Search tips
Search criteria

Results 1-25 (966589)

Clipboard (0)

Related Articles

1.  mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer 
Journal of Clinical Oncology  2011;29(17):2391-2396.
Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis.
Patients and Methods
Using the complementary DNA–mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases.
We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006).
Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment.
PMCID: PMC3107753  PMID: 21537050
2.  Immediate Risk for Cardiovascular Events and Suicide Following a Prostate Cancer Diagnosis: Prospective Cohort Study 
PLoS Medicine  2009;6(12):e1000197.
Katja Fall and Fang Fang and colleagues find that men newly diagnosed with prostate cancer are at increased risk of cardiovascular events and suicide.
Stressful life events have been shown to be associated with altered risk of various health consequences. The aim of the present study was to investigate whether the emotional stress evoked by a prostate cancer diagnosis increases the immediate risks of cardiovascular events and suicide.
Methods and Findings
We conducted a prospective cohort study by following all men in Sweden who were 30 y or older (n = 4,305,358) for a diagnosis of prostate cancer (n = 168,584) and their subsequent occurrence of cardiovascular events and suicide between January 1, 1961 and December 31, 2004. We used Poisson regression models to calculate relative risks (RRs) and 95% confidence intervals (CIs) of cardiovascular events and suicide among men who had prostate cancer diagnosed within 1 y to men without any cancer diagnosis. The risks of cardiovascular events and suicide were elevated during the first year after prostate cancer diagnosis, particularly during the first week. Before 1987, the RR of fatal cardiovascular events was 11.2 (95% CI 10.4–12.1) during the first week and 1.9 (95% CI 1.9–2.0) during the first year after diagnosis. From 1987, the RR for cardiovascular events, nonfatal and fatal combined, was 2.8 (95% CI 2.5–3.2) during the first week and 1.3 (95% CI 1.3–1.3) during the first year after diagnosis. While the RR of cardiovascular events declined, the RR of suicide was stable over the entire study period: 8.4 (95% CI 1.9–22.7) during the first week and 2.6 (95% CI 2.1–3.0) during the first year after diagnosis. Men 54 y or younger at cancer diagnosis demonstrated the highest RRs of both cardiovascular events and suicide. A limitation of the present study is the lack of tumor stage data, which precluded possibilities of investigating the potential impact of the disease severity on the relationship between a recent diagnosis of prostate cancer and the risks of cardiovascular events and suicide. In addition, we cannot exclude residual confounding as a possible explanation.
Men newly diagnosed with prostate cancer are at increased risks for cardiovascular events and suicide. Future studies with detailed disease characteristic data are warranted.
Please see later in the article for the Editors' Summary
Editors' Summary
Prostate cancer—a type of tumor that develops in a walnut-sized structure in the male reproductive system—is the commonest cancer (excluding skin cancer) among men in developed countries. In the USA and the UK, for example, one in six men will develop prostate cancer during their lifetime. Most prostate cancers develop in elderly men and, because these tumors usually grow relatively slowly, many men die with prostate cancer rather than as a result of it. Nevertheless, some prostate cancers are fast-growing and aggressive and prostate cancer is the second leading cause of cancer-related death among men. The symptoms of prostate cancer include problems urinating and excessive urination during the night. Nowadays, however, most prostate cancers are detected before they produce any symptoms by measuring the amount of a protein called the prostate-specific antigen (PSA) in the blood.
Why Was This Study Done?
Widespread PSA screening was introduced 20 years ago in the hope that early detection of prostate cancer would save lives. But, although many more prostate cancers are detected nowadays, the number of prostate cancer deaths has not changed significantly. Experts are divided, therefore, about whether the potential benefits of PSA screening outweigh its risks. Treatments for prostate cancer (for example, surgical removal of the prostate) may be more effective if they are started early but they can cause impotence and urinary incontinence, so should men be treated whose cancer might otherwise never affect their health? In addition, receiving a diagnosis of prostate cancer is stressful and there is growing evidence that stressful life events can increase an individual's risk of becoming ill or dying from a heart attack, stroke, or other “cardiovascular” events and of becoming mentally ill. In this study, therefore, the researchers investigate whether men diagnosed with prostate cancer in Sweden have increased risks of cardiovascular events and suicide during the first week and first year after their diagnosis.
What Did the Researchers Do and Find?
The researchers identified nearly 170, 000 men diagnosed with prostate cancer between 1961 and 2004 among Swedish men aged 30 years or older by searching the Swedish Cancer Register. They obtained information on subsequent fatal and nonfatal cardiovascular events and suicides from the Causes of Death Register and the Inpatient Register (in Sweden, everyone has a unique national registration number that facilitates searches of different health-related Registers). Before 1987, men with prostate cancer were about 11 times as likely to have a fatal cardiovascular event during the first week after their diagnosis as men without prostate cancer; during the first year after their diagnosis, men with prostate cancer were nearly twice as likely to have a cardiovascular event as men without prostate cancer (a relative risk of 1.9). From 1987, the relative risk of combined fatal and nonfatal cardiovascular events associated with a diagnosis of prostate cancer was 2.8 during the first week and 1.3 during the first year after diagnosis. The relative risk of suicide associated with a diagnosis of prostate cancer was 8.4 during the first week and 2.6 during the first year after diagnosis throughout the study period. Finally, men younger than 54 years at diagnosis had higher relative risks of both cardiovascular events and suicide.
What Do These Findings Mean?
These findings suggest that men newly diagnosed with prostate cancer have an increased risk of cardiovascular events and suicide. Because there is no information on tumor size or aggressiveness in the Cancer Register, the researchers could not look at the relationship between disease severity and the likelihood of a cardiovascular event or suicide. Furthermore, because of the study design, men who received a diagnosis of prostate cancer may have had additional characteristics in common that contributed to their increased risk of cardiovascular events and suicide. Nevertheless, these findings strongly suggest that the stress of the diagnosis itself rather than any subsequent treatment has deleterious effects on the health of men receiving a diagnosis of prostate cancer. Thus, strategies should be developed to reduce the risks of cardiovascular events and suicide—increased clinical and psychological monitoring—after a diagnosis of prostate cancer, particularly among young men, and this new information should be considered in the ongoing debate about the risks and benefits of PSA screening.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Cancer Institute provides information on all aspects of prostate cancer, (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on prostate cancer, including Prostate Cancer Screening, A Decision Guide (some information in multiple languages)
The UK National Health Service Choices Web site provides detailed information on prostate cancer
The UK-based Samaritans charity provides confidential nonjudgmental emotional support, 24 hours a day, for people who are experiencing feelings of distress or despair, including those which could lead to suicide
Outside the UK, Befrienders provides information on help lines for those experiencing distress
PMCID: PMC2784954  PMID: 20016838
3.  Validation of proposed prostate cancer biomarkers with gene expression data: a long road to travel 
Cancer Metastasis Reviews  2014;33(2-3):657-671.
