Search tips
Search criteria

Results 1-25 (858312)

Clipboard (0)

Related Articles

1.  Expansion of the CHN1 Strabismus Phenotype 
Hyperactivating mutations in the CHN1 gene can cause supraduction deficits in the absence of Duane retraction syndrome.
Hyperactivating CHN1 mutations have been described in individuals with Duane retraction syndrome with or without vertical gaze abnormalities. This was a study of five family members with distinctive ocular dysmotility patterns that co-segregated with a novel hyperactivating CHN1 mutation.
Participating members of a family segregating pleomorphic incomitant strabismus underwent ophthalmic examinations, and several underwent high-resolution magnetic resonance imaging (MRI) of the orbits and brain stem. Participant DNA was extracted and amplified for haplotype analysis encompassing the CHN1 region on chromosome 2q31.1, and mutation analysis of the CHN1 gene, which encodes the Rac-GAP signaling protein α2-chimaerin. In vitro functional studies of the co-inherited mutation were performed, including a Rac-GTP activation assay, quantification of α2-chimaerin translocation, and co-immunoprecipitation.
All five clinically affected family members exhibited monocular or binocular supraduction deficits, three in the absence of Duane retraction syndrome. MRI in four affected individuals demonstrated small or absent abducens nerves in all four, small oculomotor nerve in one, and small optic nerves in three. Superior oblique muscle volume was also decreased in three of the individuals, supporting trochlear nerve hypoplasia. Strabismus segregated with the CHN1 locus and affected individuals harbored a c.443A>T CHN1 mutation (p.Y148F). In vitro, this novel mutation behaved similarly to previously reported CHN1 mutations underlying familial Duane syndrome, hyperactivating α2-chimaerin by enhancing its dimerization and membrane association and lowering total intracellular Rac-GTP.
Analysis of the current pedigree expands the phenotypic spectrum of hyperactivating CHN1 mutations to include vertical strabismus and supraduction deficits in the absence of Duane retraction syndrome.
PMCID: PMC3175992  PMID: 21715346
2.  α2-Chimaerin Regulates a Key Axon Guidance Transition during Development of the Oculomotor Projection 
The Journal of Neuroscience  2013;33(42):16540-16551.
The ocular motor system consists of three nerves which innervate six muscles to control eye movements. In humans, defective development of this system leads to eye movement disorders, such as Duane Retraction Syndrome, which can result from mutations in the α2-chimaerin signaling molecule. We have used the zebrafish to model the role of α2-chimaerin during development of the ocular motor system. We first mapped ocular motor spatiotemporal development, which occurs between 24 and 72 h postfertilization (hpf), with the oculomotor nerve following an invariant sequence of growth and branching to its muscle targets. We identified 52 hpf as a key axon guidance “transition,” when oculomotor axons reach the orbit and select their muscle targets. Live imaging and quantitation showed that, at 52 hpf, axons undergo a switch in behavior, with striking changes in the dynamics of filopodia. We tested the role of α2-chimaerin in this guidance process and found that axons expressing gain-of-function α2-chimaerin isoforms failed to undergo the 52 hpf transition in filopodial dynamics, leading to axon stalling. α2-chimaerin loss of function led to ecotopic and misguided branching and hypoplasia of oculomotor axons; embryos had defective eye movements as measured by the optokinetic reflex. Manipulation of chimaerin signaling in oculomotor neurons in vitro led to changes in microtubule stability. These findings demonstrate that a correct level of α2-chimaerin signaling is required for key oculomotor axon guidance decisions, and provide a zebrafish model for Duane Retraction Syndrome.
PMCID: PMC3797374  PMID: 24133258
3.  β3-Chimaerin, a novel member of the chimaerin Rac-GAP family 
Molecular biology reports  2014;41(4):2067-2076.
Chimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms have been reported to-date, which are products of CHN1 (α1- and α2-chimaerins) and CHN2 (β1- and β2-chimaerins) genes. Although these gene products are assumed to be generated by alternative splicing, bioinformatics analysis of the CHN2 gene revealed that β1- and β2-chimaerins are the products of alternative transcription start sites (TSSs) in different promoter regions. Furthermore, we found an additional TSS in CHN2 gene that leads to a novel product, which we named β3-chimaerin. Expression profile analysis revealed predominantly low levels for the β3-chimaerin transcript, with higher expression levels in epididymis, plasma blood leucocytes, spleen, thymus, as well as various areas of the brain. In addition to the prototypical SH2, C1, and Rac-GAP domains, β3-chimaerin has a unique N-terminal domain. Studies in cells established that β3-chimaerin has Rac-GAP activity and is responsive to phorbol esters. The enhanced responsiveness of β3-chimaerin for phorbol ester-induced translocation relative to β2-chimaerin suggests differential ligand accessibility to the C1 domain.
