Search tips
Search criteria

Results 1-25 (1529995)

Clipboard (0)

Related Articles

1.  Modeling Corticosteroid Effects in a Rat Model of Rheumatoid Arthritis II: Mechanistic Pharmacodynamic Model for Dexamethasone Effects in Lewis Rats with Collagen-Induced Arthritis 
A mechanism-based model for pharmacodynamic effects of dexamethasone (DEX) was incorporated into our model for arthritis disease progression in the rat to aid in identification of the primary factors responsible for edema and bone loss. Collagen-induced arthritis (CIA) was produced in male Lewis rats following injection of type II porcine collagen. DEX was given subcutaneously in single doses of 0.225 or 2.25 mg/kg or 7-day multiple doses of 0.045 or 0.225 mg/kg at 21 days post disease induction. Effects on disease progression were measured by paw swelling, bone mineral density (BMD), body weights, plasma corticosterone (CST), and TNF-α, IL-1β, IL-6, and GR mRNA expression in paw tissue. Lumbar and femur BMD was determined by PIXImus-II dual energy x-ray absorptiometry. Plasma CST was assayed by HPLC. Cytokine and GR mRNA were assayed by quantitative real-time PCR. Indirect response models, drug-interaction models, transduction processes, and the 5th-generation model of corticosteroid dynamics were integrated and applied using S-ADAPT software to describe how dexamethasone binding to GR can regulate diverse processes. Cytokine mRNA, GR mRNA, plasma CST, and paw edema were suppressed following DEX administration. TNF-α mRNA expression and BMD appeared to increase immediately after dosing but were ultimately reduced. Model parameters indicated that IL-6 and IL-1β were most sensitive to inhibition by DEX. TNF-α appeared to primarily influence edema while IL-6 contributed the most to bone loss. Lower doses of corticosteroids may be sufficient to suppress the cytokines most relevant to bone erosion.
PMCID: PMC2574741  PMID: 18448864
2.  RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models: comparison with anti-TNFα or anti-IL-1 therapies 
Arthritis Research & Therapy  2009;11(6):R187.
Rat adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) feature bone loss and systemic increases in TNFα, IL-1β, and receptor activator of NF-κB ligand (RANKL). Anti-IL-1 or anti-TNFα therapies consistently reduce inflammation in these models, but systemic bone loss often persists. RANKL inhibition consistently prevents bone loss in both models without reducing joint inflammation. Effects of these therapies on systemic markers of bone turnover and inflammation have not been directly compared.
Lewis rats with established AIA or CIA were treated for 10 days (from day 4 post onset) with either PBS (Veh), TNFα inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was evaluated by monitoring hind paw swelling. Bone mineral density (BMD) of paws and lumbar vertebrae was assessed by dual X-ray absorptiometry. Markers and mediators of bone resorption (RANKL, tartrate-resistant acid phosphatase 5b (TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-phase protein alpha-1-acid glycoprotein (α1AGP), multiple cytokines) were measured in serum (day 14 post onset).
Arthritis progression significantly increased paw swelling and ankle and vertebral BMD loss. Anti-TNFα reduced paw swelling in both models, and reduced ankle BMD loss in AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and reduced ankle BMD loss in both models. Anti-TNFα and anti-IL-1 failed to prevent vertebral BMD loss in either model. OPG-Fc reduced BMD loss in ankles and vertebrae in both models, but had no effect on paw swelling. Serum RANKL was elevated in AIA-Veh and CIA-Veh rats. While antiTNFα and anti-IL-1 partially normalized serum RANKL without any changes in serum TRACP 5B, OPG-Fc treatment reduced serum TRACP 5B by over 90% in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had increased serum α1AGP, IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL2), and AIA-Veh rats also had significantly greater serum PGE2, TNFα and IL-17. Anti-TNFα reduced systemic α1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased systemic α1AGP, IL-8 and PGE2. In contrast, RANKL inhibition by OPG-Fc did not lessen systemic cytokine levels in either model.
Anti-TNFα or anti-IL-1 therapy inhibited parameters of local and systemic inflammation, and partially reduced local but not systemic bone loss in AIA and CIA rats. RANKL inhibition prevented local and systemic bone loss without significantly inhibiting local or systemic inflammatory parameters.
PMCID: PMC3003514  PMID: 20003323
3.  Gene therapy for established murine collagen-induced arthritis by local and systemic adenovirus-mediated delivery of interleukin-4 
Arthritis Research  2000;2(4):293-302.
To determine whether IL-4 is therapeutic in treating established experimental arthritis, a recombinant adenovirus carrying the gene that encodes murine IL-4 (Ad-mIL-4) was used for periarticular injection into the ankle joints into mice with established collagen-induced arthritis (CIA). Periarticular injection of Ad-mIL-4 resulted in a reduction in the severity of arthritis and joint swelling compared with saline- and adenoviral control groups. Local expression of IL-4 also reduced macroscopic signs of joint inflammation and bone erosion. Moreover, injection of Ad-mIL-4 into the hind ankle joints resulted in a decrease in disease severity in the untreated front paws. Systemic delivery of murine IL-4 by intravenous injection of Ad-mIL-4 resulted in a significant reduction in the severity of early-stage arthritis.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that is characterized by joint inflammation, and progressive cartilage and bone erosion. Recent research has identified certain biologic agents that appear more able than conventional therapies to halt effectively the progression of disease, as well as ameliorate disease symptoms. One potential problem with the use of biologic agents for arthritis therapy is the need for daily or weekly repeat dosing. The transfer of genes directly to the synovial lining can theoretically circumvent the need for repeat dosing and reduce potential systemic side effects [1,2]. However, although many genes have been effective in treating murine CIA if administrated at a time before disease onset, local intra-articular or periarticular gene transfer has not been highly effective in halting the progression of established disease. IL-4, similar to tumor necrosis factor (TNF)-α and IL-1 inhibitors, has been shown be therapeutic for the treatment of murine CIA when administered intravenously as a recombinant protein, either alone or in combination with IL-10. IL-4 can downregulate the production of proinflammatory and T-helper (Th)1-type cytokines by inducing mRNA degradation and upregulating the expression of inhibitors of proinflammatory cytokines such as IL-1 receptor antagonist (IL-1Ra) [3,4]. IL-4 is able to inhibit IL-2 and IFN-γ production by Th1 cells, resulting in suppression of macrophage activation and the production of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNF-α by monocytes and macrophages [4,5,6,7,8,9].
In order to examine the therapeutic effects of local and systemic IL-4 expression in established CIA, an adenoviral vector carrying the gene for murine IL-4 (Ad-mIL-4) was generated. The ability of Ad-mIL-4 to treat established CIA was evaluated by local periarticular and systemic intravenous injection of Ad-mIL-4 into mice at various times after disease onset.
Materials and methods:
Male DBA/1 lacJ (H-2q) mice, aged 7-8 weeks, were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). The mice were immunized intradermally at the base of tail with 100 μ g bovine type II collagen. On day 21 after priming, mice received a boost injection (intradermally) with 100 μ g type II collagen in incomplete adjuvant. For the synchronous onset of arthritis, 40 μ g lipopolysaccharide (Sigma, St Louis, MO, USA) was injected intraperitoneally on day 28. Ad-mIL-4 was injected periarticularly into the hind ankle joints of mice on day 32 or intravenously by tail vein injection on day 29. Disease severity was monitored every other day using an established macroscopic scoring system ranging from 0 to 4: 0, normal; 1, detectable arthritis with erythma; 2, significant swelling and redness; 3, severe swelling and redness from joint to digit; and 4, maximal swelling with ankylosis. The average of macroscopic score was expressed as a cumulative value for all paws, with a maximum possible score of 16 per mouse. Cytokine production by joint tissue or serum were assessed using enzyme-linked immunosorbent assay (ELISA; R&D Systems, Minneapolis, MN, USA).
