PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (735118)

Clipboard (0)
None

Related Articles

1.  GABA synapses mediate neuroprotection after ischemic and εPKC preconditioning in rat hippocampal slice cultures 
Delayed neuroprotection against ischemic challenges is conferred by both ischemic preconditioning (IPC) and preconditioning by activation of the ε-isoform of protein kinase C (εPKC-PC). In vivo, ischemic preconditioning enhances GABA release and ameliorates glutamate release during lethal cerebral ischemia. We tested the hypothesis that IPC and εPKC-PC confer neuroprotection by GABA synapses in rat organotypic hippocampal slices. Ischemic preconditioning or εPKC-PC was induced with 15 mins oxygen-glucose deprivation (OGD) or ψεRACK, a selective εPKC activator; and test ischemia consisted of 40 mins OGD. At the time of peak neuroprotection (48 h after preconditioning), we recorded GABAA receptor-mediated miniature postsynaptic currents (GABA mPSCs) in vulnerable CA1 pyramidal neurons using whole-cell voltage clamp techniques. The frequency and amplitude of GABA mPSCs significantly increased 48 h after IPC. In contrast, εPKC-PC enhanced only the amplitude of GABA mPSCs with no effect on frequency. We next asked if neuroprotection depended on these changes in GABA synapses. Weak antagonism of the GABAA receptor with bicuculline (100 nmol/L) decreased the amplitude of GABA mPSCs by 20.9 ± 6.1%. When applied during test ischemia, 100 nmol/L bicuculline abolished neuroprotection conferred by either IPC or εPKC-PC. We conclude that neuroprotection conferred by preconditioning depends on functional modifications of GABA synapses.
doi:10.1038/jcbfm.2008.126
PMCID: PMC2696173  PMID: 18957990
εPKC; inhibition; ischemia; ischemic tolerance; organotypic slice
2.  Post-Ischemic Activation of Protein Kinase C Epsilon Protects the Hippocampus from Cerebral Ischemic Injury via Alterations in Cerebral Blood Flow 
Neuroscience letters  2010;487(2):158-162.
Protein Kinase C (PKC) is a family of serine/threonine-isozymes that are involved in many signaling events in normal and disease states. Previous studies from our lab have demonstrated that εPKC plays a pivotal role in neuroprotection induced by ischemic preconditioning. However, the role of εPKC during and after brain ischemia is not clearly defined. Therefore, in the present study, we tested the hypothesis that activation of εPKC during an ischemic event is neuroprotective. Furthermore, other studies have demonstrated that εPKC mediates cerebral ischemic tolerance in the rat brain by decreasing vascular tone. Thus, we also tested the effects of εPKC activation during ischemia on cerebral blood flow (CBF). We found that ψε-Receptors for activated C kinase (RACK), a εPKC-selective peptide activator, injected intravenously 30 minutes before induction of global cerebral ischemia conferred neuroprotection in the CA1 region of the rat hippocampus. Moreover, measurements of CBF before, during and after cerebral ischemia revealed a significant reduction in the reperfusion phase of rats pretreated with ψεRACK compared to Tat peptide (vehicle). Our results suggest that εPKC can protect the rat brain against ischemic damage by regulating CBF. Thus, εPKC may be one of the treatment modalities against ischemic injury.
doi:10.1016/j.neulet.2010.10.013
PMCID: PMC3004991  PMID: 20951185
Ischemia; epsilon Protein Kinase C; Cerebral Blood Flow; Neuroprotection
3.  Ischemic Preconditioning Targets the Respiration of Synaptic Mitochondria via Protein Kinase Cε 
In the brain, ischemic preconditioning (IPC) diminishes mitochondrial dysfunction after ischemia and confers neuroprotection. Activation of ε protein kinase C (εPKC) has been proposed to be a key neuroprotective pathway during IPC. We tested the hypothesis that IPC increases the levels of εPKC in synaptosomes from rat hippocampus, resulting in improved synaptic mitochondrial respiration. Preconditioning significantly increased the level of hippocampal synaptosomal εPKC to 152% of sham-operated animals at 2 d of reperfusion, the time of peak neuroprotection. We tested the effect of εPKC activation on hippocampal synaptic mitochondrial respiration 2 d after preconditioning. Treatment with the specific εPKC activating peptide, tat-ψεRACK (tat-ψε-receptor for activated C kinase), increased the rate of oxygen consumption in the presence of substrates for complexes I, II, and IV to 157, 153, and 131% of control (tat peptide alone). In parallel, we found that εPKC activation in synaptosomes from preconditioned animals resulted in altered levels of phosphorylated mitochondrial respiratory chain proteins: increased serine and tyrosine phosphorylation of 18 kDa subunit of complex I, decreased serine phosphorylation of FeS protein in complex III, increased threonine phosphorylation of COX IV (cytochrome oxidase IV), increased mitochondrial membrane potential, and decreased H2O2 production. In brief, ischemic preconditioning promoted significant increases in the level of synaptosomal εPKC. Activation of εPKC increased synaptosomal mitochondrial respiration and phosphorylation of mitochondrial respiratory chain proteins. We propose that, at 48 h of reperfusion after ischemic preconditioning, εPKC is poised at synaptic mitochondria to respond to ischemia either by direct phosphorylation or activation of the εPKC signaling pathway.
doi:10.1523/JNEUROSCI.5471-07.2008
PMCID: PMC2678917  PMID: 18417696
cerebral ischemia; phosphorylation; electron transport chain; neuroprotection; cell death; hippocampus
4.  εPKC phosphorylates the mitochondrial KATP+ channel during induction of ischemic preconditioning in the rat hippocampus 
Brain research  2007;1184:345-353.
