice prevented the onset diabetes. Taken together, these results demonstrate that local expression of mIL-4 in islets prevents islet destruction and blocks autoimmunity, in part, through regulation of T cell function. These results also demonstrate the utility of using dsAAV8-mIP gene transfer to endogenous NOD β-cells to examine the role of specific gene products in preventing or exacerbating the onset of type 1 diabetes.
PMCID: PMC3560428  PMID: 18560422
17.  Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells 
PLoS Pathogens  2014;10(3):e1003998.
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus.
Author Summary
Understanding how viruses contribute to type 1 diabetes development is vital for disease prevention. Infection of children at-risk of diabetes with the gastrointestinal pathogen rotavirus is associated with increased immune responses to pancreatic islets, leading to the proposal that rotavirus infection may accelerate progression to diabetes. In a mouse model, we showed previously that rotavirus accelerates diabetes onset, in conjunction with virus spread to the lymph nodes, draining the intestine and pancreas. At these sites, rotavirus associates with antigen-presenting cells of the immune system, including dendritic cells, leading to their maturation, and induces the activation of B and T cells. Here we use this mouse model to define the contribution of rotavirus-exposed antigen-presenting cells to the activation of neighboring B and T cells. We found that rotavirus-exposed dendritic cells induce B and T cell activation through secretion of type I interferon. Activation of these dendritic cells depends on recognition of viral RNA by Toll-like receptor 7. Our studies suggest that this mechanism of B and T cell activation may occur in RRV-infected mice and contribute to their accelerated diabetes development. A similar mechanism may be involved in the enhanced islet autoantibody responses of children following rotavirus infection.
PMCID: PMC3968122  PMID: 24676425
18.  NOD2 Deficiency Enhances Neointimal Formation in Response to Vascular Injury 
Nucleotide-binding oligomerization domain protein 2 (NOD2) stimulates diverse inflammatory responses resulting in differential cellular phenotypes. To identify the role of NOD2 in vascular arterial obstructive diseases, we investigated the expression and pathophysiological role of NOD2 in a vascular injury model of neointimal hyperplasia.
Methods and Results
We first analyzed for neointimal hyperplasia following femoral artery injury in NOD2+/+ and NOD2−/− mice. NOD2−/− mice showed a 2.86-fold increase in neointimal formation that was mainly composed of SM α-actin positive cells. NOD2 was expressed in vascular smooth muscle cells (VSMCs) and NOD2−/− VSMCs showed increased cell proliferation in response to mitogenic stimuli, PDGF-BB or fetal bovine serum (FBS), compared with NOD2+/+ VSMCs. Furthermore, NOD2 deficiency markedly promoted VSMCs migration in response to PDGF-BB and this increased cell migration was attenuated by a PI3 kinase inhibitor. However, PKC and JNK inhibitors exerted negligible effects. Moreover, muramyl dipeptide-stimulated NOD2 prevented PDGF-BB-induced VSMCs migration.
Functional NOD2 is expressed in VSMCs, and NOD2 deficiency promoted VSMCs proliferation, migration, and neointimal formation after vascular injury. These results provide evidence for the involvement of NOD2 in vascular homeostasis and tissue injury, serving as a potential molecular target in the modulation of arteriosclerotic vascular disease.
PMCID: PMC3213020  PMID: 21903945
19.  Differentiation and Transplantation of Functional Pancreatic Beta Cells Generated from Induced Pluripotent Stem Cells Derived from a Type 1 Diabetes Mouse Model 
Stem Cells and Development  2012;21(14):2642-2655.
The nonobese diabetic (NOD) mouse is a classical animal model for autoimmune type 1 diabetes (T1D), closely mimicking features of human T1D. Thus, the NOD mouse presents an opportunity to test the effectiveness of induced pluripotent stem cells (iPSCs) as a therapeutic modality for T1D. Here, we demonstrate a proof of concept for cellular therapy using NOD mouse-derived iPSCs (NOD-iPSCs). We generated iPSCs from NOD mouse embryonic fibroblasts or NOD mouse pancreas-derived epithelial cells (NPEs), and applied directed differentiation protocols to differentiate the NOD-iPSCs toward functional pancreatic beta cells. Finally, we investigated whether the NPE-iPSC-derived insulin-producing cells could normalize hyperglycemia in transplanted diabetic mice. The NOD-iPSCs showed typical embryonic stem cell-like characteristics such as expression of markers for pluripotency, in vitro differentiation, teratoma formation, and generation of chimeric mice. We developed a method for stepwise differentiation of NOD-iPSCs into insulin-producing cells, and found that NPE-iPSCs differentiate more readily into insulin-producing cells. The differentiated NPE-iPSCs expressed diverse pancreatic beta cell markers and released insulin in response to glucose and KCl stimulation. Transplantation of the differentiated NPE-iPSCs into diabetic mice resulted in kidney engraftment. The engrafted cells responded to glucose by secreting insulin, thereby normalizing blood glucose levels. We propose that NOD-iPSCs will provide a useful tool for investigating genetic susceptibility to autoimmune diseases and generating a cellular interaction model of T1D, paving the way for the potential application of patient-derived iPSCs in autologous beta cell transplantation for treating diabetes.