To examine the therapeutic effects of IL-4 gene transfer in a murine model of arthritis, 5×108 particles of Ad-mIL-4 and enhanced green fluorescent protein (Ad-eGFP) were administered by periarticular injection into the ankle joints of mice with established disease 4 days after lipopolysaccharide injection. All mice had established disease at time of injection. As shown in Figure 1, the severity of arthritis (Fig. 1a), paw thickness (Fig. 1b), and the number of arthritic paws (Fig. 1c) were all significantly reduced in the Ad-mIL-4 group, compared with the saline- and Ad-eGFP-treated groups. Analysis of the bones in the ankle joints of control arthritic mice showed evidence of erosion with an associated monocytic infiltrate around the joint space compared with the Ad-mIL-4-treated and nonarthritic control joints. In addition, injection of the ankle joints in the hind legs resulted in a therapeutic effect in the front paws. A similar contralateral effect has been observed with adenoviral-mediated delivery of viral (v)-IL-10. Interestingly, a high level of murine IL-10 also was detected from the joint lysates of Ad-mIL-4-treated naïve and arthritic mice, with the production of endogenous IL-10 correlating with the dose of Ad-mIL-4. The administration of recombinant IL-4 protein systemically has been shown to be therapeutic in murine CIA models if given before disease onset. To examine the effect of systemic IL-4 delivered by gene transfer, 1×109 particles of Ad-mIL-4 were injected via the tail vein of collagen-immunized mice the day after lipopolysaccharide injection. Whereas the immunized control mice, injected with Ad-eGFP, showed disease onset on day 3 after lipopolysaccharide injection, Ad-mIL-4-treated mice showed a delay in disease onset and as a reduction in the total number of arthritic paws. Also, systemic injection of Ad-mIL-4 suppressed the severity of arthritis in CIA mice according to arthritis index.
Gene therapy represents a novel approach for delivery of therapeutic agents to joints in order to treat the pathologies associated with RA and osteoarthritis, as well as other disorders of the joints. In the present study we examined the ability of local periarticular and systemic gene transfer of IL-4 to treat established and early-stage murine CIA, respectively. We have demonstrated that both local and systemic administration of Ad-mIL-4 resulted in a reduction in the severity of arthritis, as well as in the number of arthritic paws. In addition, the local gene transfer of IL-4 reduced histologic signs of inflammation and of bone erosion. Interestingly, local delivery of Ad-mIL-4 was able to confer a therapeutic effect to the untreated, front paws through a currently unknown mechanism. In addition, both local and systemic expression of IL-4 resulted in an increase in the level of endogenous IL-10, as well as of IL-1Ra (data not shown). Previous experiments have shown that gene transfer of IL-10 and IL-1 and TNF inhibitors at the time of disease initiation (day 28) is therapeutic. However, delivery of these agents after disease onset appeared to have only limited therapeutic effect. In contrast, the present results demonstrate that IL-4, resulting from local periarticular and systemic injection of Ad-mIL-4, was able partially to reverse progression of established and early-stage disease, respectively. These results, as well as those of others, support the potential application of IL-4 gene therapy for the clinical treatment of RA.
PMCID: PMC17812  PMID: 11056670
adenoviral vectors; collagen-induced arthritis; gene therapy; IL-4; IL-10; rheumatoid arthritis
4.  Modeling effects of dexamethasone on disease progression of bone mineral density in collagen-induced arthritic rats 
A mechanism-based model was developed to characterize the crosstalk between proinflammatory cytokines, bone remodeling biomarkers, and bone mineral density (BMD) in collagen-induced arthritic (CIA) rats. Male Lewis rats were divided into five groups: healthy control, CIA control, CIA receiving single 0.225 mg kg−1 subcutaneous (SC) dexamethasone (DEX), CIA receiving single 2.25 mg kg−1 SC DEX, and CIA receiving chronic 0.225 mg kg−1 SC DEX. The CIA rats underwent collagen induction at day 0 and DEX was injected at day 21 post-induction. Disease activity was monitored throughout the study and rats were sacrificed at different time points for blood and paw collection. Protein concentrations of interleukin (IL)-1β, IL-6, receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), and tartrate-resistant acid phosphatase 5b (TRACP-5b) in paws were measured by enzyme-linked immunosorbent assays (ELISA). Disease progression and DEX pharmacodynamic profiles of IL-1β, IL-6, RANKL, and OPG were fitted simultaneously and parameters were sequentially applied to fit the TRACP-5b and BMD data. The model was built according to the mechanisms reported in the literature and modeling was performed using ADAPT 5 software with naïve pooling. Time profiles of IL-1β and IL-6 protein concentrations correlated with their mRNAs. The RANKL and OPG profiles matched previous findings in CIA rats. DEX inhibited the expressions of IL-1β, IL-6, and RANKL, but did not alter OPG. TRACP-5b was also inhibited by DEX. Model predictions suggested that anti-IL-1β therapy and anti-RANKL therapy would result in similar efficacy for prevention of bone loss among the cytokine antagonists.
PMCID: PMC4618640  PMID: 26516581
Biomarkers; bone modeling; dexamethasone; pharmacodynamics; systems model
5.  Modeling Pharmacokinetics/Pharmacodynamics of Abatacept and Disease Progression in Collagen-Induced Arthritic Rats - A Population Approach 
The PK / PD of abatacept, a selective T-cell co-stimulation modulator, was examined in rats with collagen-induced arthritis (CIA) using a nonlinear mixed effect modeling approach. Male Lewis rats underwent collagen induction to produce rheumatoid arthritis. Two single-dose groups received either 10 mg/kg intravenous (IV) or 20 mg/kg subcutaneous (SC) abatacept, and one multiple-dose group received one 20 mg/kg SC abatacept dose and four additional 10 mg/kg SC doses. Effects on disease progression (DIS) were measured by paw swelling. Plasma concentrations of abatacept were assayed by enzyme-linked immunosorbent assay (ELISA). The PK / PD data were sequentially fitted using NONMEM VI. Goodness-of-fit was assessed by objective functions and visual inspection of diagnostic plots. The PK of abatacept followed a two-compartment model with linear elimination. For SC doses, short-term zero-order absorption was assumed with F = 59.2 %. The disease progression component was an indirect response model with a time-dependent change in paw edema production rate constant (kin) that was inhibited by abatacept. Variation in the PK data could be explained by inter-individual variability in clearance (CL) and central compartment volume (V1), while the large variability of the PD data may be the result of paw edema production (kin0) and loss rate constant (kout). Abatacept has modest effects on paw swelling in CIA rats. The PK / PD profiles were well described by the proposed model and allowed evaluation of inter-individual variability on drug- and DIS-related parameters.
PMCID: PMC3947259  PMID: 24233383
Abatacept; arthritis; model; pharmacokinetics; pharmacodynamics; disease progression
6.  Apoptosis and p53 expression in rat adjuvant arthritis 
Arthritis Research  2000;2(3):229-235.
The kinetics of apoptosis and the apoptosis-regulating gene p53 in adjuvant arthritis (AA) were investigated to assess the value of the AA rat model for testing apoptosis-inducing therapies. Very few terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL)-positive cells were detected during the early phases of AA, but on day 23 (chronic arthritis) the percentage of TUNEL-positive cells was significantly increased. Expression of p53 in synovial tissue gradually increased from days 5-23, which was markedly higher than p53 levels in rheumatoid arthritis (RA) synovium. Significant apoptosis only occurs late in rat AA and is concordant with marked p53 overexpression, making it useful model for testing proapoptotic therapies, but rat AA is not the best model for p53 gene therapy because dramatic p53 overexpression occurs in the latter stages of the disease.