Biomarkers are important for early detection of cancer, prognosis, response prediction, and detection of residual or relapsing disease. Special attention has been given to diagnostic markers for prostate cancer since it is thought that early detection and surgery might reduce prostate cancer-specific mortality. The use of prostate-specific antigen, PSA (KLK3), has been debated on the base of cohort studies that show that its use in preventive screenings only marginally influences mortality from prostate cancer. Many groups have identified alternative or additional markers, among which PCA3, in order to detect early prostate cancer through screening, to distinguish potentially lethal from indolent prostate cancers, and to guide the treatment decision. The large number of markers proposed has led us to the present study in which we analyze these indicators for their diagnostic and prognostic potential using publicly available genomic data. We identified 380 markers from literature analysis on 20,000 articles on prostate cancer markers. The most interesting ones appeared to be claudin 3 (CLDN3) and alpha-methysacyl-CoA racemase highly expressed in prostate cancer and filamin C (FLNC) and keratin 5 with highest expression in normal prostate tissue. None of the markers proposed can compete with PSA for tissue specificity. The indicators proposed generally show a great variability of expression in normal and tumor tissue or are expressed at similar levels in other tissues. Those proposed as prognostic markers distinguish cases with marginally different risk of progression and appear to have a clinically limited use. We used data sets sampling 152 prostate tissues, data sets with 281 prostate cancers analyzed by microarray analysis and a study of integrated genomics on 218 cases to develop a multigene score. A multivariate model that combines several indicators increases the discrimination power but does not add impressively to the information obtained from Gleason scoring. This analysis of 10 years of marker research suggests that diagnostic and prognostic testing is more difficult in prostate cancer than in other neoplasms and that we must continue to search for better candidates.
Electronic supplementary material
The online version of this article (doi:10.1007/s10555-013-9470-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4113682  PMID: 24477410
Prostate cancer; Biomarkers; Multivariate model; PSA; Prognostic signature
4.  Radical Prostatectomy Versus Watchful Waiting in Localized Prostate Cancer: the Scandinavian Prostate Cancer Group-4 Randomized Trial 
The benefit of radical prostatectomy in patients with early prostate cancer has been assessed in only one randomized trial. In 2005, we reported that radical prostatectomy improved prostate cancer survival compared with watchful waiting after a median of 8.2 years of follow-up. We now report results after 3 more years of follow-up.
From October 1, 1989, through February 28, 1999, 695 men with clinically localized prostate cancer were randomly assigned to radical prostatectomy (n = 347) or watchful waiting (n = 348). Follow-up was complete through December 31, 2006, with histopathologic review and blinded evaluation of causes of death. Relative risks (RRs) were estimated using the Cox proportional hazards model. Statistical tests were two-sided.
During a median of 10.8 years of follow-up (range = 3 weeks to 17.2 years), 137 men in the surgery group and 156 in the watchful waiting group died (P = .09). For 47 of the 347 men (13.5%) who were randomly assigned to surgery and 68 of the 348 men (19.5%) who were not, death was due to prostate cancer. The difference in cumulative incidence of death due to prostate cancer remained stable after about 10 years of follow-up. At 12 years, 12.5% of the surgery group and 17.9% of the watchful waiting group had died of prostate cancer (difference = 5.4%, 95% confidence interval [CI] = 0.2 to 11.1%), for a relative risk of 0.65 (95% CI = 0.45 to 0.94; P = .03). The difference in cumulative incidence of distant metastases did not increase beyond 10 years of follow-up. At 12 years, 19.3% of men in the surgery group and 26% of men in the watchful waiting group had been diagnosed with distant metastases (difference = 6.7%, 95% CI = 0.2 to 13.2%), for a relative risk of 0.65 (95% CI = 0.47 to 0.88; P = .006). Among men who underwent radical prostatectomy, those with extracapsular tumor growth had 14 times the risk of prostate cancer death as those without it (RR = 14.2, 95% CI = 3.3 to 61.8; P < .001).
Radical prostatectomy reduces prostate cancer mortality and risk of metastases with little or no further increase in benefit 10 or more years after surgery.
PMCID: PMC2518167  PMID: 18695132
5.  Molecular sampling of prostate cancer: a dilemma for predicting disease progression 
Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models.
We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases.
Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors.
The determination of the molecularly dominant tumor nodule may be limited by sampling at time of initial diagnosis, may not be present at time of initial diagnosis, or may occur as the disease progresses making the development of molecular biomarkers for prostate cancer progression challenging.
PMCID: PMC2855514  PMID: 20233430
6.  Macrophage Inhibitory Cytokine 1: A New Prognostic Marker in Prostate Cancer 
High serum levels of macrophage inhibitory cytokine 1 (MIC-1) are strongly associated with metastatic prostate cancer, suggesting MIC-1 is a biomarker for prostate cancer prognosis.
Experimental Design
We conducted a prospective cohort study of 1,442 Swedish men with a pathologically verified diagnosis of prostate cancer between 2001 and 2003. Blood was drawn either pretreatment (n = 431) or posttreatment (n = 1,011) and cases were followed for a mean time of 4.9 years (range, 0.1–6.8 years).
MIC-1 serum levels independently predicted poor cancer-specific survival with an almost 3-fold higher cancer death rate in patients with serum levels in the highest quartile compared with men with serum levels in the lowest quartile (adjusted hazard ratio, 2.98; 95% confidence interval, 1.82–4.68). Pretreatment MIC-1 levels revealed an even stronger association with disease outcome with an 8-fold higher death rate in the highest compared with the lowest category (adjusted hazard ratio, 7.98; 95% confidence interval, 1.73–36.86). Among patients considered to have localized disease, MIC-1 significantly increased the discriminative capacity between indolent and lethal prostate cancer compared with the established prognostic markers clinical stage, pathologic grade, and prostate-specific antigen level (P = 0.016). A sequence variant in the MIC-1 gene was associated with decreased MIC-1 serum levels (P = 0.002) and decreased prostate cancer mortality (P = 0.003), suggesting a causative role of MIC-1 in prostate cancer prognosis.
Serum MIC-1 concentration is a novel biomarker capable of predicting prostate cancer prognosis.
PMCID: PMC3557964  PMID: 19843661
7.  Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death 
Whether milk and dairy intake after a prostate cancer diagnosis is associated with a poorer prognosis is unknown. We investigated post-diagnostic milk and dairy intake in relation to risk of lethal prostate cancer (metastases and prostate cancer death) among participants in the Health Professionals Follow-Up Study.
The cohort consisted of 3,918 men diagnosed with apparently localized prostate cancer between 1986 and 2006, and followed to 2008. Data on milk and dairy intake were available from repeated questionnaires. We used Cox proportional hazards models to calculate hazard ratios (HR) and 95% confidence intervals (CI) of the association between post-diagnostic milk and dairy intake and prostate cancer outcomes.