Neuroprotection against cerebral ischemia conferred by ischemic preconditioning (IPC) requires translocation of epsilon protein kinase C (εPKC). A major goal in our laboratory is to define the cellular targets by which εPKC confers protection. We tested the hypothesis that εPKC targets the mitochondrial KATP+ channel ( mtKATP+) after IPC. Our results demonstrated a rapid translocation of εPKC to rat hippocampal mitochondria after IPC. Because in other tissues εPKC targets mtKATP+ channels, but its presence in brain mitochondria is controversial, we determined the presence of the KATP+ channel-specific subunits (Kir6.1 and Kir6.2) in mitochondria isolated from rat hippocampus. Next, we determined whether mtKATP+ channels play a role in the IPC induction. In hippocampal organotypic slice cultures, IPC and lethal ischemia were induced by oxygen-glucose deprivation. Subsequent cell death in the CA1 region was quantified using propidium iodide staining. Treatment with the KATP+ channel openers diazoxide or pinacidil 48 h prior to lethal ischemia protected hippocampal CA1 neurons, mimicking the induction of neuroprotection conferred by either IPC or εPKC agonist-induced preconditioning. Blockade of mtKATP+ channels using 5-hydroxydecanoic acid abolished the neuroprotection due to either IPC or εPKC preconditioning. Both ischemic andεPKC agonist-mediated preconditioning resulted in phosphorylation of the mtKATP+ channel subunit Kir6.2. After IPC, selective inhibition of εPKC activation prevented Kir6.2 phosphorylation, consistent with Kir6.2 as a phosphorylation target of εPKC or its downstream effectors. Our results support the hypothesis that the brain mtKATP+ channel is an important target of IPC and the signal transduction pathways initiated by εPKC.
doi:10.1016/j.brainres.2007.09.073
PMCID: PMC2577914  PMID: 17988655
ischemic tolerance; diazoxide; protein kinase C; organotypic slice culture; cell death; signal transduction
5.  Identification of εPKC targets during cardiac ischemic injury 
Background
Activation of ε protein kinase C (εPKC) protects hearts from ischemic injury. However, some of the mechanism(s) of εPKC mediated cardioprotection are still unclear. Identification of εPKC targets may aid to elucidate εPKC–mediated cardioprotective mechanisms. Previous studies, using a combination of εPKC transgenic mice and difference in gel electrophoresis (DIGE), identified a number of proteins involved in glucose metabolism, whose expression was modified by εPKC. These studies, were accompanied by metabolomic analysis, and suggested that increased glucose oxidation may be responsible for the cardioprotective effect of εPKC. However, whether these εPKC-mediated alterations were due to differences in protein expression or phosphorylation was not determined.
Methods and Results
Here, we used an εPKC-specific activator peptide, ψεRACK, in combination with phosphoproteomics to identify εPKC targets, and identified proteins whose phosphorylation was altered by selective activation of εPKC most of the identified proteins were mitochondrial proteins and analysis of the mitochondrial phosphoproteome, led to the identification of 55 spots, corresponding to 37 individual proteins, which were exclusively phosphorylated, in the presence of ψεRACK. The majority of the proteins identified were proteins involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins.
Conclusion
In summary the protective effect of εPKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose, lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by εPKC phosphorylation may lead to εPKC-mediated cardioprotection induced by ψεRACK.
PMCID: PMC3527096  PMID: 22453000
εPKC; ischemia; phosphorylation; mitochondria
6.  Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of εPKC and activation of aldehyde dehydrogenase 2 
The cardioprotective effects of moderate alcohol consumption have been well documented in animal models and in humans. Protection afforded against ischemia and reperfusion injury (I/R) proceeds through an ischemic preconditioning-like mechanism involving the activation of epsilon protein kinase C (εPKC) and is dependent on the time and duration of ethanol treatment. However, the substrates of εPKC and the molecular mechanisms by which the enzyme protects the heart from oxidative damage induced by I/R are not fully described. Using an open-chest model of acute myocardial infarction in vivo, we find that intraperitoneal injection of ethanol (0.5 g/kg) 60 minutes prior to (but not 15 minutes prior to) a 30-minute transient ligation of the left anterior descending coronary artery reduced I/R-mediated injury by 57% (measured as a decrease of creatine phosphokinase release into the blood). Only under cardioprotective conditions, ethanol treatment resulted in the translocation of εPKC to cardiac mitochondria, where the enzyme bound aldehyde dehydrogenase-2 (ALDH2). ALDH2 is an intra-mitochondrial enzyme involved in the detoxification of toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE) and 4-HNE mediates oxidative damage, at least in part, by covalently modifying and inactivating proteins (by forming 4-HNE adducts). In hearts subjected to I/R after ethanol treatment, the levels of 4-HNE protein adducts were lower and JNK1/2 and ERK1/2 activities were diminished relative to the hearts from rats subjected to I/R in the absence of ethanol. Together, this work provides an insight into the mitochondrial-dependent basis of ethanol-induced and εPKC-mediated protection from cardiac ischemia, in vivo.