RA is a chronic inflammatory disorder that is characterized by inflammation and proliferation of synovial tissue. The amount of DNA fragmentation is significantly increased in rheumatoid synovium. Only low numbers of apoptotic cells are present in rheumatoid synovial tissue, however. The proportion of cells with DNA strand breaks is so great that this disparity suggests impaired apoptosis. Therefore, the development of novel therapeutic strategies that are aimed at inducing apoptosis in rheumatoid synovial tissue is an attractive goal.
Although animal models for arthritis only approximate RA, they provide a useful test system for the evaluation of apoptosis-inducing therapies. AA in rats is among the most commonly used animal models for RA. For the interpretation of such studies, it is essential to characterize the extent to which apoptosis occurs during the natural course of the disease. Therefore, we evaluated the number of apoptotic cells and the expression of p53 in various phases of AA.
Materials and methods:
In order to generate the AA rat model, Lewis rats were immunized with Mycobacterium tuberculosis in mineral oil on day 0. Paw swelling usually started around day 10. For the temporal analysis rats were sacrificed on days 0, 5 (prearthritis), 11 (onset of arthritis), 17 (accelerating arthritis), or 23 (chronic arthritis).
For the detection of apoptotic cells, the hind paws were harvested on days 0(n=6),5 (n=6), 11 (n=6), 17 (n=6), or 23 (n=4). The right ankle joints were fixed in formalin, decalcified in ethylenediaminetetra-acetic acid, embedded in paraffin, and sectioned. The TUNEL method was applied. The percentage of TUNEL-positive cells of the total inflammatory cell infiltrate was noted.
For Western blot analysis, hind paws were harvested on days 0 (n=2), 5 (n=3), 11 (n=4), 17 (n=4), or 23 (n=4). In addition, hind paws of normal rats (n=2) were studied. The right ankle joints were snap frozen and pulverized. Synovial tissue was also obtained by arthroscopy of three patients with longstanding (>5 years) RA. After protein extraction in lysis buffer, equal amounts of protein samples from lysates were pooled and examined by Western bolt analysis using anti-p53 monoclonal antibody D07, which recognizes wild-type and mutant p53 from rodents and humans.
For immunohistochemical analysis, six rats were sacrificed on day 23 after immunization and synovial tissue of the right ankle joints was snap frozen and evaluated by immunohistochemistry using anti-p53-pan. The sections were evaluated semi-quantitatively using a 0-4 scale.
The kruskal-Wallis test for several group means was used to compare the percentage of TUNEL-positive cells at different time points.
The percentages of TUNEL-positive cells were strongly dependent on the stage of the disease. Very few TUNEL-positive cells were detected in normal rats or in the early phases of AA; the number of TUNEL-positive cells was 1% or less of the total cell infiltrate, including neutrophils, from days 0-17 (Table 1). On day 23, however, the percentage of TUNEL-positive cells was significantly increased [15.8±5.1% (mean ± standard error of the mean); P=0.01]. TUNEL-positive cells were observed in the intimal lining layer and synovial sublining of the invasive front, as well as in the articular cartilage (Fig. 1).
Subsequently, we examined expression of the tumor suppressor gene p53, because this is a key regulator of apoptosis. Expression of p53 in pooled rat AA joint extracts gradually increased from day 0 (6 arbitrary units) to day 23 (173 arbitrary units), which was markedly higher than p53 levels in RA synovium (32 arbitrary units; Table 1). Overexpression of p53 protein on day 23 was confirmed by immunohistochemistry in a separate experiment in six rats with AA. Overexpression of p53 was observed in the intimal lining layer and synovial sublining in all rats on day 23. In all cases a semiquantitative score of 4 was assigned, indicating that 51% or more of the cells were positive, whereas control sections were negative.
The results presented here reveal that the number of TUNEL-positive cells remained very low until chronic arthritis developed. This indicates that, although there was sufficient DNA damage to cause an increment in p53 expression in the early phases, DNA strand breaks that can be detected by TUNEL assays only occurred in chronic AA. The observation that TUNEL-positive cells were nearly absent in early AA clearly indicates that only very few cells were undergoing programmed cell death. This is an important observation, which makes it possible to study the effects of apoptosis-inducing therapies in situ in early and accelerating AA. An effective therapy would obviously increase the number of TUNEL-positive cells.
There is already some overexpression of p53 in the preclinical phase and during the onset of the arthritis, with an additional increment in p53 expression during accelerating and chronic arthritis. Presumably, this is wild-type p53, because the disease duration is likely too short to allow for the development of p53 mutations. Transcription of p53 is probably increased in response to the toxic environment of the inflamed joint. The increased expression of p53 in the joints of rats with chronic AA was even greater than that observed in synovial tissue of RA patients with long-standing disease.
Overexpression of p53 and increased numbers of apoptotic cells did not occur simultaneously in this model; rather p53 overexpression preceded increased apoptosis. Activation of p53 leads to induction of cell growth arrest, allowing time for DNA repair. It appears that DNA damage is only extensive enough to induce apoptosis in the latter stages of AA. Factors other than p53 may also play an important role in the actual induction of apoptosis
Taken together, significant apoptosis only occurs late in AA and it follows marked p53 overexpression, making it a useful model for testing proapoptotic therapies. AA is not the best model for p53 gene therapy, however, because dramatic p53 overexpression occurs in the latter stages of the disease.
PMCID: PMC17810  PMID: 11056668
adjuvant arthritis; apoptosis; p53; rheumatoid arthritis
7.  Gene expression profiling and functional analysis of angiogenic markers in murine collagen-induced arthritis 
Arthritis Research & Therapy  2012;14(4):R169.
Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA.
CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1.
Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice.
Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.
PMCID: PMC3580563  PMID: 22817681
8.  Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model 
The aims of the present study were to determine the relationship between bone destruction and bone formation in the delayed-type hypersensitivity arthritis (DTHA) model and to evaluate the effect of receptor activator of nuclear factor κB ligand (RANKL) blockade on severity of arthritis, bone destruction, and bone formation.
DTHA was induced in C57BL/6 mice. Inflammation, erosive joint damage, and new bone formation were semiquantitatively scored by histology. Osteoclast activity was assessed in vivo, and messenger RNA (mRNA) expression of mediators of bone destruction and bone formation were analyzed by mRNA deep sequencing. Serum concentrations of tartrate-resistant acid phosphatase 5b, carboxy-terminal telopeptide I (CTX-I), matrix metalloproteinase 3 (MMP3), and serum amyloid P component (SAP) were determined by enzyme-linked immunosorbent assay. Anti-RANKL monoclonal antibody treatment was initiated at the time of immunization.
Bone destruction (MMP3 serum levels, cathepsin B activity, and RANKL mRNA) peaked at day 3 after arthritis induction, followed by a peak in cartilage destruction and bone erosion on day 5 after arthritis induction. Periarticular bone formation was observed from day 10. Induction of new bone formation indicated by enhanced Runx2, collagen X, osteocalcin, MMP2, MMP9, and MMP13 mRNA expression was observed only between days 8 and 11. Anti-RANKL treatment resulted in a modest reduction in paw and ankle swelling and a reduction of serum levels of SAP, MMP3, and CTX-I. Destruction of the subchondral bone was significantly reduced, while no effect on bone formation was seen.
Anti-RANKL treatment prevents joint destruction but does not prevent new bone formation in the DTHA model. Thus, although occurring sequentially during the course of DTHA, bone destruction and bone formation are apparently not linked in this model.