We ascertained 229 prostate cancer deaths and an additional 69 metastases during follow-up. In multivariate analysis, total milk and dairy intakes after diagnosis were not associated with a greater risk of lethal prostate cancer. Men with the highest versus lowest intake of whole milk were at an increased risk of progression (HR 2.15; 95% CI: 1.28-3.60; P trend<0.01). Men in the highest versus lowest quintile of low-fat dairy intake were at a decreased risk of progression (HR 0.62; 95% CI: 0.40-0.95; P trend=0.07).
With the exception of whole milk, our results suggest that milk and dairy intake after a prostate cancer diagnosis is not associated with an increased risk of lethal prostate cancer.
This is the first larger prospective study investigating the relation between post-diagnostic milk and dairy intake and risk of lethal prostate cancer.
PMCID: PMC3297731  PMID: 22315365
8.  Prognostic value of an RNA expression signature derived from cell cycle proliferation genes for recurrence and death from prostate cancer: A retrospective study in two cohorts 
The lancet oncology  2011;12(3):245-255.
Optimal management of clinically localized prostate cancer presents unique challenges because of its highly variable and often indolent natural history. To predict disease aggressiveness, clinicians combine clinical parameters to create prognostic models, but the accuracy of current models is very limited. There is significant clinical need for biomarkers that improve our ability to predict disease outcome.
Using quantitative RT-PCR on RNA from formalin fixed paraffin-embedded tumour samples, we measured the expression level of 31 genes involved in cell cycle progression (CCP genes), created a predefined score and evaluated its ability to predict disease outcome. The signature was tested in a retrospective cohort of 366 patients from the U.S. who had undergone radical prostatectomy, and in a retrospective cohort of 337 men with clinically localized prostate cancer diagnosed by a transurethral resection (TURP) in the UK and managed conservatively.
The cell cycle progression signature was a highly significant predictor of outcome in both cohorts. After prostatectomy the CCP score predicted biochemical recurrence in univariate (Hazard ratio (HR) for a one unit change in CCP (doubling) = 1.89; 95% CI (1.54, 2.31) χ2 = 34·0, 1df, p = 5·6 × 10−9) and multivariate analysis (HR = 1.74; 95% CI (1.39, 2.17) χ2 = 21·65, 1df, p = 3·3 ×10−6). The CCP score and PSA were the dominant variables in the best predictive model and were much more significant than any other clinical measure. In the TURP cohort, the CCP score was the dominant variable for predicting death from prostate cancer in both univariate (HR= 2.92; 95% CI (2.38, 3.57) χ2 = 92·7, 1df, p = 6.1 × 10−22) and multivariate analyses (χ2 = 42·2, p = 8·2 × 10−11), where it was much stronger than all other prognostic factors. In no case 4 was there significant evidence for heterogeneity in the hazard ratio for the CCP score across any clinical parameter.
The CCP score provides a substantial amount of independent information about the risk of recurrence after radical prostatectomy and the risk of death in conservatively managed prostate cancer diagnosed by TURP. Taken together, these studies provide strong evidence that the CCP score is a highly robust prognostic marker which, after additional validation, could have a central role in determining appropriate treatment for prostate cancer patients.
Study funded by Cancer Research UK, the Orchid Appeal, US National Institutes of Health (SPORE CA92629), and the Koch Foundation. Molecular testing performed at Myriad Genetics.
PMCID: PMC3091030  PMID: 21310658
Prostate cancer; predictive model; Cell cycle progression genes
9.  Risk Assessment for Prostate Cancer Metastasis and Mortality at the Time of Diagnosis 
Although many tools for the assessment of prostate cancer risk have been published, most are designed to predict only biochemical recurrence, usually after a single specified treatment. We assessed the accuracy of the Cancer of the Prostate Risk Assessment (CAPRA) score, which was validated previously to predict pathological and biochemical outcomes after radical prostatectomy, to predict metastases, prostate cancer–specific mortality, and all-cause mortality.
We studied 10 627 men with clinically localized prostate cancer in the Cancer of the Prostate Strategic Urologic Research Endeavor registry, who underwent primary radical prostatectomy, radiation therapy (external beam or interstitial), androgen deprivation monotherapy, or watchful waiting/active surveillance, and had at least 6 months of follow-up after treatment. CAPRA scores were calculated at diagnosis from the prostate-specific antigen level, Gleason score, percentage of biopsy cores that were positive for cancer, clinical tumor stage, and age at diagnosis. Survival was studied with Kaplan–Meier analyses. Associations between increasing CAPRA scores and bone metastasis, cancer-specific mortality, and all-cause mortality were examined by use of proportional hazards regression, with adjustment for primary treatment; for all-cause mortality, the analysis also included adjustment for age and comorbidity. Accuracy of the CAPRA score was assessed with the concordance (c)-index.
Among the 10 627 patients, 311 (2.9%) men developed bone metastases, 251 (2.4%) died of prostate cancer, and 1582 (14.9%) died of other causes. Each single-point increase in the CAPRA score was associated with increased bone metastases (hazard ratio [HR] for bone metastases = 1.47, 95% confidence interval [CI] = 1.39 to 1.56), cancer-specific mortality (HR for prostate cancer death = 1.39, 95% CI = 1.31 to 1.48), and all-cause mortality (HR for death = 1.13, 95% CI = 1.10 to 1.16). The CAPRA score was accurate for predicting metastases (c-index = 0.78), cancer-specific mortality (c-index = 0.80), and all-cause mortality (c-index = 0.71).
In a large cohort of patients with clinically localized prostate cancer who were managed with one of five primary modalities, the CAPRA score predicted clinical prostate cancer endpoints with good accuracy. These results support the value of the CAPRA score as a risk assessment and stratification tool for both research studies and clinical practice.
PMCID: PMC2697208  PMID: 19509351
10.  Dietary Fatty Acid Intake and Prostate Cancer Survival in Örebro County, Sweden 
American Journal of Epidemiology  2012;176(3):240-252.
Although dietary fat has been associated with prostate cancer risk, the association between specific fatty acids and prostate cancer survival remains unclear. Dietary intake of 14 fatty acids was analyzed in a population-based cohort of 525 Swedish men with prostate cancer in Örebro County (1989–1994). Multivariable hazard ratios and 95% confidence intervals for time to prostate cancer death by quartile and per standard deviation increase in intake were estimated by Cox proportional hazards regression. Additional models examined the association by stage at diagnosis (localized: T0-T2/M0; advanced: T0-T4/M1, T3-T4/M0). Among all men, those with the highest omega-3 docosahexaenoic acid and total marine fatty acid intakes were 40% less likely to die from prostate cancer (Ptrend = 0.05 and 0.04, respectively). Among men with localized prostate cancer, hazard ratios of 2.07 (95% confidence interval: 0.93, 4.59; Ptrend = 0.03) for elevated total fat, 2.39 (95% confidence interval: 1.06, 5.38) for saturated myristic acid, and 2.88 (95% confidence interval: 1.24, 6.67) for shorter chain (C4-C10) fatty acid intakes demonstrated increased risk for disease-specific mortality for the highest quartile compared with the lowest quartile. This study suggests that high intake of total fat and certain saturated fatty acids may worsen prostate cancer survival, particularly among men with localized disease. In contrast, high marine omega-3 fatty acid intake may improve disease-specific survival for all men.