doi:10.1016/j.yjmcc.2008.09.713
PMCID: PMC2675554  PMID: 18983847
7.  Dopamine and Ethanol Cause Translocation of εPKC Associated with εRACK: Cross-talk Between PKA and PKC Signaling Pathways 
Molecular pharmacology  2008;73(4):1105-1112.
Previously we found that neural responses to ethanol and the dopamine D2 receptor (D2) agonist NPA involve both epsilon protein kinase C (εPKC) and cAMP-dependent protein kinase A (PKA). However, little is known about the mechanism underlying ethanol- and D2-mediated activation of εPKC and the relationship to PKA activation. In the present study, we used a new εPKC antibody, 14E6, that selectively recognizes active εPKC when not bound to its anchoring protein εRACK (receptor for activated C-kinase), and PKC isozyme-selective inhibitors and activators, to measure PKC translocation and catalytic activity. We show here that ethanol and NPA activated εPKC and also induced translocation of both εPKC and its anchoring protein, εRACK to a new cytosolic site. The selective εPKC agonist, pseudo-εRACK, activated εPKC but did not cause translocation of the εPKC/εRACK complex to the cytosol. These data suggest a step-wise activation and translocation of εPKC following NPA or ethanol treatment where εPKC first translocates and binds to its RACK and subsequently the εPKC/εRACK complex translocates to a new subcellular site. Direct activation of PKA by Sp-cAMPS, PGE1 or the adenosine A2A receptor is sufficient to cause εPKC translocation to the cytosolic compartment in a process that is dependent on PLC activation and requires PKA activity. These data demonstrate a novel cross-talk mechanism between εPKC and PKA signaling systems. PKA and PKC signaling have been implicated in alcohol rewarding properties in the mesolimbic dopamine system. Cross-talk between PKA and PKC may underlie some of the behaviors associated with alcoholism.
doi:10.1124/mol.107.042580
PMCID: PMC2692587  PMID: 18202306
8.  Ischemic Preconditioning Mediates Cyclooxygenase-2 Expression Via Nuclear Factor-Kappa B Activation in Mixed Cortical Neuronal Cultures 
Translational stroke research  2010;1(1):40-47.
Nuclear factor-kappaB (NF-κB) activation occurs following ischemic preconditioning (IPC) in brain. However, the upstream signaling messengers and down-stream targets of NF-κB required for induction of IPC remain undefined. In a previous study, we demonstrated that epsilon protein kinase c (εPKC) was a key mediator of IPC in brain. Activation of εPKC induced cyclooygenase-2 (COX-2) expression and conferred ischemic tolerance in the neuronal and hippocampal slice models. Here, we hypothesized that IPC-mediated COX-2 expression was mediated by NF-κB. We tested this hypothesis in mixed cortical neuron/astrocyte cell cultures. To simulate IPC or ischemia, cell cultures were exposed to 1 or 4 h of oxygen–glucose deprivation, respectively. Our results demonstrated translocation of p65 and p50 subunits of NF-κB into nucleus following IPC or εPKC activation. NF-κB inhibition with pyrrolidine dithiocarbamate (10 μM) abolished IPC or εPKC activator-mediated neuroprotection indicating that NF-κB activation was involved in ischemic tolerance. In parallel studies, inhibition of either εPKC or the extracellular signal-regulated kinase (ERK 1/2) pathway reduced IPC-induced NF-κB activation. Finally, inhibition of NF-κB blocked IPC-induced COX-2 expression. In conclusion, we demonstrated that IPC-signaling cascade comprises εPKC activation→ERK1/2 activation→NF-κB translocation to nucleus→COX-2 expression resulting in neuroprotection in mixed neuronal culture.
PMCID: PMC2893355  PMID: 20606709
Cerebral ischemia; Ischemic tolerance; Epsilon protein kinase C; Extracellular signal-regulated kinase (ERK1/2); Neuroprotection; Mixed cortical neuron/astrocyte cell cultures
9.  Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel 
Journal of neurochemistry  2009;110(4):1170-1179.