PMCID: PMC4724155  PMID: 26801240
Arthritis; Joint inflammation; Bone destruction; Bone formation; Osteoclast; RANKL
9.  Population pharmacokinetic–pharmacodynamic–disease progression model for effects of anakinra in Lewis rats with collagen-induced arthritis 
A population pharmacokinetic–pharmacodynamic–disease progression (PK/PD/DIS) model was developed to characterize the effects of anakinra in collagen-induced arthritic (CIA) rats and explore the role of interleukin-1β (IL-1β) in rheumatoid arthritis. The CIA rats received either vehicle, or anakinra at 100 mg/kg for about 33 h, 100 mg/kg for about 188 h, or 10 mg/kg for about 188 h by subcutaneous infusion. Plasma concentrations of anakinra were assayed by enzyme-linked immunosorbent assay. Swelling of rat hind paws was measured. Population PK/PD/DIS parameters were computed for the various groups using non-linear mixed-effects modeling software (NONMEM® Version VI). The final model was assessed using visual predictive checks and nonparameter stratified bootstrapping. A two-compartment PK model with two sequential absorption processes and linear elimination was used to capture PK profiles of anakinra. A transduction-based feedback model incorporating logistic growth rate captured disease progression and indirect response model I captured drug effects. The PK and paw swelling versus time profiles in CIA rats were fitted well. Anakinra has modest effects (Imax = 0.28) on paw edema in CIA rats. The profiles are well-described by our PK/PD/DIS model which provides a basis for future mechanism-based assessment of anakinra dynamics in rheumatoid arthritis.
PMCID: PMC3407879  PMID: 22002845
Anakinra; Pharmacokinetics; Pharmacodynamics; Rheumatoid arthritis; Population model
10.  Quantitative Dynamic Models of Arthritis Progression in the Rat 
Pharmaceutical research  2008;26(1):196-203.
This comparison employs mathematical disease progression models to identify a rat model of arthritis with the least inter-animal variability and features lending to better study designs.
Arthritis was induced with either collagen (CIA) or mycobacterium (AIA) in either Lewis or Dark Agouti (DA) rats. Disease progression was monitored by paw edema and body weight. Models with production, loss, and feedback components were constructed and population analysis using NONMEM software was employed to identify inter-animal variability in the various disease progression parameters.
Onset time was the only parameter different within all four groups (DA–AIA 11.5 days, DA–CIA 16.5 days, Lewis–AIA 11.9 days, Lewis–CIA 13.9 days). The loss-of-edema rate constant was 20% slower in DA (0.362 h−1) than Lewis (0.466 h−1) rats. Most models exhibited peak paw edema 20 days post-induction. Edema in CIA returned to 150% of the initial value after the disease peaked. DA rats displayed more severe overall responses.
No statistical differences between groups were observed for inter-animal variation in disease onset, progression and severity parameters. Onset time varies and should be noted in the design of future studies. DA rats may offer a more dynamic range of edema response than Lewis rats.
PMCID: PMC3725549  PMID: 18758921
arthritis; disease; model; progression; rat
11.  Pharmacokinetic-Pharmacodynamic Disease Progression Model for Effect of Etanercept in Lewis Rats with Collagen-Induced Arthritis 
Pharmaceutical research  2011;28(7):1622-1630.
To develop a pharmacokinetic-pharmacodynamic disease progression (PK/PD/DIS) model to characterize the effect of etanercept in collagen-induced arthritis (CIA) rats on rheumatoid arthritis (RA) progression.
The CIA rats received either 5 mg/kg intravenous (IV), 1 mg/kg IV, or 5 mg/kg subcutaneous (SC) etanercept at day 21 post-disease induction. Effect on disease progression was measured by paw swelling. Plasma concentrations of etanercept were assayed by enzyme-linked immunosorbent assay (ELISA). PK profiles were fitted first; parameter estimates were applied to fit paw edema data for PD and DIS-related parameter estimation using ADAPT 5 software.
The model contained a two-compartment PK model with Michaelis-Menten elimination. For SC administration, two additional mathematical functions for absorption were added. The disease progression component was an indirect response model with a time-dependent change in paw edema production rate constant (kin) assumed to be inhibited by etanercept.
Etanercept has modest effects on paw swelling in CIA rats. The PK and PD profiles were well described by the developed PK/PD/DIS model, which may be used for other anti-cytokine biologic agents for RA.
PMCID: PMC3726066  PMID: 21360252
arthritis; etanercept; model; pharmacodynamics; pharmacokinetics
12.  Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis 
Arthritis Research & Therapy  2013;15(6):R186.
Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model.
DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression.
Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA/CII group and IL-1β, tumor necrosis factor-α, transforming growth factor-β, IL-6 and IL-23 in the IFA/CII group.
Chronic P. gingivalis oral infection prior to arthritis induction increases the immune system activation favoring Th17 cell responses, and ultimately accelerating arthritis development. These results suggest that chronic oral infection may influence RA development mainly through activation of Th17-related pathways.
PMCID: PMC3979094  PMID: 24456966
13.  Enhanced expression of genes involved in coagulation and fibrinolysis in murine arthritis 
Arthritis Research  2000;2(6):504-512.
We have analyzed the pattern of procoagulant and fibrinolytic gene expression in affected joints during the course of arthritis in two murine models. In both models, we found an increased expression of tissue factor, tissue factor pathway inhibitor, urokinase plasminogen activator, and plasminogen activator inhibitor 1, as well as thrombin receptor. The observed pattern of gene expression tended to favor procoagulant activity, and this pattern was confirmed by functional assays. These alterations would account for persistence of fibrin within the inflamed joint, as is seen in rheumatoid arthritis.
Accumulation of fibrin in the joints remains one of the most striking histopathological features of rheumatoid arthritis (RA). Recently, we have provided evidence of the deleterious role of synovial fibrin deposition in arthritic joints in antigen-induced arthritis (AIA), a well-established murine model of RA.
A local imbalance between fibrin formation and fibrin dissolution may result in fibrin deposition in the joints.
On the one hand, fibrin formation is mainly initiated by tissue factor (TF), a transmembrane protein serving as a receptor for factor VII. Under normal conditions, TF expression and activity are tightly regulated. Constitutive TF expression is restricted to perivascular and epithelial cells, and the catalytic activity of the TF/VIIa complex can be inhibited by tissue factor pathway inhibitor (TFPI). Pathological conditions can perturb the cell-type-restricted pattern of TF expression. In particular, recent reports have shown that transcriptional activation of TF can be mediated by molecular mechanisms involving induction of the early growth response gene 1 (EGR1) or of the protease-activated receptor (PAR1) or vascular endothelial growth factor (VEGF) genes.
On the other hand, fibrin degradation is mediated primarily by plasmin, which is the active form of the zymogen plasminogen. Conversion of plasminogen to plasmin is under the control of serine protease plasminogen activators, such as the urokinase plasminogen activator (uPA), and their inhibitors, such as the plasminogen activator inhibitor (PAI-1).
We hypothesized that the deposition of fibrin in the joints may result from an imbalance in the local expression of key genes involved in coagulation and fibrinolytic pathways. To test this hypothesis, we investigated mRNA levels in arthritic versus nonarthritic joint tissues from two murine models of RA: AIA and collagen-induced arthritis (CIA). Genes that are directly implicated in coagulation (TF, TFPI) and fibrinolysis (UPA, PAI1), and other genes that may influence the expression of TF (EGR1, PAR1, VEGF), were investigated using a novel multiprobe RNase protection assay (RPA). Furthermore, we evaluated coagulation activity in arthritic and nonarthritic mice.