PMCID: PMC3491963  PMID: 22781428
fatty acids; prostatic neoplasms; survival analysis
11.  The clinical burden of prostate cancer in Canada: forecasts from the Montreal Prostate Cancer Model 
OBJECTIVES: The incidence of prostate cancer is increasing, as is the number of diagnostic and therapeutic interventions to manage this disease. We developed a Markov state-transition model--the Montreal Prostate Cancer Model--for improved forecasting of the health care requirements and outcomes associated with prostate cancer. We then validated the model by comparing its forecasted outcomes with published observations for various cohorts of men. METHODS: We combined aggregate data on the age-specific incidence of prostate cancer, the distribution of diagnosed tumours according to patient age, clinical stage and tumour grade, initial treatment, treatment complications, and progression rates to metastatic disease and death. Five treatments were considered: prostatectomy, radiation therapy, hormonal therapies, combination therapies and watchful waiting. The resulting model was used to calculate age-, stage-, grade- and treatment-specific clinical outcomes such as expected age at prostate cancer diagnosis and death, and metastasis-free, disease-specific and overall survival. RESULTS: We compared the model's forecasts with available cohort data from the Surveillance, Epidemiology and End Results (SEER) Program, based on over 59,000 cases of localized prostate cancer. Among the SEER cases, the 10-year disease-specific survival rates following prostatectomy for tumour grades 1, 2 and 3 were 98%, 91% and 76% respectively, as compared with the model's estimates of 96%, 92% and 84%. We also compared the model's forecasts with the grade-specific survival among patients from the Connecticut Tumor Registry (CTR). The 10-year disease-specific survival among the CTR cases for grades 1, 2 and 3 were 91%, 76% and 54%, as compared with the model's estimates of 91%, 73% and 37%. INTERPRETATION: The Montreal Prostate Cancer Model can be used to support health policy decision-making for the management of prostate cancer. The model can also be used to forecast clinical outcomes for individual men who have prostate cancer or are at risk of the disease.
PMCID: PMC1232349  PMID: 10763395
12.  Risk Prediction for Breast, Endometrial, and Ovarian Cancer in White Women Aged 50 y or Older: Derivation and Validation from Population-Based Cohort Studies 
PLoS Medicine  2013;10(7):e1001492.
Ruth Pfeiffer and colleagues describe models to calculate absolute risks for breast, endometrial, and ovarian cancers for white, non-Hispanic women over 50 years old using easily obtainable risk factors.
Please see later in the article for the Editors' Summary
Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.
Methods and Findings
Using data on white, non-Hispanic women aged 50+ y from two large population-based cohorts (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial [PLCO] and the National Institutes of Health–AARP Diet and Health Study [NIH-AARP]), we estimated relative and attributable risks and combined them with age-specific US-population incidence and competing mortality rates. All models included parity. The breast cancer model additionally included estrogen and progestin menopausal hormone therapy (MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, family history of breast or ovarian cancer, benign breast disease/biopsies, alcohol consumption, and body mass index (BMI); the endometrial model included menopausal status, age at menopause, BMI, smoking, oral contraceptive use, MHT use, and an interaction term between BMI and MHT use; the ovarian model included oral contraceptive use, MHT use, and family history or breast or ovarian cancer. In independent validation data (Nurses' Health Study cohort) the breast and ovarian cancer models were well calibrated; expected to observed cancer ratios were 1.00 (95% confidence interval [CI]: 0.96–1.04) for breast cancer and 1.08 (95% CI: 0.97–1.19) for ovarian cancer. The number of endometrial cancers was significantly overestimated, expected/observed = 1.20 (95% CI: 1.11–1.29). The areas under the receiver operating characteristic curves (AUCs; discriminatory power) were 0.58 (95% CI: 0.57–0.59), 0.59 (95% CI: 0.56–0.63), and 0.68 (95% CI: 0.66–0.70) for the breast, ovarian, and endometrial models, respectively.
These models predict absolute risks for breast, endometrial, and ovarian cancers from easily obtainable risk factors and may assist in clinical decision-making. Limitations are the modest discriminatory ability of the breast and ovarian models and that these models may not generalize to women of other races.
Please see later in the article for the Editors' Summary
Editors' Summary
In 2008, just three types of cancer accounted for 10% of global cancer-related deaths. That year, about 460,000 women died from breast cancer (the most frequently diagnosed cancer among women and the fifth most common cause of cancer-related death). Another 140,000 women died from ovarian cancer, and 74,000 died from endometrial (womb) cancer (the 14th and 20th most common causes of cancer-related death, respectively). Although these three cancers originate in different tissues, they nevertheless share many risk factors. For example, current age, age at menarche (first period), and parity (the number of children a woman has had) are all strongly associated with breast, ovarian, and endometrial cancer risk. Because these cancers share many hormonal and epidemiological risk factors, a woman with a high breast cancer risk is also likely to have an above-average risk of developing ovarian or endometrial cancer.
Why Was This Study Done?
Several statistical models (for example, the Breast Cancer Risk Assessment Tool) have been developed that estimate a woman's absolute risk (probability) of developing breast cancer over the next few years or over her lifetime. Absolute risk prediction models are useful in the design of cancer prevention trials and can also help women make informed decisions about cancer prevention and treatment options. For example, a woman at high risk of breast cancer might decide to take tamoxifen for breast cancer prevention, but ideally she needs to know her absolute endometrial cancer risk before doing so because tamoxifen increases the risk of this cancer. Similarly, knowledge of her ovarian cancer risk might influence a woman's decision regarding prophylactic removal of her ovaries to reduce her breast cancer risk. There are few absolute risk prediction models for ovarian cancer, and none for endometrial cancer, so here the researchers develop models to predict the risk of these cancers and of breast cancer.
What Did the Researchers Do and Find?
Absolute risk prediction models are constructed by combining estimates for risk factors from cohorts with population-based incidence rates from cancer registries. Models are validated in an independent cohort by testing their ability to identify people with the disease in an independent cohort and their ability to predict the observed numbers of incident cases. The researchers used data on white, non-Hispanic women aged 50 years or older that were collected during two large prospective US cohort studies of cancer screening and of diet and health, and US cancer incidence and mortality rates provided by the Surveillance, Epidemiology, and End Results Program to build their models. The models all included parity as a risk factor, as well as other factors. The model for endometrial cancer, for example, also included menopausal status, age at menopause, body mass index (an indicator of the amount of body fat), oral contraceptive use, menopausal hormone therapy use, and an interaction term between menopausal hormone therapy use and body mass index. Individual women's risk for endometrial cancer calculated using this model ranged from 1.22% to 17.8% over the next 20 years depending on their exposure to various risk factors. Validation of the models using data from the US Nurses' Health Study indicated that the endometrial cancer model overestimated the risk of endometrial cancer but that the breast and ovarian cancer models were well calibrated—the predicted and observed risks for these cancers in the validation cohort agreed closely. Finally, the discriminatory power of the models (a measure of how well a model separates people who have a disease from people who do not have the disease) was modest for the breast and ovarian cancer models but somewhat better for the endometrial cancer model.