PMCID: PMC3969763  PMID: 24430297
Chimaerin; CHN2; Rac-GAP; C1 domain; Phorbol esters
4.  Two novel CHN1 mutations in two families with Duane’s retraction syndrome 
Archives of ophthalmology  2011;129(5):649-652.
To determine the genetic cause of Duane’s retraction syndrome (DRS) in two families segregating DRS as an autosomal dominant trait.
Members of two unrelated pedigrees were enrolled in an ongoing genetic study. Linkage analysis was performed using fluorescent microsatellite markers flanking the CHN1 locus. Probands and family members were screened for CHN1 mutations.
Of the six clinically affected individuals in the two pedigrees, three have bilateral and three have unilateral DRS. Both pedigrees are consistent with linkage to the DURS2 locus, one with complete and one with incomplete penetrance. Sequence analysis revealed the pedigrees segregate novel heterozygous missense CHN1 mutations, c.422C>T and c.754C>T, predicted to result in α2-chimaerin amino acid substitutions P141L and P252S, respectively.
Genetic analysis of two pedigrees segregating nonsyndromic DRS reveals two novel mutations in CHN1, bringing the number of DRS pedigrees know to harbor CHN1 mutations, and the number of unique CHN1 mutations, from seven to nine. Both mutations identified in this study alter residues that participate in intramolecular interactions that stabilize the inactive, closed conformation of α2-chimerin, and thus are predicted to result in its hyper-activation. Moreover, amino acid residue P252 was altered to a different residue in a previously reported DRS pedigree; thus, this is the first report of two CHN1 mutations altering the same residue, further supporting a gain-of-function etiology.
Clinical Relevance
Members of families segregating DRS as an autosomal dominant trait should be screened for mutations in the CHN1 gene, enhancing genetic counseling and permitting earlier diagnosis.
PMCID: PMC3517173  PMID: 21555619
5.  Identification of α-Chimaerin as a Candidate Gene for Critical Period Neuronal Plasticity in Cat and Mouse Visual Cortex 
BMC Neuroscience  2011;12:70.
In cat visual cortex, critical period neuronal plasticity is minimal until approximately 3 postnatal weeks, peaks at 5 weeks, gradually declines to low levels at 20 weeks, and disappears by 1 year of age. Dark rearing slows the entire time course of this critical period, such that at 5 weeks of age, normal cats are more plastic than dark reared cats, whereas at 20 weeks, dark reared cats are more plastic. Thus, a stringent criterion for identifying genes that are important for plasticity in visual cortex is that they show differences in expression between normal and dark reared that are of opposite direction in young versus older animals.
The present study reports the identification by differential display PCR of a novel gene, α-chimaerin, as a candidate visual cortex critical period plasticity gene that showed bidirectional regulation of expression due to age and dark rearing. Northern blotting confirmed the bidirectional expression and 5'RACE sequencing identified the gene. There are two alternatively-spliced α-chimaerin isoforms: α1 and α2. Western blotting extended the evidence for bidirectional regulation of visual cortex α-chimaerin isoform expression to protein in cats and mice. α1- and α2-Chimaerin were elevated in dark reared compared to normal visual cortex at the peak of the normal critical period and in normal compared to dark reared visual cortex at the nadir of the normal critical period. Analysis of variance showed a significant interaction in both cats and mice for both α-chimaerin isoforms, indicating that the effect of dark rearing depended on age. This differential expression was not found in frontal cortex.
Chimaerins are RhoGTPase-activating proteins that are EphA4 effectors and have been implicated in a number of processes including growth cone collapse, axon guidance, dendritic spine development and the formation of corticospinal motor circuits. The present results identify α-chimaerin as a candidate molecule for a role in the postnatal critical period of visual cortical plasticity.
