Search tips
Search criteria

Results 1-25 (1075308)

Clipboard (0)

Related Articles

1.  Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales 
Journal of virological methods  2007;145(2):155-161.
The conventional methods for producing recombinant adeno-associated virus (rAAV) rely on transient transfection of adherent mammalian cells. To gain acceptance and achieve current good manufacturing process (cGMP) compliance, clinical grade rAAV production process should have the following qualities: simplicity, consistency, cost effectiveness, and scalability. Currently, the only viable method for producing rAAV in large-scale, e.g.≥1016 particles per production run, utilizes Baculovirus Expression Vectors (BEVs) and insect cells suspension cultures. The previously described rAAV production in 40 L culture using a stirred tank bioreactor requires special conditions for implementation and operation not available in all laboratories. Alternatives to producing rAAV in stirred-tank bioreactors are single-use, disposable bioreactors, e.g. Wave™. The disposable bags are purchased pre-sterilized thereby eliminating the need for end-user sterilization and also avoiding cleaning steps between production runs thus facilitating the production process. In this study, rAAV production in stirred tank and Wave™ bioreactors was compared. The working volumes were 10 L and 40 L for the stirred tank bioreactors and 5 L and 20 L for the Wave™ bioreactors. Comparable yields of rAAV, ~2e+13 particles per liter of cell culture were obtained in all volumes and configurations. These results demonstrate that producing rAAV in large scale using BEVs is reproducible, scalable, and independent of the bioreactor configuration. Keywords: adeno-associated vectors; large-scale production; stirred tank bioreactor; wave bioreactor; gene therapy.
PMCID: PMC2080829  PMID: 17606302
2.  Reproducible High Yields of Recombinant Adeno-Associated Virus Produced Using Invertebrate Cells in 0.02- to 200-Liter Cultures 
Human Gene Therapy  2011;22(8):1021-1030.
The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 106 cells/ml, ≥1016 purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.
Production of recombinant AAV in Sf9 insect cells infected with baculovirus is an established, economical, and scalable process. However, under serum-free clinical manufacturing conditions, cryopreserved baculovirus loses its ability to infect new batches of producer cells over time. This study by Cecchini and colleagues reports that cryopreserving insect cells infected with baculovirus provides a viable alternative for obtaining consistent levels of rAAV from any size culture.
PMCID: PMC3159527  PMID: 21381980
3.  Different tropism of adenoviruses and adeno-associated viruses to corneal cells: implications for corneal gene therapy 
Molecular Vision  2008;14:2087-2096.
Diseased corneas are potential targets for viral-based gene therapy to normalize (stimulate or inhibit) the expression of specific proteins. The choice of viral vectors is important to achieve optimal effect. The purpose of this study was to compare the tropism to different corneal cells of recombinant adenovirus (rAV) and recombinant adeno-associated virus (rAAV) constructs using live rabbit and organ-cultured human corneas.
rAV constructs harbored the green fluorescent protein (GFP) gene under the control of major immediate early cytomegalovirus (CMV) promoter. rAAV constructs from virus serotypes 1, 2 5, 7, and 8 had GFP under the chicken β-actin promoter and CMV enhancer. For organ culture, 16 healthy and diabetic postmortem human corneas were used. Five or fifteen μl rAV at 107 plaque forming units per 1 μl were added for 2 days to culture medium of uninjured corneas that were further cultured for 5–32 days. rAAV were added at 1.2–7.8×1010 vector genomes per cornea for 3 days to each cornea; the culture then continued for another 14–23 days. Corneal cryostat sections were examined by immunohistochemistry. Live rabbit corneas were used following excimer laser ablation of the corneal epithelium with preservation of the basal cell layer. Equal numbers of rAAV particles (2x1011 vector genomes) were applied to the cornea for 10 min. After seven days to allow for corneal healing and gene expression the animals were euthanized, the corneas were excised, and sections analyzed by immunohistochemistry.