What Do These Findings Mean?
These findings show that breast, ovarian, and endometrial cancer can all be predicted using information on known risk factors for these cancers that is easily obtainable. Because these models were constructed and validated using data from white, non-Hispanic women aged 50 years or older, they may not accurately predict absolute risk for these cancers for women of other races or ethnicities. Moreover, the modest discriminatory power of the breast and ovarian cancer models means they cannot be used to decide which women should be routinely screened for these cancers. Importantly, however, these well-calibrated models should provide realistic information about an individual's risk of developing breast, ovarian, or endometrial cancer that can be used in clinical decision-making and that may assist in the identification of potential participants for research studies.
Additional Information
Please access these websites via the online version of this summary at
This study is further discussed in a PLOS Medicine Perspective by Lars Holmberg and Andrew Vickers
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information about breast cancer, ovarian cancer, and endometrial cancer;
Information on the Breast Cancer Risk Assessment Tool, the Surveillance, Epidemiology, and End Results Program, and on the prospective cohort study of screening and the diet and health study that provided the data used to build the models is also available on the NCI site
Cancer Research UK, a not-for-profit organization, provides information about cancer, including detailed information on breast cancer, ovarian cancer, and endometrial cancer
The UK National Health Service Choices website has information and personal stories about breast cancer, ovarian cancer, and endometrial cancer; the not-for-profit organization Healthtalkonline also provides personal stories about dealing with breast cancer and ovarian cancer
PMCID: PMC3728034  PMID: 23935463
13.  A 25 Year Prospective Study of Plasma Adiponectin and Leptin Concentrations and Prostate Cancer Risk and Survival 
Clinical chemistry  2009;56(1):34-43.
Adipocytokines may mediate the association between adiposity and lethal prostate cancer outcomes.
In the Physicians’ Health Study, we prospectively examined the association of prediagnostic plasma concentrations of adiponectin and leptin with risk of developing incident prostate cancer (654 case diagnosed 1982-2000 and 644 age-matched controls) and, among cases, risk of dying from prostate cancer by 2007.
Adiponectin concentrations were not associated with risk of overall prostate cancer. However, men with higher adiponectin concentrations had lower risk of developing high grade or lethal cancer (metastatic or fatal disease). The relative risk (95% confidence interval) comparing the highest to the lowest quintile (Q5 vs. Q1) was 0.25 (0.07-0.87; Ptrend=0.02) for lethal cancer. Among all the cases, higher adiponectin concentrations predicted lower prostate cancer-specific mortality (hazard ratio, HR Q5 vs. Q1=0.39; 0.17-0.85; Ptrend=0.02), independent of body mass index (BMI), plasma C-peptide (a marker of insulin secretion), leptin, clinical stage and tumor grade. This inverse association was apparent mainly among men whose BMI ≥25 kg/m2 (HR Q5 vs. Q1=0.10; 0.01-0.78; Ptrend=0.02), but not among men of normal weight (Ptrend=0.51). Although the correlation of leptin concentrations with BMI (r=0.58, P <0.001) was stronger than that of adiponectin (r=−0.17, P<0.001), leptin was unrelated to prostate cancer risk or mortality.
Higher prediagnostic adiponectin (but not leptin) concentrations predispose men to a lower risk of developing high grade prostate cancer and a lower risk of subsequently dying from the cancer, suggesting a mechanistic link between obesity and poor PCa outcome.
PMCID: PMC2858593  PMID: 19910504
Adiponectin; obesity; prostate cancer; risk; survival
14.  A Systems Genetics Approach Identifies CXCL14, ITGAX, and LPCAT2 as Novel Aggressive Prostate Cancer Susceptibility Genes 
PLoS Genetics  2014;10(11):e1004809.
Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.
Author Summary
Prostate cancer is a remarkably common disease, and in 2014 it is estimated that it will account for 27% of new cancer cases in men in the US. However, less than 13% those diagnosed will succumb to prostate cancer, with most men dying from unrelated causes. The tests used to identify men at risk of fatal prostate cancer are inaccurate, which leads to overtreatment, unnecessary patient suffering, and represents a significant public health burden. Many studies have shown that hereditary genetic variation significantly alters susceptibility to fatal prostate cancer, although the identities of genes responsible for this are mostly unknown. Here, we used a mouse model of prostate cancer to identify such genes. We introduced hereditary genetic variation into this mouse model through breeding, and used a genetic mapping technique to identify 35 genes associated with aggressive disease. The levels of three of these genes were consistently abnormal in human prostate cancers with a more aggressive disease course. Additionally, hereditary differences in these same three genes were associated with markers of fatal prostate cancer in men. This approach has given us unique insights into how hereditary variation influences fatal forms of prostate cancer.
PMCID: PMC4238980  PMID: 25411967
15.  The Prostate Cancer Intervention Versus Observation Trial:VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): Design and Baseline Results of a Randomized Controlled Trial Comparing Radical Prostatectomy With Watchful Waiting for Men With Clinically Localized Prostate Cancer 
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer death in men. In the United States, 90% of men with prostate cancer are more than age 60 years, diagnosed by early detection with the prostate-specific antigen (PSA) blood test, and have disease believed confined to the prostate gland (clinically localized). Common treatments for clinically localized prostate cancer include watchful waiting (WW), surgery to remove the prostate gland (radical prostatectomy), external-beam radiation therapy and interstitial radiation therapy (brachytherapy), and androgen deprivation. Little is known about the relative effectiveness and harms of treatments because of the paucity of randomized controlled trials. The Department of Veterans Affairs/National Cancer Institute/Agency for Healthcare Research and Quality Cooperative Studies Program Study #407:Prostate Cancer Intervention Versus Observation Trial (PIVOT), initiated in 1994, is a multicenter randomized controlled trial comparing radical prostatectomy with WW in men with clinically localized prostate cancer. We describe the study rationale, design, recruitment methods, and baseline characteristics of PIVOT enrollees. We provide comparisons with eligible men declining enrollment and men participating in another recently reported randomized trial of radical prostatectomy vs WW conducted in Scandinavia. We screened 13 022 men with prostate cancer at 52 US medical centers for potential enrollment. From these, 5023 met initial age, comorbidity, and disease eligibility criteria, and a total of 731 men agreed to participate and were randomized. The mean age of enrollees was 67 years. Nearly one-third were African American. Approximately 85% reported that they were fully active. The median PSA was 7.8ng/mL (mean 10.2ng/mL). In three-fourths of men, the primary reason for biopsy leading to a diagnosis of prostate cancer was a PSA elevation or rise. Using previously developed tumor risk categorizations incorporating PSA levels, Gleason histologic grade, and tumor stage, it was found that approximately 40% had low-risk, 34% had medium-risk, and 21% had high-risk prostate cancer based on local histopathology. Comparison to our national sample of eligible men declining PIVOT participation as well as to men enrolled in the Scandinavian trial indicated that PIVOT enrollees are representative of men being diagnosed and treated in the United States and quite different from men in the Scandinavian trial. PIVOT enrolled an ethnically diverse population representative of men diagnosed with prostate cancer in the United States. Results will yield important information regarding the relative effectiveness and harms of surgery compared with WW for men with predominately PSA-detected clinically localized prostate cancer.