PMCID: PMC3155490  PMID: 21767388
Chimerin; α1-Chimaerin; α2-Chimaerin; Dark Rearing; differential display PCR
6.  Clinical features associated with an I126M α2-chimaerin mutation in a family with autosomal dominant Duane retraction syndrome 
We describe the clinical phenotype of a Mexican family segregating Duane syndrome as an autosomal dominant trait linked to chromosome 2q31 (DURS2) and previously reported to harbor a heterozygous α2-chimaerinmissense mutation.
A five-generation Mexican family was analyzed. Ten affected subjects were available for clinical examination. Participating subjects were tested for visual acuity, ocular alignment by prism cover testing, ocular ductions and versions, and globe retraction. In children, alignment was measured with the Krimsky test in cardinal positions of gaze.
Ten cases were included, 6 females and 4 males. Five cases presented with bilateral and 5 with unilateral Duane syndrome. Right side was the most commonly affected side on unilateral cases. Five cases exhibited exotropia, 4 esotropia, and 1 hypotropia. Seven patients had important limitation of abduction; two, moderate limitation. Four patients had mild adduction limitation and 4 had moderate limitation. No additional anomalies such as fourth (trochlear) nerve palsy, blepharoptosis, or dense amblyopia, reported in previous Duane syndrome families, were observed. All 3 cases that exhibited vertical dysfunction had upgaze limitation. One instance of nonpenetrance was recorded.
Considerable intrafamilial clinical variability was observed in this Duane syndrome pedigree carrying a α2-chimaerin mutation. The presence of bilateral involvement and associated vertical movements, commonly observed in this and others DURS2 families, could suggest the occurrence of CHN1 mutations as the source of the disease in isolated or familial DURS cases.
PMCID: PMC2702258  PMID: 19541263
7.  The RacGAP β-Chimaerin Selectively Mediates Stereotyped Hippocampal Axonal Pruning 
Cell  2012;149(7):1594-1606.
Axon pruning and synapse elimination are critical for establishing neural connectivity and synaptic plasticity. Stereotyped pruning of axons that originate in the hippocampal dentate gyrus (DG) and extend in the infrapyramidal tract (IPT) occurs during postnatal murine development by neurite retraction and resembles axon repulsion. The chemorepellent Sema3F is required for IPT axon pruning, dendritic spine remodeling and repulsion of DG axons. However, the signaling events that regulate IPT pruning are not known. We find that inhibition of the small G-protein Rac1 by the Rac GTPase activating protein (GAP) β2-Chimaerin (β2Chn) is essential for Sema3F-mediated IPT pruning. β2Chn selectively binds to the Sema3F receptor neuropilin-2. Sema3F activation of β2Chn is necessary for pruning both in vitro and in vivo, but is dispensable for axon repulsion and spine remodeling. Therefore, β2Chn contributes to a mechanistic distinction among DG axon pruning, repulsion, and dendritic spine remodeling, all mediated by the repellent Sema3F.
PMCID: PMC3395473  PMID: 22726444
8.  The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. 
Molecular and Cellular Biology  1996;16(9):5069-5080.
n-Chimaerin is a GTPase-activating protein (GAP) mainly for Rac1 and less so for Cdc42Hs in vitro. The GAP activity of n-chimaerin is regulated by phospholipids and phorbol esters. Microinjection of Rac1 and Cdc42Hs into mammalian cells induces formation of the actin-based structures lamellipodia and filopodia, respectively, with the former being prevented by coinjection of the chimaerin GAP domain. Strikingly, microinjection of the full-length n-chimaerin into fibroblasts and neuroblastoma cells induces the simultaneous formation of lamellipodia and filopodia. These structures undergo cycles of dissolution and formation, resembling natural morphological events occurring at the leading edge of fibroblasts and neuronal growth cones. The effects of n-chimaerin on formation of lamellipodia and filopodia were inhibited by dominant negative Rac1(T17N) and Cdc42Hs(T17N), respectively. n-Chimaerin's effects were also inhibited by coinjection with Rho GDP dissociation inhibitor or by treatment with phorbol ester. A mutant n-chimaerin with no GAP activity and impaired p21 binding was ineffective in inducing morphological changes, while a mutant lacking GAP activity alone was effective. Microinjected n-chimaerin colocalized in situ with F-actin. Taken together, these results suggest that n-chimaerin acts synergistically with Rac1 and Cdc42Hs to induce actin-based morphological changes and that this action involves Rac1 and Cdc42Hs binding but not GAP activity. Thus, GAPs may have morphological functions in addition to downregulation of GTPases.