PMCID: PMC3438879  PMID: 22512788
20.  Idd Loci Synergize to Prolong Islet Allograft Survival Induced by Costimulation Blockade in NOD Mice 
Diabetes  2009;58(1):165-173.
OBJECTIVE—NOD mice model human type 1 diabetes and are used to investigate tolerance induction protocols for islet transplantation in a setting of autoimmunity. However, costimulation blockade–based tolerance protocols have failed in prolonging islet allograft survival in NOD mice.
RESEARCH DESIGN AND METHODS—To investigate the underlying mechanisms, we studied the ability of costimulation blockade to prolong islet allograft survival in congenic NOD mice bearing insulin-dependent diabetes (Idd) loci that reduce the frequency of diabetes.
RESULTS—The frequency of diabetes is reduced in NOD.B6 Idd3 mice and is virtually absent in NOD.B6/B10 Idd3 Idd5 mice. Islet allograft survival in NOD.B6 Idd3 mice treated with costimulation blockade is prolonged compared with NOD mice, and in NOD.B6/B10 Idd3 Idd5, mice islet allograft survival is similar to that achieved in C57BL/6 mice. Conversely, some Idd loci were not beneficial for the induction of transplantation tolerance. Alloreactive CD8 T-cell depletion in (NOD × CBA)F1 mice treated with costimulation blockade was impaired compared with similarly treated (C57BL/6.H2g7 × CBA)F1 mice. Injection of exogenous interleukin (IL)-2 into NOD mice treated with costimulation prolonged islet allograft survival. NOD.B6 Idd3 mice treated with costimulation blockade deleted alloreactive CD8 T-cells and exhibited prolonged islet allograft survival.
CONCLUSIONS—Il2 is the Idd3 diabetes susceptibility gene and can influence the outcome of T-cell deletion and islet allograft survival in mice treated with costimulation blockade. These data suggest that Idd loci can facilitate induction of transplantation tolerance by costimulation blockade and that IL-2/Idd3 is a critical component in this process.
PMCID: PMC2606867  PMID: 18984741
21.  Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes 
PLoS ONE  2013;8(10):e77296.
In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.
PMCID: PMC3811978  PMID: 24204793
22.  Change you can B(cell)eive in: recent progress confirms a critical role for B cells in type 1 diabetes 
Purpose of review
Here we review extant recent findings regarding the multiple roles of B cells in type 1 diabetes (T1D) and discuss how autoreactive B cells may become activated by a breach in B cell tolerance, and thereby initiate disease. Finally, we discuss the use of B cell-targeted therapies for treatment of autoimmunity.
Recent findings
Anti-CD20-specific depletion of B cells prevents and reverses diabetes in humanCD20/non-obese diabetic (NOD) mice. Correspondingly, in nontransgenic NOD mice B cells are effectively depleted with high dose antimouse CD20 mAbs of varying isotypes, and this also prevents diabetes in more than 60% of the mice when administered early, and significantly delays disease in 15-week-old animals. A separate study revealed that targeting B cells with anti-CD22/cal monoclonal antibody therapy delays diabetes onset in prediabetic NOD mice and restores normoglycemia in new-onset hyperglycemic NOD mice. In humans, a clinical trial of rituximab in new onset type 1 diabetics has yielded promising preliminary findings.
B cells are major players in T1D in humans, and clearly essential for disease development in the NOD mouse model of T1D. In this review, we discuss the silencing of autoreactive B cells and how failure of this process may contribute to autoimmunity. Further, we describe the most recent advances in studies of therapeutic effects of B cell depletion in T1D, and provide recent data indicating the diverse functions by which B cells may mediate disease.
PMCID: PMC2968699  PMID: 19502979
autoimmunity; B cell depletion therapy; B lymphocytes; non-obese diabetic mice; type 1 diabetes
23.  Epigallocatechin-3-gallate modulates antioxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells 
Autoimmunity  2014;47(3):177-184.