PMCID: PMC3540866  PMID: 23271771
16.  5α-reductase Inhibitors and Risk of High-grade or Lethal Prostate Cancer 
JAMA internal medicine  2014;174(8):1301-1307.
5α-reductase inhibitors (5ARIs) are widely used for benign prostatic hyperplasia despite controversy regarding potential risk of high-grade prostate cancer with use. Furthermore, the effect of 5ARIs on progression and prostate cancer death remains unclear.
To determine the association between 5ARI use and development of high-grade or lethal prostate cancer.
Design, Setting, and Participants
Prospective observational study of 38,058 men followed for prostate cancer diagnosis and outcomes between 1996–2010 in the Health Professionals Follow-up Study.
Use of 5ARIs between 1996–2010.
Main Outcome Measures
Cox proportional hazards models were used to estimate risk of prostate cancer diagnosis or development of lethal disease with 5ARI use, adjusting for possible confounders including prostate specific antigen testing.
During 448,803 person-years of follow-up, we ascertained 3681 incident prostate cancer cases. Of these, 289 were lethal (metastatic or fatal), 456 were high-grade (Gleason 8–10), 1238 were Gleason grade 7, and 1600 were low-grade (Gleason 2–6). A total of 2878 (7.6%) men reported use of 5ARIs between 1996 and 2010. After adjusting for confounders, men who reported ever using 5ARIs over the study period had a reduced risk of overall prostate cancer (HR 0.77; 95% CI, 0.65–0.91). 5ARI users had a reduced risk of Gleason 7 (HR 0.67; 95% CI, 0.49–0.91) and low-grade (Gleason 2–6) prostate cancer (HR 0.74; 95% CI, 0.57–0.95). 5ARI use was not associated with risk of high-grade (Gleason 8–10, HR 0.97; 95% CI, 0.64–1.46) or lethal disease (HR 0.99; 95% CI, 0.58–1.69). Increased duration of use was associated with significantly lower risk of overall prostate cancer (HR for 1 year of additional use 0.95; 95% CI, 0.92–0.99), localized (HR 0.95; 95% CI, 0.90–1.00), and low-grade disease (HR 0.92; 95% CI, 0.85–0.99). There was no association for lethal, high-grade, or grade 7 disease.
Conclusions and Relevance
While 5ARI use was not associated with developing high-grade or lethal prostate cancer, they were associated with a reduction in low-grade, Gleason 7 and overall prostate cancer. Since the number of patients with high-grade or lethal prostate cancer in our cohort was limited, we cannot rule out potential risk of harm with 5ARI use.
PMCID: PMC4122627  PMID: 24887392
17.  MUC-1 gene is associated with prostate cancer death: a 20-year follow-up of a population-based study in Sweden 
British Journal of Cancer  2007;97(6):730-734.
Anti-adhesion mucins have proven to play an important part in the biology of several types of cancer. Therefore, we test the hypothesis that altered expression of MUC-1 is associated with prostate cancer progression. We retrieved archival tumour tissue from a population-based cohort of 195 men with localised prostate cancer (T1a-b, Nx, M0) that has been followed for up to 20 years with watchful waiting. Semi-automated, quantitative immunohistochemistry was undertaken to evaluate MUC-1 expression. We modelled prostate cancer-specific death as a function of MUC-1 levels accounting for age, Gleason grade and tumour extent, and calculated age-adjusted and multivariate adjusted hazard ratios (HR). Men that had tumours with an MUC-intensity lower or higher than normal tissue had a higher risk of dying in prostate cancer, independent of tumour extent and Gleason score (HR 5.1 and 4.5, respectively). Adjustment for Gleason grade and tumour stage did not alter the results. Men with a Gleason score ⩾7 and MUC-1 deviating from the normal had a 17 (RR=17.1 95% confidence interval=2.3–128) times higher risk to die in prostate cancer compared with men with Gleason score <7 and normal MUC-1 intensity. In summary, our data show that MUC-1 is an independent prognostic marker for prostate cancer death.
PMCID: PMC2360377  PMID: 17726465
prostate cancer; MUC-1; population-based; prognostic marker; twenty year follow-up; anti-adhesion
18.  Prostate cancer (early) 
Clinical Evidence  2006;2006:1805.
Prostate cancer is the sixth most common cancer in the world, and 85% of cases are diagnosed in men over the age of 65 years. In men with well to moderately differentiated prostate cancer that remains within the capsule, clinical progression-free survival is 70% at 5 years, and 40% at 10 years.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for early prostate cancer? We searched: Medline, Embase, The Cochrane Library and other important databases up to February 2006 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
We found 25 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
In this systematic review we present information relating to the effectiveness and safety of the following interventions: adding hormone therapy to external beam radiation therapy, or to brachytherapy; adding neoadjuvant hormone therapy to surgery alone, or to surgery plus adjuvant hormone therapy; brachytherapy alone; external beam radiation therapy alone; hormone therapy plus standard care; immediate hormone therapy; radical prostatectomy; and watchful waiting.
Key Points
Prostate cancer is the sixth most common cancer in the world and 85% of cases are diagnosed in men over the age of 65 years. Subclinical prostate cancer is thought to be very common and increases with age, with an estimated prevalence of 30% in men aged 30-39 years, increasing to over 75% in men aged over 85 years.Risk factors include black ethnic origin, family history of prostate cancer and diet.In men with well to moderately differentiated prostate cancer that remains within the capsule, clinical progression free survival is 70% at 5 years and 40% at 10 years.Age adjusted mortality rates for prostate cancer do not seem to be affected by national PSA screening and treatment rates.
This review focuses on clinically localised disease that has not extended beyond the prostate capsule (TNM classification system T0, T1, T2, and American Urologic Staging system stages A and B).
Radical prostatectomy may reduce mortality compared with watchful waiting in men with clinically localised prostate cancer, but the benefits in quality adjusted life expectancy seem to be moderate. Radical prostatectomy may reduce overall and prostate cancer mortality and metastasis, but increases the risk of urinary and sexual dysfunction.
The benefits of external beam radiation therapy (EBRT) or brachytherapy compared with watchful waiting or radical prostatectomy are unknown. EBRT increases the risk of erectile dysfunction and toxicity to the surrounding tissues. Long term survival after EBRT depends on pre-treatment PSA level and tumour differentiation.