PMCID: PMC231508  PMID: 8756665
9.  Alpha1-chimaerin, a Rac1 GTPase-activating protein, is expressed at reduced mRNA levels in the brain of Alzheimer's disease patients 
Neuroscience letters  2015;591:19-24.
Alpha1-chimaerin is a GTPase-activating protein (GAP) for Rac1, a member of the Rho small GTPase family, whose action leads to the inactivation of Rac1. Rac1 activity is upregulated in Alzheimer's disease, but little is known about the role of α1-chimaerin. In this study, we investigated the expression and localization of α1-chimaerin mRNA in postmortem human brains from patients with Alzheimer's disease and control subjects. In situ hybridization studies demonstrated that α1-chimaerin was expressed by neurons in the neo-cortex of the temporal lobe and the hippocampus of both controls and Alzheimer's disease cases, with the signal intensity dramatically decreased in patients with Alzheimer's disease. Real-time PCR analysis confirmed a significant reduction of α1-chimaerin mRNA expression in the temporal cortex of Alzheimer's disease cases. In contrast, α2-chimaerin mRNA levels showed no significant difference between the groups. The present study showed reduced α1-chimaerin expression in the brain of Alzheimer's disease cases, suggesting a role in the upregulation of Rac1 activity during the disease process.
PMCID: PMC4382517  PMID: 25676811
Alzheimer's disease; α1-chimaerin; Rac1; In situ hybridization; Real-time PCR
10.  Biochemical characterization of hyperactive β2-chimaerin mutants revealed an enhanced exposure of C1 and Rac-GAP domains † 
Biochemistry  2009;48(34):8171-8178.
Recent studies established that the Rac-GAP β2-chimaerin plays important roles in development, neuritogenesis, and cancer progression. A unique feature of β2-chimaerin is that it can be activated by phorbol esters and the lipid second messenger diacylglycerol (DAG), which bind with high affinity to its C1 domain and promote β2-chimaerin translocation to membranes, leading to the inactivation of the small G-protein Rac. Crystallographic evidence and cellular studies suggest that β2-chimaerin remains in an inactive conformation in the cytosol with the C1 domain inaccessible to ligands. We developed a series of β2-chimaerin point mutants in which intramolecular contacts that occlude the C1 domain have been disrupted. These mutants showed enhanced translocation in response to phorbol 12-myristate 13-acetate (PMA) in cells. Binding assays using [3H]phorbol 12, 13-dibutyrate ([3H]PDBu) revealed that internal contact mutants have a reduced acidic phospholipid requirement for phorbol ester binding. Moreover, disruption of intramolecular contacts enhances binding of β2-chimaerin to acidic phospholipid vesicles and confers enhanced Rac-GAP activity in vitro. These studies suggest that β2-chimaerin must undergo a conformational rearrangement in order to expose its lipid binding sites and become activated.
PMCID: PMC2756504  PMID: 19618918
β2-chimaerin; C1 domain; phorbol esters; Rac
Nature communications  2013;4:1849.
Chimaerins, a family of GTPase activating proteins (GAPs) for the small G-protein Rac, have been implicated in development, neuritogenesis, and cancer. These Rac-GAPs are regulated by the lipid second messenger diacylglycerol (DAG) generated by tyrosine-kinases such as the epidermal growth factor receptor (EGFR). Here we identify an atypical Pro-rich motif in chimaerins that binds to the adaptor protein Nck1. Unlike most Nck1 partners, chimaerins bind to the third SH3 domain of Nck1. This association is mediated by electrostatic interactions of basic residues within the Pro-rich motif with acidic clusters in the SH3 domain. EGF promotes the binding of β2-chimaerin to Nck1 in the cell periphery in a DAG-dependent manner. Moreover, β2-chimaerin translocation to the plasma membrane and its peripheral association with Rac1 requires Nck1. Our studies underscore a coordinated mechanism for β2-chimaerin activation that involves lipid interactions via the C1 domain and protein-protein interactions via the N-terminal Pro-rich region.
PMCID: PMC3700536  PMID: 23673634
12.  Human Genetic Disorders of Axon Guidance 
This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders.
Mutations in axon guidance receptors, their ligands, and downstream signaling molecules lead to Duane syndrome and various other disorders characterized by errors in muscle innervation.