By direct fluorescence microscopy of live organ-cultured human corneas GFP signal after rAV transduction was strong in the epithelium with dose-dependent intensity. On corneal sections, GFP was seen in all epithelial layers and some endothelial cells but most keratocytes were negative. In rAAV-transduced organ-cultured human corneas GFP signal could only be detected with anti-GFP antibody immunohistochemistry. GFP was observed in the epithelium, keratocytes, and endothelium, with more pronounced basal epithelial cell staining with rAAV1 than with other serotypes. No difference in the GFP expression patterns or levels between normal and diabetic corneas was noted. The rabbit corneas showed very similar patterns of GFP distribution to human corneas. With all rAAV serotype vectors, GFP staining in the epithelium was significantly (p=0.007) higher than the background staining in non-transduced corneas, with a trend for rAAV1 and rAAV8 to produce higher staining intensities than for rAAV2, rAAV5 (p=0.03; rAAV5 versus rAAV1), and rAAV7. rAAV serotype vectors also transduced stromal and endothelial cells in rabbit corneas to a different extent.
rAAV appears to reach many more corneal cells than rAV, especially keratocytes, although GFP expression levels were lower compared to rAV. rAV may be more useful than rAAV for gene therapy applications requiring high protein expression levels, but rAAV may be superior for keratocyte targeting.
PMCID: PMC2584774  PMID: 19023450
4.  Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors 
Human gene therapy  2005;16(2):235-247.
Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies.
Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been made in achieving successful vascular endothelial cell gene transfer. The results of the present study demonstrate the superior efficacy of recombinant adeno-associated virus (rAAV) serotype 1 and 5 vectors in comparison to the traditionally used rAAV serotype 2 in transduction of primary vascular endothelial and smooth muscle cells in vitro. Our results have identified sialic acid residues for rAAV1 transduction in endothelial cells, similar to rAAV5. Transduction of rat aortic segments demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors both ex vivo and in vivo, while rAAV2 showed no significant transduction. These results suggest significant advantages of using alternative rAAV serotypes 1 and 5 for vascular-targeted gene delivery.
PMCID: PMC1364465  PMID: 15761263
5.  Novel Strategy for Generation and Titration of Recombinant Adeno-Associated Virus Vectors 
Journal of Virology  2005;79(1):193-201.
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin α (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.
PMCID: PMC538720  PMID: 15596815
6.  Unique Biologic Properties of Recombinant AAV1 Transduction in Polarized Human Airway Epithelia* 
The Journal of biological chemistry  2006;281(40):29684-29692.
The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 ≫ rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 ≫ rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation.
PMCID: PMC1712671  PMID: 16899463
7.  Recombinant Adeno-Associated Virus Utilizes Host Cell Nuclear Import Machinery To Enter the Nucleus 
Journal of Virology  2014;88(8):4132-4144.
Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential.
IMPORTANCE Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction efficiency, in part due to cellular barriers that hinder successful subcellular trafficking to the nucleus, where uncoating and subsequent gene expression occur. Nuclear translocation of rAAV has been regarded as a limiting step for successful transduction but it remains ill-defined. We explored potential nuclear entry mechanisms for rAAV2 and found that rAAV2 can utilize the classical nuclear import pathway, involving the nuclear pore complex, the small GTPase Ran, and cellular karyopherins. These results could lend insight into the rational design of novel rAAV vectors that can more efficiently translocate to the nucleus, which may lead to more efficient transduction.
PMCID: PMC3993727  PMID: 24478436
8.  The potential of adeno-associated viral vectors for gene delivery to muscle tissue 
Expert opinion on drug delivery  2014;11(3):345-364.
Muscle-directed gene therapy is rapidly gaining attention primarily because muscle is an easily accessible target tissue and is also associated with various severe genetic disorders. Localized and systemic delivery of recombinant adeno-associated virus (rAAV) vectors of several serotypes results in very efficient transduction of skeletal and cardiac muscles, which has been achieved in both small and large animals, as well as in humans. Muscle is the target tissue in gene therapy for many muscular dystrophy diseases, and may also be exploited as a biofactory to produce secretory factors for systemic disorders. Current limitations of using rAAVs for muscle gene transfer include vector size restriction, potential safety concerns such as off-target toxicity and the immunological barrier composing of pre-existing neutralizing antibodies and CD8+ T-cell response against AAV capsid in humans.