Hormone therapy may be used as neoadjuvant therapy before surgery or radiotherapy, concurrently with radiation therapy, or as an adjuvant to other treatments or usual care. Evidence of benefit from hormone therapy in early prostate cancer is very limited. Neoadjuvant hormone therapy may improve biochemical free survival when used with EBRT, but not when given before surgery plus adjuvant hormonal therapy. Immediate hormone therapy in men with clinically localised prostate cancer may reduce disease progression but may not reduce overall mortality, although few adequate studies have been found. Adjuvant hormonal therapy may reduce disease progression but may not improve overall survival compared with placebo.Hormone therapy is associated with increased rates of gynaecomastia and breast pain.
PMCID: PMC2907626  PMID: 19454100
19.  Fat intake after diagnosis and risk of lethal prostate cancer and all-cause mortality 
JAMA internal medicine  2013;173(14):1318-1326.
Nearly 2.5 million men currently live with prostate cancer in the United States, yet little is known about diet after diagnosis and prostate cancer progression and overall mortality.
Examine post-diagnostic fat intake in relation to lethal prostate cancer and all-cause mortality.
Design, Setting, Participants
Prospective study of 4577 men with non-metastatic prostate cancer in the Health Professionals Follow-up Study (1986–2010).
Post-diagnostic saturated, monounsaturated, polyunsaturated, trans, animal, and vegetable fat intakes.
Lethal prostate cancer (distant metastases or prostate cancer-specific death) and all-cause mortality.
We observed 315 events of lethal prostate cancer and 1064 deaths (median follow-up = 8.4 y). Crude rates per 1000 person-years for lethal prostate cancer were (highest v. lowest quintile): 7.6 v. 7.3 for saturated, 6.4 v. 7.2 for monounsaturated, 5.8 v. 8.2 for polyunsaturated, 8.7 v. 6.1 for trans, 8.3 v. 5.7 for animal, and 4.7 vs. 8.7 for vegetable fat. For all-cause mortality, the rates were: 28.4 v. 21.4 for saturated, 20.0 v. 23.7 for monounsaturated, 17.1 v. 29.4 for polyunsaturated, 32.4 v. 17.1 for trans, 32.0 v. 17.2 for animal, and 15.4 v. 32.7 for vegetable fat. Post-diagnostic vegetable fat was associated with lower risk of lethal prostate cancer [hazard ratio (HR; 10% energy): 0.71; 95%CI: 0.51, 0.98; p: 0.04] and all-cause mortality [HR (10% energy): 0.74; 95%CI: 0.61, 0.88; p: 0.001]. No other fats were associated with lethal prostate cancer. Saturated and trans fats after diagnosis were associated with higher all-cause mortality [HR (5% energy): 1.30; 95% CI: 1.05, 1.60; p: 0.02 and HR (1% energy): 1.25; 95% CI: 1.05, 1.49; p: 0.01, respectively].
Among men with non-metastatic prostate cancer, replacing carbohydrate and animal fat with vegetable fat may reduce risk of all-cause mortality. The potential benefit of vegetable fat for prostate cancer-specific outcomes merits further research.
PMCID: PMC3935610  PMID: 23752662
20.  α-Methylacyl-CoA racemase expression and lethal prostate cancer in the Physicians’ Health Study and Health Professionals Follow-up Study 
The Prostate  2011;72(3):301-306.
α-Methylacyl-CoA racemase (AMACR) is an enzyme that serves as a diagnostic biomarker of prostate cancer in clinical practice. Recent studies suggest that low AMACR expression is associated with biochemical recurrence and the development of fatal disease.
We conducted a prospective cohort study among 920 men aged 47–84 years, who were diagnosed with prostate cancer in the Physicians’ Health Study and the Health Professionals Follow-up Study cohorts, and whose resected tissue specimens were available for immunohistochemical analysis. We used Cox proportional hazards regression to evaluate the association of AMACR expression with lethal prostate cancer over a 20-year follow-up period.
In total, 68 men died from prostate cancer, and an additional 18 developed bony metastases during follow-up. We found that lower AMACR intensity was associated with higher prostate-specific antigen levels (p=0.003) and more advanced clinical stage (p=0.06) at diagnosis, and a non-significant trend for higher risk of lethal outcomes. The hazard ratio comparing the lowest to the highest quartile of AMACR expression intensity was 1.53 ((95% CI: 0.86, 2.73), p-for-trend across quartiles=0.07); this trend was further attenuated after adjustment for age, Gleason score, stage and cohort with a hazard ratio of 1.24 (95% CI 0.69, 2.22), p-for-trend=0.23.
Low AMACR expression in primary tumor specimens was not independently associated with the development of metastatic and lethal prostate cancer after treatment over a 20-year follow-up period, after adjustment for important clinical covariates at diagnosis.
PMCID: PMC3267640  PMID: 21713964
21.  A long-term survival analysis of prediagnostic body mass index, plasma C-peptide concentration, and prostate cancer-specific mortality among men with prostate cancer 
The lancet oncology  2008;9(11):1039-1047.
Excess body mass index (BMI) has been associated with adverse outcomes in prostate cancer, and hyperinsulinemia is a candidate mediator, but prospective data are sparse. We assessed the influence of prediagnostic BMI and plasma C-peptide (reflecting insulin secretion) on prostate cancer-specific mortality after diagnosis.
BMI was available at baseline (1982) and in 1990 among 2,546 men who developed prostate cancer (281 prostate cancer deaths). Baseline C-peptide concentration were available in 827 men (117 prostate cancer deaths). We used Cox proportional hazards regression models controlling for age, smoking, time between BMI measurement and prostate cancer diagnosis, and competing causes of death.
Compared with men of normal weight (BMI<25 kg/m2) at baseline, overweight men (BMI 25–29.9 kg/m2) and obese men (BMI≥30 kg/m2) had significantly higher risk of prostate cancer mortality; the proportional hazard ratio (HR)s (95% confidence interval, CI) were 1.47 (1.16–1.88) for overweight and 2.66 (1.62–4.39; Ptrend<0.0001) for obesity. The trend remained significant after controlling for clinical stage and Gleason grade and was stronger for prostate cancer diagnosed during the PSA screening era (1991–2007) or using BMI obtained in 1990. Men with C-peptide concentrations in the highest quartile (high), versus the lowest quartile (low), also had higher risk (HR=2.38; 1.31–4.30). Compared with men with BMI<25 kg/m2 and low C-peptide concentrations, those with BMI≥25 kg/m2 and high C-peptide concentration had a four times higher risk (HR=4.12; 1.97–8.61; Pinteraction=0.001) independent of clinical predictors.
Excess body weight and high plasma concentration of C-peptide each predispose men with a subsequent diagnosis of prostate cancer to increased likelihood of dying of this disease; those with both factors have the worst outcome.
PMCID: PMC2651222  PMID: 18835745
22.  Vitamin D Receptor Protein Expression in Tumor Tissue and Prostate Cancer Progression 
Journal of Clinical Oncology  2011;29(17):2378-2385.
Data suggest that circulating 25-hydroxyvitamin D [25(OH)D] interacts with the vitamin D receptor (VDR) to decrease proliferation and increase apoptosis for some malignancies, although evidence for prostate cancer is less clear. How VDR expression in tumor tissue may influence prostate cancer progression has not been evaluated in large studies.