PMCID: PMC2829956  PMID: 20300212
13.  Magnetic Resonance Imaging of Innervational And Extraocular Muscle Abnormalities In Duane-Radial Ray Syndrome 
We employed magnetic resonance imaging (MRI) to study extraocular muscles (EOMs) and nerves in Duane-radial ray (Okihiro) syndrome (DRRS) due to mutations in the transcription factor SALL4.
We examined four male and two female affected members of a pedigree previously reported to co-segregate DRRS and a heterozygous SALL4 mutation. Coronal T1 weighted MRI of the orbits and heavily T2 weighted images in the plane of the cranial nerves were obtained in four subjects. MRI findings were correlated with motility examinations, and published norms obtained using identical technique.
Five of the six subjects with DRRS had radial ray abnormalities including thumb, radial artery, radial bone, and pectoral muscle hypoplasia. Three had bi- and three unilateral ocular involvement. Seven eyes had limitation of both ab- and adduction, while two had limitation only of abduction. Most affected eyes had lid fissure narrowing and retraction in adduction. Intraorbital and intracranial abducens nerves (CN6) were small to absent, particularly ipsilateral to abduction deficiency. All cases undergoing MRI had normal intracranial oculomotor nerves (CN3). Optic nerve (ON) cross section was similar to normal. EOMs and pulleys were structurally normal in most cases. In some affected orbits, a branch of CN3 closely approximated and presumably innervated the LR.
DRRS has a Duane syndrome phenotype, with a variable and asymmetric endophenotype including marked CN6 hypoplasia and probable innervation or co-innervation of the LR by CN3. This endophenotype is more limited than reported in DURS2-linked Duane syndrome and CFEOM1, which are clinically similar congenital cranial dysinnervation disorders that feature, in addition, CN3 hypoplasia and more widespread EOM abnormalities.
PMCID: PMC2775804  PMID: 18055799
Duane syndrome; extra-ocular muscle; cranial nerve; optic nerve; pulley
Cellular signalling  2007;20(4):758-770.
Chimaerins are GTPase-activating proteins that inactivate the GTP-hydrolase Rac1 in a diacylglycerol-dependent manner. To date, the study of chimaerins has been done mostly in neuronal cells. Here, we show that α2- and β2-chimaerin are expressed at different levels in T-cells and that they participate in T-cell receptor signaling. In agreement with this, we have observed that α2- and β2-chimaerins translocate to the T-cell/B-cell immune synapse and, using both gain- and loss-of-function approaches, demonstrated that their catalytic activity is important for the inhibition of the T-cell receptor- and Vav1-dependent stimulation of the transcriptional factor NF-AT. Mutagenesis-based approaches have revealed the molecular determinants that contribute to the biological program of chimaerins during T-cell responses. Unexpectedly, we have found that the translocation of chimaerins to the T-cell/B-cell immune synapse does not rely on the canonical binding of diacylglycerol to the C1 region of these GTPase-activating proteins. Taken together, these results identify chimaerins as candidates for the downmodulation of Rac1 in T-lymphocytes and, in addition, uncover a novel regulatory mechanism that mediates their activation in T-cells.
PMCID: PMC2277368  PMID: 18249095
chimaerin; Rac1; T-cell receptor; cell signaling; Vav1; cytoskeleton; diacylglycerol; immune synapse
15.  A new role of the Rac-GAP β2-chimaerin in cell adhesion reveals opposite functions in breast cancer initiation and tumor progression 
Oncotarget  2016;7(19):28301-28319.
β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression.
PMCID: PMC5053728  PMID: 27058424
β2-chimaerin; breast cancer; E-cadherin; metastasis; Rac1
16.  Evidence of an Asymmetrical Endophenotype in Congenital Fibrosis of Extraocular Muscles Type 3 Resulting from TUBB3 Mutations 
Mutations producing single amino acid substitutions in neuron-specific β-tubulin isotype III cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3), a variable and frequently asymmetrical congenital cranial dysinnervation disorder with ophthalmic findings that include blepharoptosis and strabismus. Magnetic resonance imaging demonstrates oculomotor and abducens nerve hypoplasia with misinnervation and secondary hypoplasia of multiple extraocular muscles and hypoplasia of the optic nerve.
Orbital magnetic resonance imaging (MRI) was used to investigate the structural basis of motility abnormalities in congenital fibrosis of the extraocular muscles type 3 (CFEOM3), a disorder resulting from missense mutations in TUBB3, which encodes neuron-specific β-tubulin isotype III.