Mice with AIA or CIA were sacrificed at different time points: 2, 4, and 16 h and 3, 7, and 14 d after intra-articular antigen injection for AIA; 42 d after the first immunization for CIA. Total RNA was prepared from arthritic and nonarthritic knees for AIA, or arthritic and nonarthritic hind paws for CIA. Messenger RNA (mRNA) levels of the genes described above were determined by RPA and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels. Coagulation assays were performed on joint tissue extracts and concentrations of thrombin-antithrombin III (TAT) complex were measured in plasma.
In AIA, all the genes studied except VEGF were upmodulated as early as 2 h. PAR1, TFPI, EGR1, and UPA expression decreased to control levels by 16 h, whereas the expression of TF and PAI1 remained elevated. At later times, only TF, PAI1, and UPA showed sustained overexpression. In CIA, gene expression was assayed at only one time point (42 d after immunization) and all genes showed higher mRNA levels in the affected paws than in control paws. In AIA mice, procoagulant activity and TF activity were significantly increased in arthritic joints, and in CIA mice, plasma TAT levels were significantly enhanced.
Fibrin deposition in synovia is prominent in both RA and experimental arthritis, suggesting that this protein may play a role in the pathogenesis of chronic inflammation. In this study, we have tried to shed some light on the molecular mechanisms leading to extravascular fibrin deposition, using two well-established mouse models of RA: AIA and CIA. The kinetics of gene expression was first analyzed in mice with AIA, because this model allows for an accurate, temporally controlled sampling of synovial inflammation. We then extended our observations by analyzing one time point in CIA, 42 d after immunization, when chronic inflammation is present. We found that in both models, coagulation and fibrinolysis in arthritic joints were significantly increased, and that the most significant increases were in TF and PAI-1.
Although the molecular mechanism or mechanisms responsible for the transcriptional changes observed are not completely understood, the increases in TF, PAI-1, and uPA are probably due to the production of proinflammatory cytokines such as IL-1 and TGF-α. These cytokines, whose presence in the inflamed synovium is well documented, are known to induce these genes through the activation of nuclear factor κB (NF-κB), a transcription factor. TF induction is also under the control of a proximal enhancer containing a binding site for the inducible transcription factor EGR1. Indeed, the early rise of EGR1 expression in AIA is consistent with its classification as immediate-early gene and may be responsible for the induction of early expression of TF. Early TF stimulation in AIA can also be accounted for by the transient overexpression of PAR1. Contrary to what has been shown in RA, VEGF expression remained essentially unchanged throughout the progression of AIA, probably reflecting a peculiarity of this murine model.
The alteration of the patterns of gene expression was accompanied by increased functional coagulation activity, which was more marked in AIA than in CIA.
Prominent fibrin deposition in two different animal models of RA – AIA and CIA – can be attributed to modulations in key regulatory genes for coagulation and fibrinolysis.
PMCID: PMC17822  PMID: 11056680
arthritis; coagulation; fibrinolysis; mice; RNase protection
14.  Calcineurin inhibitors exert rapid reduction of inflammatory pain in rat adjuvant-induced arthritis 
British Journal of Pharmacology  2003;139(5):927-934.
FK506 and cyclosporin A (CsA) are immunosuppressive drugs, that specifically inhibit T-cell activation via calcineurin inhibition. This study was undertaken to investigate whether calcineurin inhibitors exert analgesic actions in rat adjuvant-induced arthritis (AIA), an animal model of rheumatoid arthritis (RA).AIA was induced in female Lewis rats. Single doses of FK506 and CsA were orally administered to arthritic rats 17 days after arthritis induction. Intensity of hyperalgesia was assessed by measuring the pain threshold of hind paws. Tumor necrosis factor (TNF)-α, IL-1β and PGE2 levels in paw extracts were determined by ELISA. TNF activity was measured by L929 cell cytotoxicity assay. IL-1β and cyclooxygenase (COX) mRNA expression in arthritic paws were measured by RT–PCR.Single doses of FK506 and CsA markedly reduced joint hyperalgesia 24 h after drug administration, without affecting inflammation in an advanced stage of AIA.The calcineurin inhibitors partially reduced the elevated level of TNF-α in arthritic paws, however, the analgesic effects of these drugs were not associated with the reduction in TNF-α level.Moreover, treatment with anti-rat TNF-α antibody did not affect the hyperalgesia, when TNF-α activity was suppressed in arthritic paws by that treatment.Both calcineurin inhibitors reduced the elevated level of IL-1β in arthritic paws to a normal level, 24 h after drug administration.FK506 reduced IL-1β and COX-2 mRNA expression and PGE2 level in arthritic paws.In conclusion, calcineurin inhibitors rapidly reduce joint hyperalgesia probably by downregulating IL-1β, but not TNF-α, in AIA. Our findings may provide a new strategy for the treatment of pain in RA.
PMCID: PMC1573910  PMID: 12839866
Hyperalgesia; interleukin-1β; tumor necrosis factor-α; adjuvant-induced arthritis; rheumatoid arthritis; FK506; cyclosporin A
15.  Osteoporosis in experimental postmenopausal polyarthritis: the relative contributions of estrogen deficiency and inflammation 
Arthritis Research & Therapy  2005;7(4):R837-R843.
Generalized osteoporosis in postmenopausal rheumatoid arthritis (RA) is caused both by estrogen deficiency and by the inflammatory disease. The relative importance of each of these factors is unknown. The aim of this study was to establish a murine model of osteoporosis in postmenopausal RA, and to evaluate the relative importance and mechanisms of menopause and arthritis-related osteoporosis. To mimic postmenopausal RA, DBA/1 mice were ovariectomized, followed by the induction of type II collagen-induced arthritis. After the mice had been killed, paws were collected for histology, one femur for bone mineral density (BMD) and sera for analyses of markers of bone resorption (RatLaps; type I collagen cross-links, bone formation (osteocalcin) and cartilage destruction (cartilage oligomeric matrix protein), and for the evaluation of antigen-specific and innate immune responsiveness. Ovariectomized mice displayed more severe arthritis than sham-operated controls. At termination of the experiment, arthritic control mice and non-arthritic ovariectomized mice displayed trabecular bone losses of 26% and 22%, respectively. Ovariectomized mice with arthritis had as much as 58% decrease in trabecular BMD. Interestingly, cortical BMD was decreased by arthritis but was not affected by hormonal status. In addition, markers of bone resorption and cartilage destruction were increased in arthritic mice, whereas markers of bone formation were increased in ovariectomized mice. This study demonstrates that the loss of endogenous estrogen and inflammation contribute additively and equally to osteoporosis in experimental postmenopausal polyarthritis. Markers of bone remodeling and bone marrow lymphocyte phenotypes indicate different mechanisms for the development of osteoporosis caused by ovariectomy and arthritis in this model.
PMCID: PMC1175035  PMID: 15987485
16.  Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis 
Cartilage damage is a crucial step in rheumatoid arthritis (RA) disease progress while its molecular mechanisms are not fully understood. Here we investigated the expression of hedgehog (Hh) signal pathway in articular cartilage of adjuvant-induced arthritis (AIA) rats and its possible pathological role in cartilage damage.
30 rats were divided into sham and AIA group (n = 15). Complete Freund’s adjuvant was used to induce AIA. Secondary paw swelling was measured on day 10, 14, 18, 22 and 26 after induction. Rats were sacrificed on day 26 and knee joints and cartilage tissues were collected. Paw swelling, cartilage histopathologic changes and OARSI scores were used to evaluate AIA in rats. The protein expression of Hh signal related genes (Shh, Ptch1, Smo and Gli1) in cartilage were assayed by immunohistochemistry. The mRNA levels of Shh, Ptch1, Smo, Gli1, type-II collagen (COII) and aggrecan in cartilage were assayed by real-time PCR. In vitro study, cultured AIA chondrocytes were treated with cyclopamine (a specific inhibitor of Hh signal) and the mRNA levels of Hh signal and ECM components (COII and aggrecan) were measured by real-time PCR.