Patients and Methods
We examined protein expression of VDR in tumor tissue among 841 patients with prostate cancer in relation to risk of lethal prostate cancer within two prospective cohorts, the Physicians' Health Study and Health Professionals Follow-Up Study. We also examined the association of VDR expression with prediagnostic circulating 25(OH)D and 1,25-dihydroxyvitamin D levels and with two VDR single nucleotide polymorphisms, FokI and BsmI.
Men whose tumors had high VDR expression had significantly lower prostate-specific antigen (PSA) at diagnosis (P for trend < .001), lower Gleason score (P for trend < .001), and less advanced tumor stage (P for trend < .001) and were more likely to have tumors harboring the TMPRSS2:ERG fusion (P for trend = .009). Compared with the lowest quartile, men whose tumors had the highest VDR expression had significantly reduced risk of lethal prostate cancer (hazard ratio [HR], 0.17; 95% CI, 0.07 to 0.41). This association was only slightly attenuated after adjustment for Gleason score and PSA at diagnosis (HR, 0.33; 95% CI, 0.13 to 0.83) or, additionally, for tumor stage (HR, 0.37; 95% CI, 0.14 to 0.94). Neither prediagnostic plasma vitamin D levels nor VDR polymorphisms were associated with VDR expression.
High VDR expression in prostate tumors is associated with a reduced risk of lethal cancer, suggesting a role of the vitamin D pathway in prostate cancer progression.
PMCID: PMC3107752  PMID: 21537045
23.  Serum testosterone is associated with aggressive prostate cancer in older men: results from the Baltimore Longitudinal Study of Aging 
BJU international  2009;105(6):824-829.
To evaluate the relationship between testosterone levels and the development of high-risk prostate cancer, by prospectively examining serum androgen concentrations in a well-studied cohort, as the role of testosterone in prostate cancer progression is debated.
The study comprised 781 men in the Baltimore Longitudinal Study of Aging who had sex steroid measurements before a diagnosis of prostate cancer, or at their last visit for those without cancer (no cancer, 636; cancer, not high risk, 109; cancer, high risk, 36). High-risk cancer was defined as death from prostate cancer, a prostate specific antigen (PSA) level of ≥20 ng/mL at diagnosis, or a Gleason score of ≥8. The hazard ratio (HR) of high-risk disease was determined using a Cox proportional hazards regression model with simple updating, and risk rates were stratified by age and tercile for androgens of interest based on the proportional hazards analyses.
The likelihood of high-risk prostate cancer doubled per unit (0.1) increase in the free testosterone index (FTI) for patients aged >65 years (HR 2.07, 95% confidence interval, CI, 1.01–4.23; P = 0.047); the likelihood for men aged ≤65 years was inversely related to the FTI (HR 0.96, 95% CI 0.35–2.6; P = 0.9). The risk rate per person-years increased from lowest to highest tercile of FTI for the oldest men (age >70 years) but this trend was not apparent among younger men.
Higher levels of serum free testosterone are associated with an increased risk of aggressive prostate cancer among older men. These data highlight the importance of prospective trials to insure the safety of testosterone-replacement therapy.
PMCID: PMC2848292  PMID: 19751256
prostate cancer; testosterone; high-risk
24.  Evaluating Prostate Cancer Mortality and Competing Risks of Death in Patients with Localized Prostate Cancer Using a Comprehensive Nomogram 
Prostate cancer and prostatic diseases  2012;15(4):10.1038/pcan.2012.21.
Determining the optimal treatment for a patient with newly-diagnosed prostate cancer must weigh the individual’s risk of disease progression against his risk of non-cancer death. We developed a predictive model incorporating clinicopathological tumor variables, patient age, comorbidity status, and primary treatment modality.
Materials and Methods
We identified 6,091 patients with clinically-localized prostate cancer managed with radical prostatectomy (n=4,117) or radiation therapy (n=1,974) from the Cancer of the Prostate Strategic Urologic Research Endeavor database. Fine and Gray competing-risks proportional hazards regression models were used to calculate the risks of prostate-cancer specific mortality (PCSM) and non-prostate cancer death and to generate a nomogram.
Median follow-up after treatment was 53 months (IQR 30, 80 months). In total, 983 men died during follow-up, including 167 who died of prostate cancer and 816 who died of non-prostate cancer causes. On multivariate analysis, higher Cancer of the Prostate Risk Assessment score and primary treatment with radiation were associated with an increased risk of PCSM, while older age, African-American race, and treatment with radiation predicted non-prostate cancer death. Number of comorbidities and receipt of androgen deprivation therapy correlated with an increased risk of non-prostate cancer death but not PCSM. The resulting nomogram allows quantification and comparison of the 10-year risks PCSM and non-prostate cancer death.
Integrating clinicopathological variables with comorbid conditions in a competing-risks model affords quantification and comparison of relative probabilities of PCSM and non-prostate cancer death following treatment. Our model thereby facilitates an individualized approach for counseling patients regarding prostate cancer management.
PMCID: PMC3815610  PMID: 22710832
Prostate cancer; Radical prostatectomy; Radiation therapy; Nomogram; Competing risks; Comorbidities
25.  Discovery and Validation of a Prostate Cancer Genomic Classifier that Predicts Early Metastasis Following Radical Prostatectomy 
PLoS ONE  2013;8(6):e66855.
Clinicopathologic features and biochemical recurrence are sensitive, but not specific, predictors of metastatic disease and lethal prostate cancer. We hypothesize that a genomic expression signature detected in the primary tumor represents true biological potential of aggressive disease and provides improved prediction of early prostate cancer metastasis.
A nested case-control design was used to select 639 patients from the Mayo Clinic tumor registry who underwent radical prostatectomy between 1987 and 2001. A genomic classifier (GC) was developed by modeling differential RNA expression using 1.4 million feature high-density expression arrays of men enriched for rising PSA after prostatectomy, including 213 who experienced early clinical metastasis after biochemical recurrence. A training set was used to develop a random forest classifier of 22 markers to predict for cases - men with early clinical metastasis after rising PSA. Performance of GC was compared to prognostic factors such as Gleason score and previous gene expression signatures in a withheld validation set.
Expression profiles were generated from 545 unique patient samples, with median follow-up of 16.9 years. GC achieved an area under the receiver operating characteristic curve of 0.75 (0.67–0.83) in validation, outperforming clinical variables and gene signatures. GC was the only significant prognostic factor in multivariable analyses. Within Gleason score groups, cases with high GC scores experienced earlier death from prostate cancer and reduced overall survival. The markers in the classifier were found to be associated with a number of key biological processes in prostate cancer metastatic disease progression.
A genomic classifier was developed and validated in a large patient cohort enriched with prostate cancer metastasis patients and a rising PSA that went on to experience metastatic disease. This early metastasis prediction model based on genomic expression in the primary tumor may be useful for identification of aggressive prostate cancer.
PMCID: PMC3691249  PMID: 23826159

Results 1-25 (966589)