Ophthalmic examinations in 13 volunteers from four CFEOM3 pedigrees and normal control subjects, were correlated with TUBB3 mutation and MRI findings that demonstrated extraocular muscle (EOM) size, location, contractility, and innervation.
Volunteers included clinically affected and clinically unaffected carriers of R262C and D417N TUBB3 amino acid substitutions and one unaffected, mutation-negative family member. Subjects with CFEOM3 frequently had asymmetrical blepharoptosis, limited vertical duction, variable ophthalmoplegia, exotropia, and paradoxical abduction in infraduction. MRI demonstrated variable, asymmetrical levator palpebrae superioris and superior rectus EOM atrophy that correlated with blepharoptosis, deficient supraduction, and small orbital motor nerves. Additional EOMs exhibited variable hypoplasia that correlated with duction deficit, but the superior oblique muscle was spared. Ophthalmoplegia occurred only when the subarachnoid width of CN3 was <1.9 mm. A-pattern exotropia was frequent, correlating with apparent lateral rectus (LR) muscle misinnervation by CN3. Optic nerve (ON) cross sections were subnormal, but rectus pulley locations were normal.
CFEOM3 caused by TUBB3 R262C and D417N amino acid substitutions features abnormalities of EOM innervation and function that correlate with subarachnoid CN3 hypoplasia, occasional abducens nerve hypoplasia, and subclinical ON hypoplasia that can resemble CFEOM1. Clinical and MRI findings in CFEOM3 are more variable than those in CFEOM1 and are often asymmetrical. Apparent LR innervation by the inferior rectus motor nerve is an overlapping feature of Duane retraction syndrome and CFEOM1. These findings suggest that CFEOM3 is an asymmetrical, variably penetrant, congenital cranial dysinnervation disorder leading to secondary EOM atrophy.
PMCID: PMC2941178  PMID: 20393110
17.  A Drosophila rotund transcript expressed during spermatogenesis and imaginal disc morphogenesis encodes a protein which is similar to human Rac GTPase-activating (racGAP) proteins. 
Molecular and Cellular Biology  1992;12(11):5111-5122.
The rotund (rn) locus of Drosophila melanogaster at cytogenetic position 84D3,4 has been isolated and cloned on the basis of the mutant phenotype: an absence of structures in the subdistal regions of the appendages. The shortened appendages are the consequence of a localized cell death in the imaginal discs, precursors of the adult appendages. Physical characterization of the rn locus has demonstrated that it is relatively large, occupying a minimum of 50 kb. There are two major transcripts of 1.7 kb (m1.7) and 5.3 kb (m5.3). We present here the sequence analysis of m1.7 and its putative product, rnprot1.7, and show that rnprot1.7 is similar to the product of the human n-chimaerin gene, which is expressed in brain and testes. Recently, the GAP activity of n-chimaerin was demonstrated and shown to be specific for the Rac subfamily of the Ras oncoproteins. The Rac proteins have been implicated in the regulation of secretory processes. In addition to being expressed in the imaginal discs, the m1.7 racGAP transcript was detected in developmentally specific germ line cells of the testes, the primary spermatocytes.
PMCID: PMC360445  PMID: 1406685
18.  p23/Tmp21 Differentially Targets the Rac-GAP β2-Chimaerin and Protein Kinase C via Their C1 Domains 
Molecular Biology of the Cell  2010;21(8):1398-1408.
The ER/Golgi protein p23/Tmp21 acts as a C1 domain-docking protein that mediates perinuclear translocation of β-chimaerin. C1 domains from PKC isozymes can also interact with p23/Tmp21. Our study highlights the relevance of C1 domains in protein-protein interactions in addition to their well-established lipid-binding properties.
The C1 domains in protein kinase C (PKC) isozymes and other signaling molecules are responsible for binding the lipid second messenger diacylglycerol and phorbol esters, and for mediating translocation to membranes. Previous studies revealed that the C1 domain in α- and β-chimaerins, diacylglycerol-regulated Rac-GAPs, interacts with the endoplasmic reticulum/Golgi protein p23/Tmp21. Here, we found that p23/Tmp21 acts as a C1 domain-docking protein that mediates perinuclear translocation of β2-chimaerin. Glu227 and Leu248 in the β2-chimaerin C1 domain are crucial for binding p23/Tmp21 and perinuclear targeting. Interestingly, isolated C1 domains from individual PKC isozymes differentially interact with p23/Tmp21. For PKCε, it interacts with p23/Tmp21 specifically via its C1b domain; however, this association is lost in response to phorbol esters. These results demonstrate that p23/Tmp21 acts as an anchor that distinctively modulates compartmentalization of C1 domain-containing proteins, and it plays an essential role in β2-chimaerin relocalization. Our study also highlights the relevance of C1 domains in protein–protein interactions in addition to their well-established lipid-binding properties.