Immunohistochemical results revealed that Shh, Ptch1, Smo and Gli1 proteins showed higher expression in the articular cartilage of AIA rats than those of sham rats. Real-time PCR results confirmed that Shh, Ptch1, Smo and Gli1 mRNA levels in cartilage tissues of AIA rats were significantly increased compared with those of sham rats (1.6, 1.4, 1.6, 2.0 fold, respectively). The mRNA levels of Shh, Ptch1, Smo, and Gli1 were associated with the severity of cartilage damage (indicated by OARSI scores, COII and aggrecan mRNA levels in cartilage). In vitro, cyclopamine effectively decreased the mRNA levels of Shh, Ptch1, Smo and Gli1, and increased the mRNA levels of COII and aggrecan in AIA chondrocytes, suggesting Hh signal inhibition might directly promote ECM production.
Our findings present certain experimental evidence that Hh signal pathway is involved in the pathogenesis of cartilage damage in RA.
PMCID: PMC4377216  PMID: 25821409
Adjuvant-induced arthritis; Articular cartilage; Hedgehog signal pathway; Inflammation; Rheumatoid arthritis
17.  Kinsenoside inhibits the inflammatory mediator release in a type-II collagen induced arthritis mouse model by regulating the T cells responses 
Anoectochilus formosanus has been used as a Chinese folk medicine and is known as the “King of medicine” in Chinese society due to its versatile pharmacological effects such as anti-hypertension, anti-diabetes, anti-heart disease, anti-lung and liver diseases, anti-nephritis and anti-Rheumatoid arthritis. Kinsenoside is an essential and active compound of A. formosanus (Orchidaceae). However, the anti-arthritic activity of kinsenoside has still not been demonstrated. In the present study, we confirmed that the kinsenoside treatment rheumatoid arthritis induced by collagen-induced arthritis in mice.
Male DBA/1 J mice were immunized by intradermal injection of 100 μg of type II collagen in CFA. Kinsenoside was administered orally at a dose of 100 and 300 mg/kg once a day after 2nd booster injection. Paw swelling, arthritic score and histological change were measured. ELISA was used to measure cytokines including tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), interleukin-17 (IL-17) and interferon-γ (IFN-γ) in the splenocyte according to the manufacturer’s instructions.
Compared with model group, kinsenoside significantly inhibited paw edema and decreased the arthritis score and disease incidence. Histopathological examination demonstrated that kinsenoside effectively protected bone and cartilage of knee joint from erosion, lesion and deformation versus those from the CIA group. Kinsenoside also decreased IL-1β, TNF-α, and MMP-9 expression, and increased the expression of IL-10 in inflamed joints. The administration of kinsenoside significantly suppressed levels of TNF-α, IFN-γ, and IL-17, but increased concentrations of IL-10 in the supernatants of each of the splenocytes in CIA mice compared with that in the H2O-treated mice with CIA. Using flow cytometric analysis, we demonstrated that kinsenoside increases the population of CD4+CD25+ regulatory T cells, thereby inhibiting the Th1 cell and B cell populations. Anticollagen IgG1 and IgG2a levels decreased in the serum of kinsenoside-treated mice.
These results suggest that the administration of kinsenoside effectively suppressed inflammatory mediators’ production and bone erosion in mice with collagen-induced arthritis showing the potential as an anti-arthritis agent.
PMCID: PMC4766613  PMID: 26916550
CIA; Kinsenoside; Rheumatoid arthritis; Inflammation
18.  Pharmacokinetics, pharmacodynamics, and toxicities of methotrexate in healthy and collagen-induced arthritic rats 
Biopharmaceutics & drug disposition  2013;34(4):10.1002/bdd.1838.
Methotrexate (MTX) is an anchor drug used to treat rheumatoid arthritis (RA), but responsiveness is variable in effectiveness and toxicity. Methotrexate and its polyglutamate conjugates (MTXPGn) in red blood cells (RBC) have been associated with patient response. In the current study, 13 collagen-induced arthritic (CIA) rats and 12 healthy rats were given subcutaneous doses of either saline or 0.3 or 1.5 mg/kg per 2 days of MTX from day 21 to 43 post-induction. Blood samples were obtained at various times to measure MTX in plasma, and MTX and MTXPGn in RBC. Effects on disease progression were indicated by body weight and paw size. After multiple-doses, RBC MTX reached steady-state (82.4 nM) within 4 days. The MTXPG2 and MTXPG3 in RBC kept increasing until the end of the study attaining 12.5 and 17.7 nM. Significant weight loss was observed after dosing of 1.5 mg/kg/2 days, whereas moderate effectiveness was observed after dosing of 0.3 mg/kg/2 days. A pharmacokinetic/ pharmacodynamic/disease (PK/PD/DIS) model with indirect mechanisms and transduction components incorporating plasma MTX, RBC MTX, and RBC MTXPGn concentrations, and paw size was developed using naïve data pooling and ADAPT 5. The PK/PD in CIA rats dosed at 0.3 mg/kg/2 days were captured well by our proposed model. MTX showed modest (Imaxd = 0.16) but sensitive (IC50d = 0.712 nM) effectiveness on paw edema. The higher dose produced toxicity. The proposed model offers improved understanding of MTX effects on rheumatoid arthritis.
PMCID: PMC3656137  PMID: 23456770
Methotrexate; rheumatoid arthritis; pharmacokinetics; pharmacodynamics; disease progression
19.  Utilization of DXA Bone Mineral Densitometry in Ontario 
Executive Summary
Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario.
Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment
Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario.
Clinical Need
Burden of Disease
The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993.
Guidelines for Bone Mineral Density Testing
With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking.
Current Funding for Bone Mineral Density Testing
The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn).
Method of Review
This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement.
The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies.
Findings of Utilization Analysis
Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005.
OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population.
Women accounted for 90 % of all BMD tests performed in the province.
In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that:
With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older.
Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis.
18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk.
Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture.
Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women.
In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years.
Findings of Systematic Review and Analysis
Serial Bone Mineral Density Testing for People Not Receiving Osteoporosis Treatment
A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ –1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test.
Serial Bone Mineral Density Testing in People Receiving Osteoporosis Therapy
Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction.
Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction.
There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy.
Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose.
A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions.
Bone Mineral Density Testing and Treatment After a Fragility Fracture
A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. A review of 10 systematic reviews of RCTs and 3 additional RCTs showed that therapy with antiresorptive drugs significantly reduced the risk of vertebral fractures by 40 to 50% in postmenopausal osteoporotic women and osteoporotic men, and 2 antiresorptive drugs also reduced the risk of nonvertebral fractures by 30 to 50%. Evidence from observational studies in Canada and other jurisdictions suggests that patients who had undergone BMD measurements, particularly if a diagnosis of osteoporosis is made, were more likely to be given pharmacologic bone-sparing therapy. Despite these findings, the rate of BMD investigation and osteoporosis treatment after a fracture remained low (<20%) in Ontario as well as in other jurisdictions.
Bone Mineral Density Testing in Men
There are presently no specific Canadian guidelines for BMD screening in men. A review of the literature suggests that risk factors for fracture and the rate of vertebral deformity are similar for men and women, but the mortality rate after a hip fracture is higher in men compared with women. Two bisphosphonates had been shown to reduce the risk of vertebral and hip fractures in men. However, BMD testing and osteoporosis treatment were proportionately low in Ontario men in general, and particularly after a fracture, even though men accounted for 25% of the hip and wrist fractures. The Ontario data also showed that the rates of wrist fracture and hip fracture in men rose sharply in the 75- to 80-year age group.