During the pre-hibernation season, arctic ground squirrels (AGS) can tolerate 8 minutes of asphyxial cardiac arrest (CA) without detectable brain pathology. Better understanding of the mechanisms regulating innate ischemia tolerance in AGS has the potential to facilitate the development of novel, prophylactic agents to induce ischemic tolerance in patients at risk of stroke or cardiac arrest. We hypothesized that neuroprotection in AGS involves robust maintenance of ion homeostasis similar to anoxia-tolerant turtles. Ion homeostasis was assessed by monitoring ischemic depolarization (ID) in cerebral cortex during CA in vivo and during oxygen glucose deprivation in vitro in acutely prepared hippocampal slices. In both models, the onset of ID was significantly delayed in AGS compared to rats. The epsilon protein kinase C (εPKC) is a key mediator of neuroprotection and inhibits both Na+/K+-ATPase and voltage-gated sodium channels, primary mediators of the collapse of ion homeostasis during ischemia. The selective peptide inhibitor of εPKC (εV1–2) shortened the time to ID in brain slices from AGS but not in rats despite evidence that εV1–2 decreased activation of εPKC in brain slices from both rats and AGS. These results support the hypothesis that εPKC activation delays the collapse of ion homeostasis during ischemia in AGS.
doi:10.1111/j.1471-4159.2009.06196.x
PMCID: PMC2774829  PMID: 19493168
brain ischemia; heart arrest; tolerance; neuroprotection
10.  Ischaemic preconditioning improves proteasomal activity and increases the degradation of δPKC during reperfusion 
Cardiovascular Research  2009;85(2):385-394.
Aims
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, δ and εPKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection.
Methods and results
Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished δPKC translocation by 3.8-fold and increased εPKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of δPKC decreased by 60 ± 2.7% in response to IPC, whereas the levels of εPKC did not significantly change. Prolonged ischaemia induced a 48 ± 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 ± 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of εPKC during IPC restored δPKC levels at the mitochondria while decreasing εPKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a δPKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol.
Conclusion
Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, δPKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, εPKC.
doi:10.1093/cvr/cvp334
PMCID: PMC2797452  PMID: 19820255
Cardioprotection; Ischaemia/reperfusion; Apoptosis; Proteasome; PKC; Ischaemic preconditioning
11.  Activation of εPKC Reduces Reperfusion Arrhythmias and Improves Recovery from Ischemia: Optical Mapping of Activation Patterns in the Isolated Guinea-pig Heart 
Introduction
Pervious biochemical and hemodymanic studies have highlighted the important role of εPKC in cardioprotection during ischemic preconditioning. However, little is known about the electrophysiological consequences of εPKC modulation in ischemic hearts. Membrane permeable peptide εPKC selective activator and inhibitor were used to investigate the role of εPKC modulation in reperfusion arrhythmias.
Methods
Protein transduction domain from HIV- TAT was used as a carrier for peptide delivery into intact Langendorff perfused guinea pig hearts. Action potentials were imaged and mapped (124 sites) using optical techniques and surface ECG was continuously recorded. Hearts were exposed to 30 min stabilization period, 15 min of no-flow ischemia, followed by 20 min reperfusion. Peptides (0.5 μM) were infused as follows: a) control (vehicle-TAT peptide; TAT-scrambled ψεRACK peptide); b) εPKC agonist (TAT-ψεRACK); c) εPKC antagonist (TAT-εV1).
Results
Hearts treated with εPKC agonist ψεRACK had reduced incidence of ventricular tachycardia (VT, 64%) and fibrillation (VF, 50%) compared to control (VT, 80%, p<0.05) and (VF, 70%, P<0.05). However, the highest incidence of VT (100%, P<0.05) and VF (80%) occurred in hearts treated with εPKC antagonist peptide εV1 compared to control and to εPKC agonist ψεRACK. Interestingly, at 20 min reperfusion, 100% of hearts treated with εPKC agonist ψεRACK exhibited complete recovery of action potentials compared to 40% (p<0.05) of hearts treated with εPKC antagonist peptide, εV1 and 65% (P<0.5) of hearts in control. At 20 min reperfusion, maps of action potential duration from εPKC agonist ψεRACK showed minimal dispersion (48.2±9 ms) compared to exacerbated dispersion (115.4±42 ms, P<0.05) in εPKC antagonist and control (67±20 ms, P<0.05). VT/VF and dispersion from hearts treated with scrambled agonist or antagonist peptides were similar to control.
In conclusion
the results demonstrate that εPKC activation by ψεRACK peptide protects intact hearts from reperfusion arrhythmias and affords better recovery. On the other hand, inhibition of εPKC increased the incidence of arrhythmias and worsened recovery compared to controls. The results carry significant therapeutic implications for the treatment of acute ischemic heart disease by preconditioning-mimicking agents.