PMCID: PMC2854097  PMID: 20164256
19.  Chimaerin Suppresses Rac1 Activation at the Apical Membrane to Maintain the Cyst Structure 
PLoS ONE  2012;7(12):e52258.
Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF), followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.
PMCID: PMC3527519  PMID: 23284959
20.  Carboxypeptidase A6 in Zebrafish Development and Implications for VIth Cranial Nerve Pathfinding 
PLoS ONE  2010;5(9):e12967.
Carboxypeptidase A6 (CPA6) is an extracellular protease that cleaves carboxy-terminal hydrophobic amino acids and has been implicated in the defective innervation of the lateral rectus muscle by the VIth cranial nerve in Duane syndrome. In order to investigate the role of CPA6 in development, in particular its potential role in axon guidance, the zebrafish ortholog was identified and cloned. Zebrafish CPA6 was secreted and interacted with the extracellular matrix where it had a neutral pH optimum and specificity for C-terminal hydrophobic amino acids. Transient mRNA expression was found in newly formed somites, pectoral fin buds, the stomodeum and a conspicuous condensation posterior to the eye. Markers showed this tissue was not myogenic in nature. Rather, the CPA6 localization overlapped with a chondrogenic site which subsequently forms the walls of a myodome surrounding the lateral rectus muscle. No other zebrafish CPA gene exhibited a similar expression profile. Morpholino-mediated knockdown of CPA6 combined with retrograde labeling and horizontal eye movement analyses demonstrated that deficiency of CPA6 alone did not affect either VIth nerve development or function in the zebrafish. We suggest that mutations in other genes and/or enhancer elements, together with defective CPA6 expression, may be required for altered VIth nerve pathfinding. If mutations in CPA6 contribute to Duane syndrome, our results also suggest that Duane syndrome can be a chondrogenic rather than a myogenic or neurogenic developmental disorder.
PMCID: PMC2945764  PMID: 20885977
21.  Clinical characterization of the HOXA1 syndrome BSAS variant 
Neurology  2007;69(12):1245-1253.
The Bosley-Salih-Alorainy syndrome (BSAS) variant of the congenital human HOXA1 syndrome results from autosomal recessive truncating HOXA1 mutations. We describe the currently recognized spectrum of ocular motility, inner ear malformations, cerebrovascular anomalies, and cognitive function.
We examined nine affected individuals from five consanguineous Saudi Arabian families, all of whom harbored the same I75-I76insG homozygous mutation in the HOXA1 gene. Patients underwent complete neurologic, neuro-ophthalmologic, orthoptic, and neuropsychological examinations. Six individuals had CT, and six had MRI of the head.
All nine individuals had bilateral Duane retraction syndrome (DRS) type 3, but extent of abduction and adduction varied between eyes and individuals. Eight patients were deaf with the common cavity deformity of the inner ear, while one patient had normal hearing and skull base development. Six had delayed motor milestones, and two had cognitive and behavioral abnormalities meeting Diagnostic and Statistical Manual of Mental Disorders-IV criteria for autism spectrum disorder. MRI of the orbits, extraocular muscles, brainstem, and supratentorial brain appeared normal. All six appropriately studied patients had cerebrovascular malformations ranging from unilateral internal carotid artery hypoplasia to bilateral agenesis.
This report extends the Bosley-Salih-Alorainy syndrome phenotype and documents the clinical variability resulting from identical HOXA1 mutations within an isolated ethnic population. Similarities between this syndrome and thalidomide embryopathy suggest that the teratogenic effects of early thalidomide exposure in humans may be due to interaction with the HOX cascade.
PMCID: PMC2826214  PMID: 17875913
22.  The GAP between axon pruning and repulsion 
Developmental cell  2012;23(1):3-4.