Ontario-Based Economic Analysis
The economic analysis focused on analyzing the economic impact of decreasing future hip fractures by increasing the rate of BMD testing in men and women age greater than or equal to 65 years following a hip or wrist fracture. A decision analysis showed the above strategy, especially when enhanced by improved reporting of BMD tests, to be cost-effective, resulting in a cost-effectiveness ratio ranging from $2,285 (Cdn) per fracture avoided (worst-case scenario) to $1,981 (Cdn) per fracture avoided (best-case scenario). A budget impact analysis estimated that shifting utilization of BMD testing from the low risk population to high risk populations within Ontario would result in a saving of $0.85 million to $1.5 million (Cdn) to the health system. The potential net saving was estimated at $1.2 million to $5 million (Cdn) when the downstream cost-avoidance due to prevention of future hip fractures was factored into the analysis.
Other Factors for Consideration
There is a lack of standardization for BMD testing in Ontario. Two different standards are presently being used and experts suggest that variability in results from different facilities may lead to unnecessary testing. There is also no requirement for standardized equipment, procedure or reporting format. The current reimbursement policy for BMD testing encourages serial testing in people at low risk of accelerated bone loss. This review showed that biannual testing is not necessary for all cases. The lack of a database to collect clinical data on BMD testing makes it difficult to evaluate the clinical profiles of patients tested and outcomes of the BMD tests. There are ministry initiatives in progress under the Osteoporosis Program to address the development of a mandatory standardized requisition form for BMD tests to facilitate data collection and clinical decision-making. Work is also underway for developing guidelines for BMD testing in men and in perimenopausal women.
Increased use of BMD in Ontario since 1996 appears to be associated with increased use of antiresorptive medication and a decrease in hip and wrist fractures.
Data suggest that as many as 20% (98,000) of the DXA BMD tests in Ontario in 2005/06 were performed in people aged less than 65 years, with no fracture in the current year, and coded as being at low risk for accelerated bone loss; this is not consistent with current guidelines. Even though some of these people might have been incorrectly coded as low-risk, the number of tests in people truly at low risk could still be substantial.
Approximately 4% (21,000) of the DXA BMD tests in 2005/06 were repeat BMDs in low-risk individuals within a 24-month period. Even though this is in compliance with current OHIP reimbursement policies, evidence showed that biannual serial BMD testing is not necessary in individuals without major risk factors for fractures, provided that the baseline BMD is normal (T-score < –1). In this population, BMD measurements may be repeated in 3 to 5 years after the baseline test to establish the rate of bone loss, and further serial BMD tests may not be necessary for another 7 to 10 years if the rate of bone loss is no more than 1% per year. Precision of the test needs to be considered when interpreting serial BMD results.
Although changes in BMD may not be the perfect surrogate for reduction in fracture risk as a measure of response to osteoporosis treatment, experts advised that it is presently the only reliable test for monitoring response to treatment and to help motivate patients to continue treatment. Patients should not discontinue treatment if there is no increase in BMD after the first year of treatment. Lack of response or bone loss during treatment should prompt the physician to examine whether the patient is taking the medication appropriately.
Men and women who have had a fragility fracture at the hip, spine, wrist or shoulder are at increased risk of having a future fracture, but this population is presently under investigated and under treated. Additional efforts have to be made to communicate to physicians (particularly orthopaedic surgeons and family physicians) and the public about the need for a BMD test after fracture, and for initiating treatment if low BMD is found.
Men had a disproportionately low rate of BMD tests and osteoporosis treatment, especially after a fracture. Evidence and fracture data showed that the risk of hip and wrist fractures in men rises sharply at age 70 years.
Some counties had BMD utilization rates that were only 10% of that of the county with the highest utilization. The reasons for low utilization need to be explored and addressed.
Initiatives such as aligning reimbursement policy with current guidelines, developing specific guidelines for BMD testing in men and perimenopausal women, improving BMD reports to assist in clinical decision making, developing a registry to track BMD tests, improving access to BMD tests in remote/rural counties, establishing mechanisms to alert family physicians of fractures, and educating physicians and the public, will improve the appropriate utilization of BMD tests, and further decrease the rate of fractures in Ontario. Some of these initiatives such as developing guidelines for perimenopausal women and men, and developing a standardized requisition form for BMD testing, are currently in progress under the Ontario Osteoporosis Strategy.
PMCID: PMC3379167  PMID: 23074491
20.  Shuangtengbitong tincture treatment of collagen-induced arthritis via downregulation of the expression of IL-6, IL-8, TNF-α and NF-κB 
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease and may lead to joint damage, synovial membrane destruction and cartilage and bone damage. RA is closely associated with increased expression of interleukin (IL)-6, IL-8, tumor necrosis factor-α (TNF-α) and nuclear transcription factor-κB (NF-κB). Therefore, inhibition of the expression of IL-6, IL-8, TNF-α and NF-κB is a promising strategy for the development of novel anti-RA therapies. The aim of this study was to investigate the effect of shuangtengbitong tincture (STBT) on the expression of IL-6, IL-8, TNF-α and NF-κB in synovial tissues of rats with collagen-induced arthritis (CIA). STBT as a clinical prescription created at Fujian University of Traditional Chinese Medicines (TCM) Affiliated People’s Hospital has been shown to be clinically effective in the treatment of RA. The model of Wistar rats with CIA was created using bovine type II collagen. The two treatment groups with CIA were administered STBT (1 ml per time) or Votalin (∼1 cm per time) for ∼1 month continuously. Following treatment, STBT suppressed paw swelling significantly (P<0.05) compared with the model group. STBT also improved pathological changes, STBT-treated rats showed a significant improvement in synovial hyperplasia, inflammatory infiltration, cartilage and bone destruction and other symptoms. The protein expression levels of IL-6, IL-8, TNF-α and NF-κB were markedly suppressed in synovial tissues of STBT-treated and Votalin-treated rats. Our findings demonstrate for the first time that STBT markedly reduces paw swelling, improves pathological changes and increases the expression of IL-6, IL-8, TNF-α and NF-κB in synovial tissues of CIA rats, which may partially explain the anti-RA activity of STBT.
PMCID: PMC3570159  PMID: 23403612
shuangtengbitong tincture; rheumatoid arthritis; interleukin-6; interleukin-8; tumor necrosis factor-α; nuclear transcription factor-κB
21.  The Effects of Enterococcus faecium and Selenium on Methotrexate Treatment in Rat Adjuvant-induced Arthritis 
The effects of probiotic bacteria Enterococcus faecium (EF) and selenium were studied on methotrexate (MTX) treatment in rats with adjuvant arthritis (AA).
Arthritic rats were preventive treated orally with the following substances: lyophilized EF (15 mg/kg/day, 5 days a week); sodium selenite pentahydrate (SSe, 0.050 mg/kg containing 0.015 mg/kg selenium, 5 days a week); MTX (0.6 mg/kg/week), and their combinations for the period of 50 days from adjuvant application. Levels of serum albumin, serum nitrite/nitrate concentrations, hind paw swelling, arthrogram scores, whole body bone mineral density (BMD), and bone erosions were evaluated as markers of inflammation and destructive changes associated with arthritis.
Long-term preventive treatment with low-dose MTX significantly inhibited the markers of both inflammation and arthritis. EF or SSe when administered singly or in combination had no significant effect on given parameters in arthritic rats. EF but not SSe potentiated the beneficial effects of MTX, which resulted in a more significant reduction of hind paw swelling, arthrogram scores and whole body BMD decrease. EF had a tendency to improve also the effect of MTX on serum albumin and nitrite/nitrate concentrations.
Our results indicate that EF may increase the preventive effect of MTX treatment in rat AA by improving its anti-inflammatory and anti-arthritic effects.