doi:10.1016/j.bbrc.2012.08.073
PMCID: PMC3459326  PMID: 22935420
cardiac electrophysiology; Protein Kinase C; reperfusion arrhythmia; optical mapping
12.  δPKC inhibition or εPKC activation repairs endothelial vascular dysfunction by regulating eNOS post-translational modification 
The balance between endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) and reactive oxygen species (ROS) production determines endothelial-mediated vascular homeostasis. Activation of protein kinase C (PKC) has been linked to imbalance of the eNOS/ROS system, which leads to endothelial dysfunction. We previously found that selective inhibition of delta PKC (δPKC) or selective activation of epsilon PKC (εPKC) reduces oxidative damage in the heart following myocardial infarction. In this study we determined the effect of these PKC isozymes in the survival of coronary endothelial cells (CVEC). We demonstrate here that serum deprivation of CVEC increased eNOS-mediated ROS levels, activated caspase-3, reduced Akt phosphorylation and cell number. Treatment with either the δPKC inhibitor, δV1-1, or the εPKC activator, ψεRACK, inhibited these effects, restoring cell survival through inhibition of eNOS activity. The decrease in eNOS activity coincided with specific de-phosphorylation of eNOS at Ser1179, and eNOS phosphorylation at Thr497 and Ser116. Furthermore, δV1-1 or ψεRACK induced physical association of eNOS with caveolin-1, an additional marker of eNOS inhibition, and restored Akt activation by inhibiting its nitration. Together our data demonstrate that 1) in endothelial dysfunction, ROS and reactive nitrogen species (RNS) formation result from uncontrolled eNOS activity mediated by activation of δPKC or inhibition of εPKC 2) inhibition of δPKC or activation of εePKC correct the perturbed phosphorylation state of eNOS, thus increasing cell survival. Since endothelial health ensures better tissue perfusion and oxygenation, treatment with a δPKC inhibitor and/or an εPKC activator in diseases of endothelial dysfunction should be considered.
doi:10.1016/j.yjmcc.2009.11.002
PMCID: PMC3760592  PMID: 19913548
13.  Rational Design of A Selective Antagonist of ε Protein Kinase C Derived From the Selective Allosteric Agonist, Pseudo-Rack Peptide 
We have previously shown that domains involved in binding of protein kinase C (PKC1) isozymes to their respective anchoring proteins (RACKs2) and short peptides derived from these domains are PKC isozyme-selective antagonists. We also identified PKC isozyme-selective agonists, named ψRACK3 peptides, derived from a sequence within each PKC with high homology to its respective RACK. We noted that all the ψRACK sequences within each PKC isozyme have at least one non-homologous amino acid difference from their corresponding RACK that constitutes a charge change. Based on this information, we have devised here a new approach to design an isozyme-selective PKC antagonist, derived from the ψRACK sequence. We focused on εPKC ψRACK peptide, where the pseudo-εRACK sequence (ψεRACK; HDAPIGYD; corresponding to εPKC85-92) is different in charge from the homologous RACK-derived sequence (NNVALGYD; corresponding to εRACK285-292) in the second amino acid. Here we show that changing the charge of the ψεRACK peptide through a substitution of only one amino acid (aspartate to asparagine) resulted in a peptide with an opposite activity on the same cell function and a substitution for aspartate with an alanine resulted in an inactive peptide. These data support our hypothesis regarding the mechanism by which pseudo-RACK peptide activates PKC in heart cells and suggest that this approach is applicable to other signaling proteins with inducible protein-protein interactions.
doi:10.1016/j.yjmcc.2007.01.007
PMCID: PMC1978508  PMID: 17337000
PKC (protein kinase C); RACK (receptor for activated C-kinase); ψRACK (pseudo RACK); intramolecular interaction; carrier peptide
14.  A novel PIP2 binding of εPKC and its contribution to the neurite induction ability1 
Journal of Neurochemistry  2007;102(5):1635-1644.
Protein kinase C-ε (εPKC) induces neurite outgrowth in neuroblastoma cells but molecular mechanism of the εPKC-induced neurite outgrowth is not fully understood. Therefore, we investigated the ability of phosphatidylinositol 4,5-bisphosphate (PIP2) binding of εPKC and its correlation with the neurite extension. We found that full length εPKC bound to PIP2 in a 12-ο-tetradecanoylphorbol-13-acetate dependent manner, while the regulatory domain of εPKC (εRD) bound to PIP2 without any stimulation. To identify the PIP2 binding region, we made mutants lacking several regions from εRD, and examined their PIP2 binding activity. The mutants lacking variable region 1 (V1) bound to PIP2 stronger than intact εRD, while the mutants lacking pseudo-substrate or common region 1 (C1) lost the binding. The PIP2 binding ability of the V3-deleted mutant was weakened. Those PIP2 bindings of εPKC, εRD and the mutants well correlated to their neurite induction ability. In addition, a chimera of pleckstrin homology domain of phospholipase Cδ and the V3 region of εPKC revealed that PIP2 binding domain and the V3 region are sufficient for the neurite induction, and a first 16 amino acids in the V3 region was important for neurite extension. In conclusion, εPKC directly binds to PIP2 mainly through pseudo-substrate and common region 1, contributing to the neurite induction activity.
doi:10.1111/j.1471-4159.2007.04702.x
PMCID: PMC2156110  PMID: 17697049
actin; neurite outgrowth; neuroblastoma; phosphatidylinositol 4,5-bisphosphate; protein kinase C
15.  Selective activation of PKC epsilon in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice 
Journal of neuroscience research  2013;91(6):799-807.