Areas covered
In this article, we will discuss basic AAV vector biology and its application in muscle-directed gene delivery, as well as potential strategies to overcome the aforementioned limitations of rAAV for further clinical application.
Expert opinion
Delivering therapeutic genes to large muscle mass in humans is arguably the most urgent unmet demand in treating diseases affecting muscle tissues throughout the whole body. Muscle-directed, rAAV-mediated gene transfer for expressing antibodies is a promising strategy to combat deadly infectious diseases. Developing strategies to circumvent the immune response following rAAV administration in humans will facilitate clinical application.
PMCID: PMC4098646  PMID: 24386892
adeno-associated virus; gene therapy; gene transfer; muscle
9.  Producing Recombinant Adeno-Associated Virus in Foster Cells: Overcoming Production Limitations Using a Baculovirus–Insect Cell Expression Strategy 
Human Gene Therapy  2009;20(8):807-817.
Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells.
PMCID: PMC2829278  PMID: 19604040
10.  Application of Doxorubicin-induced rAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma 
Cancer Biology & Therapy  2008;7(2):303-309.
p53 gene transfer has been proposed as a potential therapeutic option for treatment of hepatocellular carcinoma (HCC). Compared to other commonly used gene transfer vectors such as adenovirus and retrovirus, recombinant adeno-associated virus serotype 2 (rAAV2) has shown promising results in human clinical trials. Significant enhancement in the gene transfer efficiency is needed, however, for HCC applications. In the present study, we applied chemotherapy drug Doxorubicin (DOX) to induce rAAV2 transduction of hepatomas. Using reporter assays, we showed that the DOX-treated hepatomas became more susceptible to rAAV2 infection in comparison to untreated controls: the permissiveness increased >350-fold and >120-fold for HepG2 (p53 wild-type) and Hep3B (p53 null) hepatomas, respectively. Using the induced permissiveness, we applied rAAV2-p53 transduction to restore p53 expression in the p53-null Hep3B hepatomas. Compared to rAAV2-p53 transduction alone, rAAV2-p53 transduction with DOX resulted in a >16-fold induction of p53 expression. The transduced Hep3B expressed as much as 380% more immunoreactive p53 in comparison to the wild-type p53 expression in the HepG2 hepatomas. Significantly, when Hep3B cells were treated with 0.5 μM of DOX and rAAV2-p53 (MOI = 10) for twelve hours, the cell viability dropped to 66% four days after the administration. This decrease in cell viability was similar to that of treatment with 1 μM of DOX alone in the absence of rAAV2. The 50% reduction in DOX administration—from 1 μM to 0.5 μM—revealed the antitumor property of the rAAV2-p53 transduction as well as the joint cytotoxicity of DOX and rAAV2-p53 against the p53-null hepatomas. We conclude that DOX mediates the enhancement effect on rAAV2 transduction of human hepatomas. Combined DOX and rAAV2-p53 administration may facilitate more efficient treatment for the HCC caused by p53 mutations.
PMCID: PMC3819450  PMID: 18059187
chemotherapy; doxorubicin; gene therapy; hepatocellular carcinoma; liver cancer; p53; rAAV2
11.  Species-Specific Differences in Mouse and Human Airway Epithelial Biology of Recombinant Adeno-Associated Virus Transduction 
Differences in airway epithelial biology between mice and humans have presented challenges to evaluating gene therapies for cystic fibrosis (CF) using murine models. In this context, recombinant adeno-associated virus (rAAV) type 2 and rAAV5 vectors have very different transduction efficiencies in human air-liquid interface (ALI) airway epithelia (rAAV2 ≅ rAAV5) as compared with mouse lung (rAAV5≫rAAV2). It is unclear if these differences are due to species-specific airway biology or limitations of ALI cultures to reproduce in vivo airway biology. To this end, we compared rAAV2 and rAAV5 transduction biology in mouse and human ALI cultures, and investigated the utility of murine ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) ALI epithelia to study CFTR complementation. Our results demonstrate that mouse ALI epithelia retain in vivo preferences for rAAV serotype transduction from the apical membrane (rAAV5≫rAAV2) not seen in human epithelia (rAAV2 ≅ rAAV5). Viral binding of rAAV2 and rAAV5 to the apical surface of mouse ALI airway epithelia was not significantly different, and proteasome-modulating agents significantly enhanced rAAV2 transduction to a level equivalent to that of rAAV5 in the presence of these agents, suggesting that the ubiquitin/proteasome pathway represents a more significant intracellular block for rAAV2 transduction of mouse airway epithelia. Interestingly, cAMP-inducible chloride currents were enhanced in ΔF 508C FTR mouse ALI cultures, making this model incompatible with CFTR complementation studies. These studies emphasize species-specific differences in airway biology between mice and humans that significantly influence the use of mice as surrogate models for rAAV transduction and gene therapy for CF.