Sjogren’s syndrome (SS) and type 1 diabetes are prevalent autoimmune diseases in the United States. We reported previously that Epigallocatechin-3-gallate (EGCG) prevented and delayed the onset of autoimmune disease in NOD mice, a model for both Sjogren’s syndrome (SS) and type 1 diabetes. EGCG also normalized the levels of proteins related to DNA repair and antioxidant activity in NOD.B10.Sn-H2 mice, a model for primary SS, prior to disease onset. The current study examined the effect of EGCG on the expression of antioxidant enzymes in the submandibular salivary gland and the pancreas of NOD mice and cultured human salivary gland acinar cells. NOD mice consuming 0.2% EGCG daily dissolved in water showed higher protein levels of peroxiredoxin 6 (PRDX6), a major antioxidant defense protein, and catalase, while the untreated NOD mice exhibited significantly lowered levels of PRDX6. Similarly, pancreas samples from water-fed NOD mice were depleted in PRDX6 and superoxide dismutase, while EGCG-fed mice showed high levels of these antioxidant enzymes. In cultured HSG cells EGCG increased PRDX6 levels significantly, and this was inhibited by p38 and JNK inhibitors, suggesting the EGCG-mediated increase in protective antioxidant capacity is regulated in part through MAPK pathway signaling. This mechanism may explain the higher levels of PRDX6 found in EGCG-fed NOD mice. These preclinical observations warrant future preclinical and clinical studies to determine whether EGCG or green tea polyphenols could be used in novel preventive and therapeutic approaches against autoimmune diseases and salivary dysfunction involving oxidative stress.
PMCID: PMC4301570  PMID: 24444391
EGCG; peroxiredoxin 6; NOD; antioxidant defense enzymes; Sjogren’s syndrome; Salivary gland
24.  Interferon gamma contributes to pre-implantation embryonic development and to implantation site structure in NOD mice 
Human reproduction (Oxford, England)  2010;25(11):2829-2839.
Pre-eclampsia, a syndrome usually accompanied by incomplete spiral arterial modification, occurs at increased frequency in diabetic women. Hyperglycemia in type 1 diabetic non-obese diabetic (NOD) mice impairs gestational spiral arterial remodelling despite high local levels of interferon gamma (Ifng), the triggering cytokine in mice. Pregnancies in NOD.Ifng−/− mice were assessed to investigate this enigma.
Fecundity was assessed using breeding history, flushing of pre-implantation embryos and histological and morphometric studies of implantation sites in normoglycemic (n-) and hyperglycemic (d-) females of NOD.Ifng−/− and NOD genotypes.
NOD.Ifng−/− but not NOD mice are infertile. In NOD.Ifng−/−, copulation often does not result in postimplantation pregnancy. Defective fertilization and delayed pre-implantation development limit n-NOD.Ifng−/− fertility; both mechanisms are exacerbated by hyperglycemia. At midgestation, implantation sites in n-NOD.Ifng−/− and n-NOD mice are histologically similar. In d-NOD.Ifng−/−, there is minimal development of spiral arteries, hypertrophy of the myometrial region containing uterine Natural Killer (uNK) cells and a deficit in cytoplasmic granule formation in the uNK cells.
Ifng contributes to the success of fertilization and to the rate of pre-implantation mouse embryo development in normogylcemic and hyperglycemic pregnancies. A physiological role for this cytokine in human pre-implantation development merits investigation.
PMCID: PMC2957476  PMID: 20813805 CAMSID: cams1499
diabetes; placenta; pregnancy; spiral arterial modification; uterine Natural Killer cells
25.  Dendritic cell–expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice 
Most treatments that prevent autoimmune diabetes in nonobese diabetic (NOD) mice require intervention at early pathogenic stages, when insulitis is first developing. We tested whether dendritic cell (DC)–expanded, islet antigen–specific CD4+ CD25+ suppressor T cells could treat diabetes at later stages of disease, when most of the insulin-producing islet β cells had been destroyed by infiltrating lymphocytes. CD4+ CD25+ CD62L+ regulatory T cells (T reg cells) from BDC2.5 T cell receptor transgenic mice were expanded with antigen-pulsed DCs and IL-2, and were then injected into NOD mice. A single dose of as few as 5 × 104 of these islet-specific T reg cells blocked diabetes development in prediabetic 13-wk-old NOD mice. The T reg cells also induced long-lasting reversal of hyperglycemia in 50% of mice in which overt diabetes had developed. Successfully treated diabetic mice had similar responses to glucose challenge compared with nondiabetic NOD mice. The successfully treated mice retained diabetogenic T cells, but also had substantially increased Foxp3+ cells in draining pancreatic lymph nodes. However, these Foxp3+ cells were derived from the recipient mice and not the injected T reg cells, suggesting a role for endogenous T reg cells in maintaining tolerance after treatment. Therefore, inoculation of DC-expanded, antigen-specific suppressor T cells has considerable efficacy in ameliorating ongoing diabetes in NOD mice.
PMCID: PMC2118426  PMID: 17210729

Results 1-25 (1148770)