Activation of PKCε confers protection against neuronal ischemia/reperfusion. Since activation of PKCε leads to its translocation to multiple intracellular sites, a mitochondrial-selective PKCε activator was used to test the importance of mitochondrial activation to the neuroprotective effect of PKCε. PKCε can regulate key cytoprotective mitochondrial functions including electron transport chain activity, reactive oxygen species (ROS) generation, mitochondrial permeability transition, and detoxification of reactive aldehydes. We tested the ability of mitochondrial selective activation of PKCε to protect primary brain cell cultures or mice subjected to ischemic stroke. Pre-treatment with either general PKCε activator peptide, ψεRACK, or mitochondrial-selective PKCε activator, ψεHSP90, reduced cell death induced by simulated ischemia/reperfusion in neurons, astrocytes, and mixed neuronal cultures. The protective effects of both ψεRACK and ψεHSP90 were blocked by the PKCε antagonist, εV1–2, indicating protection requires PKCε interaction with its anchoring protein, εRACK. Further supporting a mitochondrial mechanism for PKCε, neuroprotection by ψεHSP90 was associated with a marked delay in mitochondrial membrane depolarization and significantly attenuated ROS generation during ischemia. Importantly, ψεHSP90 reduced infarct size and reduced neurological deficit in C57/BL6 mice subjected to middle cerebral artery occlusion and 24 hours of reperfusion. Thus selective activation of mitochondrial PKCε preserves mitochondrial function in vitro and improves outcome in vivo, suggesting potential therapeutic value clinically when brain ischemia is anticipated, including neurosurgery and cardiac surgery.
doi:10.1002/jnr.23186
PMCID: PMC3905808  PMID: 23426889
mitochondria; astrocytes; acute stroke; cell culture; animal models
16.  δPKC mediates microcerebrovascular dysfunction in acute ischemia and in chronic hypertensive stress in vivo 
Brain research  2007;1144:146-155.
Maintaining cerebrovascular function is a priority for reducing damage following acute ischemic events such as stroke, and under chronic stress in diseases such as hypertension. Ischemic episodes lead to endothelial cell damage, deleterious inflammatory responses, and altered neuronal and astrocyte regulation of vascular function. These, in turn, can lead to impaired cerebral blood flow and compromised blood–brain barrier function, promoting microvascular collapse, edema, hemorrhagic transformation, and worsened neurological recovery. Multiple studies demonstrate that protein kinase C (PKC), a widely expressed serine/threonine kinase, is involved in mediating arterial tone and microvascular function. However, there is no clear understanding about the role of individual PKC isozymes. We show that intraperitoneal injection of δV1-1–TAT47–57 (0.2 mg/kg in 1 mL), an isozymespecific peptide inhibitor of δPKC, improved microvascular pathology, increased the number of patent microvessels by 92% compared to control-treated animals, and increased cerebral blood flow by 26% following acute focal ischemia induced by middle cerebral artery occlusion in normotensive rats. In addition, acute delivery of δV1-1–TAT47–57 in hypertensive Dahl rats increased cerebral blood flow by 12%, and sustained delivery δV1-1–TAT47–57 (5 uL/h, 1 mM), reduced infarct size by 25% following an acute stroke induced by MCA occlusion for 90 min. Together, these findings demonstrate that δPKC is an important therapeutic target for protection of microvascular structure and function under both acute and chronic conditions of cerebrovascular stress.
doi:10.1016/j.brainres.2007.01.113
PMCID: PMC3742377  PMID: 17350602
Cerebral blood flow; Hypertension; Microvasculature; Protein kinase C; Stroke; Vasculature
17.  Preconditioning mediated by sublethal oxygen–glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation 
The signal transducers and activators of transcription (STATs) were found to be essential for cardioprotection. However, their role in preconditioning (PC) neuroprotection remains undefined. Previously, our studies showed that PC mediated a signaling cascade that involves activation of epsilon protein kinase C (εPKC), extracellular signal-regulated kinase (ERK1/2), and cyclooxygenase-2 (COX-2) pathways. However, the intermediate pathway by which ERK1/2 activates COX-2 was not defined. In this study, we investigated whether the PC-induced signaling pathway requires phosphorylation of STAT isoforms for COX-2 expression. To mimic PC or lethal ischemia, mixed cortical neuron/astrocyte cell cultures were subjected to 1 and/or 4 h of oxygen–glucose deprivation (OGD), respectively. The results indicated serine phosphorylation of STAT3 after PC or εPKC activation. Inhibition of either εPKC or ERK1/2 activation abolished PC-induced serine phosphorylation of STAT3. Additionally, inhibition of STAT3 prevented PC-induced COX-2 expression and neuroprotection against OGD. Therefore, our findings suggest that PC signaling cascade involves STAT3 activation after εPKC and ERK1/2 activation. Finally, we show that STAT3 activation mediates COX-2 expression and ischemic tolerance.
doi:10.1038/jcbfm.2008.26
PMCID: PMC2645802  PMID: 18398416
cerebral ischemia; extracellular signal-regulated kinase (ERK1/2); ischemic tolerance; neuroprotection; phosphorylation; protein kinase C
18.  Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. 