PMCID: PMC1752084  PMID: 16195538
recombinant adeno-associated virus; airway model; serotype; tropism
12.  Species-Specific Differences in Mouse and Human Airway Epithelial Biology of Recombinant Adeno-Associated Virus Transduction 
Differences in airway epithelial biology between mice and humans have presented challenges to evaluating gene therapies for cystic fibrosis (CF) using murine models. In this context, recombinant adeno-associated virus (rAAV) type 2 and rAAV5 vectors have very different transduction efficiencies in human air–liquid interface (ALI) airway epithelia (rAAV2 ≅ rAAV5) as compared with mouse lung (rAAV5 >> rAAV2). It is unclear if these differences are due to species-specific airway biology or limitations of ALI cultures to reproduce in vivo airway biology. To this end, we compared rAAV2 and rAAV5 transduction biology in mouse and human ALI cultures, and investigated the utility of murine ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) ALI epithelia to study CFTR complementation. Our results demonstrate that mouse ALI epithelia retain in vivo preferences for rAAV serotype transduction from the apical membrane (rAAV5 >> rAAV2) not seen in human epithelia (rAAV2 ≅ rAAV5). Viral binding of rAAV2 and rAAV5 to the apical surface of mouse ALI airway epithelia was not significantly different, and proteasome-modulating agents significantly enhanced rAAV2 transduction to a level equivalent to that of rAAV5 in the presence of these agents, suggesting that the ubiquitin/proteasome pathway represents a more significant intracellular block for rAAV2 transduction of mouse airway epithelia. Interestingly, cAMP-inducible chloride currents were enhanced in ΔF508CFTR mouse ALI cultures, making this model incompatible with CFTR complementation studies. These studies emphasize species-specific differences in airway biology between mice and humans that significantly influence the use of mice as surrogate models for rAAV transduction and gene therapy for CF.
PMCID: PMC1752084  PMID: 16195538
recombinant adeno-associated virus; airway model; serotype; tropism
13.  Large-scale recombinant adeno-associated virus production 
Human Molecular Genetics  2011;20(R1):R2-R6.
Since recombinant adeno-associated virus (rAAV) was first described as a potential mammalian cell transducing system, frequent reports purportedly solving the problems of scalable production have appeared. Yet few of these processes have enabled the development of robust and economical rAAV production. Two production platforms have emerged that have gained broad support for producing both research and clinical grade vectors. These processes differ fundamentally in several aspects. One approach is based on adherent mammalian cells and uses optimized chemical transient transfection for introducing the essential genetic components into the cells. The other approach utilizes suspension cultures of invertebrate cells. Baculovirus expression vectors are used for introducing the AAV genes into the cells. In addition, the baculovirus provides the helper functions necessary for efficient AAV DNA replication. The use of suspension cell culture provides an intrinsically more scalable platform system than using adherent cells. The upstream processes for suspension cultures are amenable for automation and are easily monitored and regulated to maintain optimum conditions that produce consistent yields of rAAV. Issues relating to developing new and improving existing rAAV production methods are discussed.
PMCID: PMC3095058  PMID: 21531790
14.  Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap. 
Journal of Virology  1997;71(11):8780-8789.
Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate that an HSV-1 amplicon expressing the AAV-2 genes rep and cap along with HSV-1 helper functions supports the replication and packaging of rAAV vectors in a scaleable process.
PMCID: PMC192344  PMID: 9343238
15.  Large-Scale Adeno-Associated Viral Vector Production Using a Herpesvirus-Based System Enables Manufacturing for Clinical Studies 
Human Gene Therapy  2009;20(8):796-806.
The ability of recombinant adeno-associated viral (rAAV) vectors to exhibit minimal immunogenicity and little to no toxicity or inflammation while eliciting robust, multiyear gene expression in vivo are only a few of the salient features that make them ideally suited for many gene therapy applications. A major hurdle for the use of rAAV in sizeable research and clinical applications is the lack of efficient and versatile large-scale production systems. Continued progression toward flexible, scalable production techniques is a prerequisite to support human clinical evaluation of these novel biotherapeutics. This review examines the current state of large-scale production methods that employ the herpes simplex virus type 1 (HSV) platform to produce rAAV vectors for gene delivery. Improvements have substantially advanced the HSV/AAV hybrid method for large-scale rAAV manufacture, facilitating the generation of highly potent, clinical-grade purity rAAV vector stocks. At least one human clinical trial employing rAAV generated via rHSV helper-assisted replication is poised to commence, highlighting the advances and relevance of this production method.
PMCID: PMC2861951  PMID: 19569968
16.  Systemic Elimination of de novo Capsid Protein Synthesis from Replication-Competent AAV Contamination in the Liver 
Human Gene Therapy  2011;22(5):625-632.
The capsid protein synthesis in targeted tissues resulting from residual contaminating replication-competent adeno-associated virus particles (rcAAV) remains a concern for hazardous immune responses that shut down the factor IX expression in the hemophilia B clinical trial. To systematically reduce/eliminate the effects of potential contaminating rcAAV particles, we designed a novel adeno-associated virus (AAV) helper (pH22mir) with a microRNA binding cassette containing multiple copies of liver-specific (hsa-mir-122) and hematopoietic-specific (has-mir-142-3p) sequences to specifically control cap gene expression. In 293 cells, the rep and cap gene from pH22mir functioned similarly to that of conventional helper pH22. The vector yields and compositions from pH22mir and pH22 were indistinguishable. The performance of vector produced in this new system was comparable to that of similar vectors produced by conventional methods. In the human hepatic cell line, the capsid expression was reduced significantly from cap-mir cassette driven by a cytomegalovirus promoter. In the liver, 99.9% of capsid expression could be suppressed and no cap expression could be detected by western blot. In summary, we demonstrated a new concept in reducing de novo capsid synthesis in the targeted tissue. This strategy may not only help AAV vectors in controlling undesirable capsid gene expression, but can also be adopted for lentiviral or adenoviral vector production.
Replication-competent adeno-associated viral particles (rcAAV) are an undesirable contaminant of vector preparations that may affect transgene expression or elicit a hazardous immune response. In this study, Yuan and colleagues have designed a recombinant AAV (rAAV) vector production system to tightly control AAV rep and capsid activity from rcAAV particles. According to the authors, this new method does not have any effects on rAAV yield or affect rAAV vector performance and is compatible with all current rAAV production systems.
PMCID: PMC3081442  PMID: 21244243
17.  Intranasal Vaccination with AAV5 and 9 Vectors Against Human Papillomavirus Type 16 in Rhesus Macaques 
Human Gene Therapy  2012;23(7):733-741.
Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.
In this study, Nieto and colleagues examine in rhesus macaques the impact of an adeno-associated viral (AAV) vector-based intranasal vaccine regimen on the induction of prophylactic immune responses against human papillomavirus (HPV). They demonstrate that intranasal immunization using AAV5 as the prime vector followed by AAV9 induces strong humoral responses against HPV16 and show that this approach can neutralize HPV16 pseudovirions.
PMCID: PMC3404423  PMID: 22401308
18.  A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy 
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1) A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2) an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3) the use of viral doses to accommodate current limitations imposed by vector production methods; 4) and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation.
The capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a) that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL). The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD.