Stereotyped axonal pruning and growth cone repulsion, modulators of neuronal connectivity, share many ligands and receptors systems. Riccomagno et al. (2012) show in Cell that common ligands can link functionally specialized downstream pathways, demonstrating that the Rac GAP β2-Chimaerin is needed in Semaphorin-mediated axonal pruning but not growth cone repulsion.
PMCID: PMC3703152  PMID: 22814595
23.  Wildervanck’s syndrome and mirror movements: a congenital disorder of axon migration? 
Journal of neurology  2011;259(4):761-763.
Cell outgrowth and migration in the developing nervous system result from guidance cues, whose molecular bases and clinical correlates are only partly known. We describe a patient with brain stem malformation, paroxysmal left sided lacrimation when eating (“crocodile tears”) and mirror movements in addition to Wildervanck’s cervico-oculo-acusticus (COA) syndrome, which encompasses Klippel–Feil anomaly, congenital hearing loss and Duane’s syndrome. The unique symptom constellation has not been reported in that combination before and can be discussed in the context of congenital disordered axonal migration based on dysfunction of signalling pathways. However, mutations in some recently discovered genes, associated with single findings also present in our patient, were not found. Therefore, we suppose that the disturbance of an as yet unknown regulatory factor may explain the congenital malformation syndrome of our patient. In general, only a few human disorders have yet been found to result from defects in axon guidance. Nevertheless, disorders of axon guidance can certainly be regarded as a new category of neurodevelopmental disorders.
PMCID: PMC3517171  PMID: 21947222
Wildervanck’s syndrome; Mirror movements; Duane syndrome; Klippel–Feil syndrome; Axonal disorder
24.  Cranial nerve palsies in childhood 
Eye  2015;29(2):246-251.
We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the globe in adduction related to the innervation of the lateral rectus by the III nerve causing co-contraction in adduction. Clinical features that may be of concern in adulthood may not be relevant in childhood; whereas the presence of mydriasis in III palsy suggests a compressive aetiology in adults, this is not the case in children. However, the frequency of associated CNS abnormalities in III palsy and the risk of tumour in VI palsy can be indications for early neuroimaging depending on presenting features elicited through a careful history and clinical examination. The latter should include the neighbouring cranial nerves. We discuss the impact of our evolving knowledge of congenital cranial dysinnervation syndromes on this field.
PMCID: PMC4330297  PMID: 25572578
25.  High-Resolution Magnetic Resonance Imaging Demonstrates Abnormalities of Motor Nerves and Extraocular Muscles in Patients With Neuropathic Strabismus 
Although the ocular motility examination has been used traditionally in the diagnosis of strabismus that is a result of cranial nerve (CN) abnormalities, magnetic resonance imaging (MRI) now permits the direct imaging of lesions in CN palsies.
Prospectively, nerves to extraocular muscles (EOMs) were imaged with T1 weighting in orbits of 83 orthotropic volunteers and 96 strabismic patients in quasicoronal planes using surface coils. Intraorbital resolution was 234–312 microns within 1.5- to 2.0-mm thick planes. CNs were imaged at the brainstem using head coils and T2 weighting, yielding 195 micron resolution in planes 1.0-mm thick in 6 normal volunteers and 22 patients who had oculomotor (CN3), trochlear (CN4), or abducens (CN6) palsies and Duane syndrome.
Oculomotor (CN3) and abducens (CN6) but not trochlear (CN4) nerves were demonstrable in the orbit and skull base in all normal subjects. Patients with congenital CN3 palsies had hypoplastic CN3s both in orbit and skull base, with hypoplasia of involved EOMs. Patients with chronic CN6 and CN4 palsies exhibited atrophy of involved EOMs. Patients with Duane syndrome exhibited absence or hypoplasia of CN6 in both orbit and brainstem regions, often with mild hypoplasia and apparent misdirection of CN3 to the lateral rectus muscle. Unlike CN6 palsy, patients with Duane syndrome exhibited no EOM hypoplasia. Patients with congenital fibrosis exhibited severe hypoplasia of CN3, moderate hypoplasia of CN6, and EOM hypoplasia, particularly severe for the superior rectus and levator muscles.
High-resolution MRI can directly demonstrate pathology of CN3 and CN6 and affected EOM atrophy in strabismus caused by CN palsies. Direct imaging of CNs and EOMs by MRI is feasible and useful in differential diagnosis of complex strabismus.
PMCID: PMC1847327  PMID: 16678748

Results 1-25 (858312)