Journal of Clinical Investigation  1998;101(10):2182-2198.
Brief ischemic episodes confer marked protection against myocardial stunning 1-3 d later (late preconditioning [PC] against stunning). The mechanism of this powerful protective effect is poorly understood. Although protein kinase C (PKC) has been implicated in PC against infarction, it is unknown whether it triggers late PC against stunning. In addition, the entire PKC hypothesis of ischemic PC remains controversial, possibly because the effects of PKC inhibitors on PC protection have not been correlated with their effects on PKC activity and/or translocation in vivo. Thus, conscious rabbits underwent a sequence of six 4-min coronary occlusion (O)/4-min reperfusion (R) cycles for three consecutive days (days 1, 2, and 3). In the control group (group I, n = 7), the recovery of systolic wall thickening after the six O/R cycles was markedly improved on days 2 and 3 compared with day 1, indicating the development of late PC against stunning. Administration of the PKC inhibitor chelerythrine at a dose of 5 mg/kg before the first O on day 1 (group II, n = 10) abrogated the late PC effect against stunning, whereas a 10-fold lower dose (0.5 mg/kg; group III, n = 7) did not. Administration of 5 mg/kg of chelerythrine 10 min after the sixth reperfusion on day 1 (group IV, n = 6) failed to block late PC against stunning. When rabbits were given 5 mg/kg of chelerythrine in the absence of O/R (group V, n = 5), the severity of myocardial stunning 24 h later was not modified. Pretreatment with phorbol 12-myristate 13-acetate (4 microg/kg) on day 1 without ischemia (group VI, n = 11) induced late PC against stunning on day 2 and the magnitude of this effect was equivalent to that observed after ischemic PC. In vehicle-treated rabbits (group VIII, n = 5), the six O/R cycles caused translocation of PKC isoforms epsilon and eta from the cytosolic to the particulate fraction without significant changes in total PKC activity, in the subcellular distribution of total PKC activity, or in the subcellular distribution of the alpha, beta1, beta2, gamma, delta, zeta, iota, lambda, and mu isoforms. The higher dose of chelerythrine (5 mg/kg; group X, n = 5) prevented the translocation of both PKC epsilon and eta induced by ischemic PC, whereas the lower dose (0.5 mg/kg; group XI, n = 5) prevented the translocation of PKC eta but not that of epsilon, indicating that the activation of epsilon is necessary for late PC to occur whereas that of eta is not. To our knowledge, this is the first demonstration that a PKC inhibitor actually prevents the translocation of PKC induced by ischemic PC in vivo, and that this inhibition of PKC translocation results in loss of PC protection. Taken together, the results demonstrate that the mechanism of late PC against myocardial stunning in conscious rabbits involves a PKC-mediated signaling pathway, and implicate epsilon as the specific PKC isoform responsible for the development of this cardioprotective phenomenon.
PMCID: PMC508806  PMID: 9593774
19.  Receptor for RACK1 Mediates Activation of JNK by Protein Kinase C 
Molecular cell  2005;19(3):309-320.
Summary
Activation of the Jun-N-terminal kinase (JNK) signaling cascade by phorbol esters (TPA) or protein kinase C (PKC) is well documented, although the underlying mechanism is not known. Here, we demonstrate that the receptor for activated C kinase 1 (RACK1) serves as an adaptor for PKC-mediated JNK activation. Phosphorylation of JNK by PKC occurs on Ser129 and requires the presence of RACK1. Ser129 phosphorylation augments JNK phosphorylation by MKK4 and/or MKK7 and is required for JNK activation by TPA, TNFα, UV irradiation, and PKC, but not by anisomycin or MEKK1. Inhibition of RACK1 expression by siRNA attenuates JNK activation, sensitizes melanoma cells to UV-induced apoptosis, and reduces their tumorigenicity in nude mice. In finding the role of RACK1 in activation of JNK by PKC, our study also highlights the nature of crosstalk between these two signal-transduction pathways.
doi:10.1016/j.molcel.2005.06.025
PMCID: PMC2953422  PMID: 16061178
20.  β2-Adrenergic Receptors Mediate Cardioprotection through Crosstalk with Mitochondrial Cell Death Pathways 
Aims
β-adrenergic receptors (β-ARs) modulate cardiotoxicity/cardioprotection through crosstalk with multiple signaling pathways. We have previously shown that β2-ARs are cardioprotective during exposure to oxidative stress induced by doxorubicin (DOX). DOX cardiotoxicity is mediated in part through a Ca2+-dependent opening of the mitochondrial permeability transition (MPT), however the signals linking a cell surface receptor like the β2-AR to regulators of mitochondrial function are not clear. The objective of this study was to assess mechanisms of crosstalk between β2-ARs and mitochondrial cell death pathways.