Regional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month), 91.3 ± 3.1 (2 months), and 89.6 ± 1.6% (3 months). rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month), 78.9 ± 7.4 (2 months), and 81.2 ± 6.2% (3 months) transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month), 2.1 ± 0.8 (2 months), and 2.1 ± 0.7% (3 months)] by vascular delivery. Micro-dystrophin delivered by rAAV8 and rAAV6 through the femoral artery significantly improved tetanic force and protected against eccentric contraction. Mouse studies translated to the hindlimb of cynamologous macaques using a similar vascular delivery paradigm. rAAV8 carrying eGFP in doses proportional to the mouse (5 × 1012 vg/kg in mouse vs 2 × 1012 vg/kg in monkey) demonstrated widespread gene expression [medial gastrocnemius – 63.8 ± 4.9%, lateral gastrocnemius – 66.0 ± 4.5%, EDL – 80.2 ± 3.1%, soleus – 86.4 ± 1.9%, TA – 72.2 ± 4.0%.
These studies demonstrate regional vascular gene delivery with AAV serotype(s) in mouse and non-human primate at doses, pressures and volumes applicable for clinical trials in children with DMD.
PMCID: PMC2082019  PMID: 17892583
19.  Successful Production of Pseudotyped rAAV Vectors Using a Modified Baculovirus Expression System 
Scalable production of rAAV vectors remains a major obstacle to the clinical application of this prototypical gene therapy vector. A recently developed baculovirus-based production protocol (M. Urabe et al., 2002, Hum. Gene Ther. 13, 1935–1943) found limited applications due to the system’s design. Here we report a detailed analysis of the stability of the original baculovirus system components BacRep, BacVP, and transgene cassette-containing BacGFP. All of the baculovirus helpers analyzed were prone to passage-dependent loss-of-function deletions resulting in considerable decreases in rAAV titers. To alleviate the instability and to extend the baculovirus platform to other rAAV serotypes, we have modified both Rep- and Cap-encoding components of the original system. The modifications include a parvoviral phospholipase A2 domain swap allowing production of infectious rAAV8 vectors in vivo. Alternatively, an infectious rAAV8 (or rAAV5) vector incorporating the AAV2 VP1 capsid protein in a mosaic vector particle with AAV8 capsid proteins was produced using a novel baculovirus vector. In this vector, the level of AAV2 VP1 expression is controlled with a “riboswitch,” a self-cleaving ribozyme controlled by toyocamycin in the “ON” mode. The redesigned baculovirus system improves our capacity for rAAV manufacturing by making this production platform more applicable to other existing serotypes.
PMCID: PMC1351154  PMID: 16213797
AAV; baculovirus; PLA2
20.  Integrating Adenovirus–Adeno-Associated Virus Hybrid Vectors Devoid of All Viral Genes 
Journal of Virology  1999;73(11):9314-9324.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus–adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (ΔAd.AAV) and stimulate transgene integration. We demonstrate here that ΔAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. ΔAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. ΔAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The ΔAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with ΔAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that ΔAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. ΔAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.
PMCID: PMC112966  PMID: 10516040
21.  AAV's Anatomy: Roadmap for Optimizing Vectors for Translational Success 
Current gene therapy  2010;10(5):319-340.
Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success.
PMCID: PMC3920455  PMID: 20712583
Adeno-associated virus; clinical trials; directed evolution; gene delivery; immune response; capsid modification; targeting
22.  Enhancement of Muscle Gene Delivery with Pseudotyped Adeno-Associated Virus Type 5 Correlates with Myoblast Differentiation 
Journal of Virology  2001;75(16):7662-7671.