PMCID: PMC2486334  PMID: 15559373
22.  Cloricromene, a coumarine derivative, protects against collagen-induced arthritis in Lewis rats 
British Journal of Pharmacology  2000;131(7):1399-1407.
The aim of the present study was to investigate the effects of cloricromene, a coumarine derivative, in rats subjected to collagen-induced arthritis.Collagen-induced arthritis (CIA) was induced in Lewis rats by an intradermal injection of 100 μl of the emulsion (containing 100 μg of bovine type II collagen) (CII) and complete Freund's adjuvant (CFA) at the base of the tail. On day 21, a second injection of CII in CFA was administered.Lewis rats developed an erosive hind paw arthritis when immunized with CII in CFA. Macroscopic clinical evidence of CIA first appeared as peri-articular erythema and oedema in the hind paws. The incidence of CIA was 100% by day 27 in the CII challenged rats and the severity of CIA progressed over a 35-day period with radiographic evaluation revealing focal resorption of bone together with osteophyte formation in the tibiotarsal joint and soft tissue swelling.The histopathology of CIA included erosion of the cartilage at the joint margins. Treatment of rats with cloricromene (10 mg kg−1 i.p. daily) starting at the onset of arthritis (day 23), delayed the development of the clinical signs at days 24–35 and improved histological status in the knee and paw.Immunohistochemical analysis for iNOS, COX-2, nitrotyrosine and for poly (ADP-ribose) synthetase (PARS) revealed a positive staining in inflamed joints from collagen-treated rats. The degree of staining for iNOS, COX-2, nitrotyrosine and PARS were markedly reduced in tissue sections obtained from collagen-treated rats, which had received cloricromene.Radiographic signs of protection against bone resorption and osteophyte formation were present in the joints of cloricromene-treated rat.This study provides the first evidence that cloricromene, a coumarine derivative, attenuates the degree of chronic inflammation and tissue damage associated with collagen-induced arthritis in the rat.
PMCID: PMC1572455  PMID: 11090113
Collagen; inflammation; nitric oxide; peroxynitrite; COX-2; cloricromene; TNFα
23.  T-614, a novel immunomodulator, attenuates joint inflammation and articular damage in collagen-induced arthritis 
Arthritis Research & Therapy  2008;10(6):R136.
T-614 is a novel oral antirheumatic agent for the treatment of rheumatoid arthritis. Whether it has immunomodulatory or disease-modifying properties and its mechanism of action are largely undetermined.
Rats with collagen-induced arthritis (CIA) were treated with T-614 (5 and 20 mg/kg) daily. Animals receiving methotrexate (1 mg/kg every 3 days) and the nonsteroidal anti-inflammatory agent nimesulide (10 mg/kg per day) were used as controls. A combination therapy group was treated with both T-614(10 mg/kg per day) and methotrexate (1 mg/kg every 3 days). Hind paw swelling was evaluated and radiographic scores calculated. Serum cytokine levels were assessed by Bio-plex analysis. Quantitative PCR was used to evaluate expression of mRNA for interferon-γ, IL-4 and IL-17. Serum IL-17 and anti-type II collagen antibodies (total IgG, IgG1, IgG2a, IgG2b and IgM) were measured using ELISA.
Oral T-614 inhibited paw swelling and offered significant protection against arthritis-induced cartilage and bone erosion, comparable to the effects of methotrexate. CIA rats treated with T-614 exhibited decreases in both mRNA expression of IL-17 in peripheral blood mononuclear cells and lymph node cells, and circulating IL-17 in a dose-dependent manner. T-614 also reduced serum levels of tumor necrosis factor-α, IL-1β and IL-6. A synergistic effect was observed for the combination of methotrexate and T-614. In addition, T-614 (20 mg/kg per day) depressed production of anti-type II collagen antibodies and differentially affected levels of IgG2a subclasses in vivo, whereas IgM level was decreased without any change in the IgG1 level. Together, the findings presented here indicate that the novel agent T-614 has disease-modifying effects against experimental arthritis, as opposed to nimesulide.
Our data suggested that T-614 is an effective disease-modifying agent that can prevent bone/cartilage destruction and inflammation in in CIA rats. Combination with methotrexate markedly enhances the therapeutic effect of T-614.
PMCID: PMC2656239  PMID: 19019215
24.  Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. 
Journal of Clinical Investigation  1996;97(11):2672-2679.
Prostaglandins formed by the cyclooxygenase (COX) enzymes are important mediators of inflammation in arthritis. The contribution of the inducible COX-2 enzyme to inflammation in rat adjuvant arthritis was evaluated by characterization of COX-2 expression in normal and arthritic paws and by pharmacological inhibition of COX-2 activity. The injection of adjuvant induced a marked edema of the hind footpads with coincident local production of PGE2. PG production was associated with upregulation of COX-2 mRNA and protein in the affected paws. In contrast, the level of COX-1 mRNA was unaffected by adjuvant injection. TNF-alpha and IL-6 mRNAs were also increased in the inflamed paws as was IL-6 protein in the serum. Therapeutic administration of a selective COX-2 inhibitor, SC-58125, rapidly reversed paw edema and reduced the level of PGE2 in paw tissue to baseline. Interestingly, treatment with the COX-2 inhibitor also reduced the expression of COX-2 mRNA and protein in the paw. Serum IL-6 and paw IL-6 mRNA levels were also reduced to near normal levels by SC-58125. Furthermore, inhibition of COX-2 resulted in a reduction of the inflammatory cell infiltrate and decreased inflammation of the synovium. Notably, the antiinflammatory effects of SC-58125 were indistinguishable from the effects observed for indomethacin. These results suggest that COX-2 plays a prominent role in the inflammation associated with adjuvant arthritis and that COX-2 derived PGs upregulate COX-2 and IL-6 expression at inflammatory sites.
PMCID: PMC507355  PMID: 8647962
25.  Role of endogenous and exogenous female sex hormones in arthritis and osteoporosis development in B10.Q-ncf1*/* mice with collagen-induced chronic arthritis 
Collagen-induced arthritis (CIA) is an often-used murine model for human rheumatoid arthritis (RA). Earlier studies have shown potent anti-arthritic effects with the female sex hormone estradiol and the selective estrogen receptor modulator (SERM) raloxifene in CIA in DBA/1-mice. B10.Q-ncf1*/*mice are B10.Q mice with a mutated Ncf1 gene. In B10.Q-ncf1*/*mice, CIA develops as a chronic relapsing disease, which more accurately mimics human RA. We investigated the role of endogenous and exogenous sex steroids and raloxifene in the course of this model of chronic arthritis. We also examined whether treatment would prevent the development of inflammation-triggered generalized osteoporosis.
Female B10.Q-ncf1*/*mice were sham-operated or ovariectomized, and CIA was induced. 22 days later, when 30% of the mice had developed arthritis, treatment with raloxifene, estradiol or vehicle was started, and the clinical disease was evaluated continuously. Treatment was continued until day 56 after immunization. At termination of the experiment (day 73), bone mineral density (BMD) was analyzed, paws were collected for histological examination, and sera were analyzed for markers of cartilage turnover and pro-inflammatory cytokines.
Raloxifene and estradiol treatment, as well as endogenous estrogen, decreased the frequency of arthritis, prevented joint destruction and countered generalized osteoporosis. These effects were associated with lower serum levels of the pro-inflammatory cytokine IL-6.
This is the first study to show that raloxifene and estradiol can ameliorate established erosive arthritis and inflammation-triggered osteoporosis in this chronic arthritis model. We propose that treatment with raloxifene could be a beneficial addition to the treatment of postmenopausal RA.
PMCID: PMC3009959  PMID: 21159208

Results 1-25 (1529995)