Adeno-associated virus (AAV)-based muscle gene therapy has achieved tremendous success in numerous animal models of human diseases. Recent clinical trials with this vector have also demonstrated great promise. However, to achieve therapeutic benefit in patients, large inocula of virus will likely be necessary to establish the required level of transgene expression. For these reasons, efforts aimed at increasing the efficacy of AAV-mediated gene delivery to muscle have the potential for improving the safety and therapeutic benefit in clinical trials. In the present study, we compared the efficiency of gene delivery to mouse muscle cells for recombinant AAV type 2 (rAAV-2) and rAAV-2cap5 (AAV-2 genomes pseudo-packaged into AAV-5 capsids). Despite similar levels of transduction by these two vectors in undifferentiated myoblasts, pseudotyped rAAV-2cap5 demonstrated dramatically enhanced transduction in differentiated myocytes in vitro (>500-fold) and in skeletal muscle in vivo (>200-fold) compared to rAAV-2. Serotype-specific differences in transduction efficiency did not directly correlate with viral binding to muscle cells but rather appeared to involve endocytic or intracellular barriers to infection. Furthermore, application of this pseudotyped virus in a mouse model of Duchenne's muscular dystrophy also demonstrated significantly improved transduction efficiency. These findings should have a significant impact on improving rAAV-mediated gene therapy in muscle.
PMCID: PMC115001  PMID: 11462038
23.  Establishment of an AAV Reverse Infection-Based Array 
PLoS ONE  2010;5(10):e13479.
The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited.
Principal Findings
We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments.
Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays.
PMCID: PMC2957432  PMID: 20976058
24.  Production of High-Titer Recombinant Adeno-Associated Virus Vectors in the Absence of Helper Adenovirus 
Journal of Virology  1998;72(3):2224-2232.
Recently, efficient and long-term in vivo gene transfer by recombinant adeno-associated virus type 2 (rAAV) vectors has been demonstrated in a variety of tissues. Further improvement in vector titer and purity will expedite this in vivo exploration and provide preclinical information required for use in human gene therapy. In an effort to obtain higher titers, we constructed a novel AAV helper plasmid which utilizes translational control of AAV Rep genes (J. Li et al., J. Virol. 71:5236–5243, 1997). To address the issue of purity, in this study we report the first rAAV production method which is completely free of adenovirus (Ad) helper virus. The new production system uses a plasmid construct which contains a mini-Ad genome capable of propagating rAAV in the presence of AAV Rep and Cap genes. This construct is missing some of the early and most of the late Ad genes and is incapable of producing infectious Ad. Transfection of 293 cells with the new mini-Ad helper and AAV packaging plasmids results in high-titer rAAV vectors with yields greater than 1,000 transducing units, or 105 viral particles per cell. When rAAV vectors were produced by using this production scheme and compared to traditional heat-inactivated rAAV preparations in vitro and in vivo, we observed transduction equivalent to or better than normal levels. The complete removal of infectious Ad from AAV production should facilitate a better understanding of immune response to AAV vectors in vivo, eliminate the need for developing replication-competent Ad assays, and provide a more defined reagent for clinical use.
PMCID: PMC109519  PMID: 9499080
25.  The Upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia 
Molecular genetics and metabolism  2013;110(3):275-280.
Glycogen storage disease type-Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-α (G6Pase-α or G6PC) manifest impaired glucose homeostasis characterized by fasting hypoglycemia, growth retardation, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. Two efficacious recombinant adeno-associated virus pseudotype 2/8 (rAAV8) vectors expressing human G6Pase-α have been independently developed. One is a single-stranded vector containing a 2864-bp of the G6PC promoter/enhancer (rAAV8-GPE) and the other is a double-stranded vector containing a shorter 382-bp minimal G6PC promoter/enhancer (rAAV8-miGPE). To identify the best construct, a direct comparison of the rAAV8-GPE and the rAAV8-miGPE vectors was initiated to determine the best vector to take forward into clinical trials. We show that the rAAV8-GPE vector directed significantly higher levels of hepatic G6Pase-α expression, achieved greater reduction in hepatic glycogen accumulation, and led to a better toleration of fasting in GSD-Ia mice than the rAAV8-miGPE vector. Our results indicated that additional control elements in the rAAV8-GPE vector outweigh the gains from the double-stranded rAAV8-miGPE transduction efficiency, and that the rAAV8-GPE vector is the current choice for clinical translation in human GSD-Ia.
PMCID: PMC3898731  PMID: 23856420
glycogen storage disease type I; glucose-6-phosphatase; adeno-associated virus; gene therapy

Results 1-25 (1075308)