Methods and Results
DOX administered to WT mice resulted in no acute mortality, however 85% of β2-/- mice died within 30 min. Several pro- and anti-survival pathways were altered. The pro-survival kinase, εPKC, was decreased by 64% in β2-/- after DOX vs WT (p<0.01); the εPKC activator ψεRACK partially rescued these mice (47% reduction in mortality). Activity of the pro-survival kinase Akt decreased by 76% in β2-/- after DOX vs WT (p<0.01). The α1-antagonist prazosin restored Akt activity to normal and also partially reversed the mortality (45%). Deletion of the β2-AR increased rate of Ca2+ release by 75% and peak [Ca2+]i by 20% respectively in isolated cardiomyocytes; the Ca2+ channel blocker verapamil also partially rescued the β2-/- (26%). Mitochondrial architecture was disrupted and complex I and II activities decreased by 40.9% and 34.6% respectively after DOX only in β2-/-. The MPT blocker cyclosporine reduced DOX mortality by 41% and prazosin plus cyclosporine acted synergistically to decrease mortality by 85%.
Conclusion
β2-ARs activate pro-survival kinases and attenuate mitochondrial dysfunction during oxidative stress; absence of β2-ARs enhances cardiotoxicity via negative regulation of survival kinases and enhancement of intracellular Ca2+, thus predisposing the mitochondria to opening of the MPT.
doi:10.1016/j.yjmcc.2011.06.019
PMCID: PMC3184305  PMID: 21756913
Adrenergic receptors; cardiomyopathy; mitochondria; signal transduction; protein kinases
21.  Requirements for PKC-augmented JNK activation by MKK4/7 
The c-Jun N-terminal kinases (JNKs) are activated in response to stress, DNA damage, and cytokines by MKK4 and MKK7. We recently demonstrated that PKC can augment the degree of JNK activation by phosphorylating JNK, which requires the adaptor protein RACK1. Here we report on the conditions required for PKC-dependent JNK activation. In vitro kinase assays reveal that PKC phosphorylation of JNK is not sufficient for its activation but rather augments JNK activation by canonical JNK upstream kinases MKK4 or MKK7 alone or in combination. Further, to enhance JNK activity, PKC phosphorylation of JNK should precede its phosphorylation by MKK4/7. Inhibition of PKC phosphorylation of JNK affects both early and late phases of JNK activation following UV-irradiation and reduces the apoptotic response mediated by JNK. These data provide important insight into the requirements for PKC activation of JNK signaling.
doi:10.1016/j.biocel.2007.11.011
PMCID: PMC2327215  PMID: 18182317
JNK; MKK4; MKK7; PKC; RACK1
22.  Epsilon PKC Increases Brain Mitochondrial SIRT1 Protein Levels via Heat Shock Protein 90 following Ischemic Preconditioning in Rats 
PLoS ONE  2013;8(9):e75753.
Ischemic preconditioning is a neuroprotective mechanism whereby a sublethal ischemic exposure is protective against a subsequent lethal ischemic attack. We previously demonstrated that SIRT1, a nuclear localized stress-activated deacetylase, is vital for ischemic preconditioning neuroprotection. However, a recent study demonstrated that SIRT1 can also localize to the mitochondria. Mitochondrial localized SIRT1 may allow for a direct protection of mitochondria following ischemic preconditioning. The objective of this study was to determine whether ischemic preconditioning increases brain mitochondrial SIRT1 protein levels and to determine the role of PKCɛ and HSP90 in targeting SIRT1 to the mitochondria. Here we report that preconditioning rats, with 2 min of global cerebral ischemia, induces a delayed increase in non-synaptic mitochondrial SIRT1 protein levels which was not observed in synaptic mitochondria. This increase in mitochondrial SIRT1 protein was found to occur only in neuronal cells and was mediated by PKCε activation. Inhibition of HSP90, a protein chaperone involved in mitochondrial protein import, prevented preconditioning induced increases in mitochondrial SIRT1 and PKCε protein. Our work provides new insights into a possible direct role of SIRT1 in modulating mitochondrial function under both normal and stress conditions, and to a possible role of mitochondrial SIRT1 in activating preconditioning induced ischemic tolerance.
doi:10.1371/journal.pone.0075753
PMCID: PMC3772907  PMID: 24058702
23.  Myocardial Hsp70 phosphorylation and PKC-mediated cardioprotection following exercise 
Cell Stress & Chaperones  2008;14(2):141-150.
Both protein kinase C (PKC) activation and Hsp70 expression have been shown to be key components for exercise-mediated myocardial protection during ischemia–reperfusion injury. Given that Hsp70 has been shown to undergo inducible phosphorylation in striated muscle and liver, we hypothesized that PKC may regulate myocardial Hsp70 function and subsequent exercise-conferred cardioprotection through this phosphorylation. Hence, acute exercise of male Sprague–Dawley rats (30 m/min for 60 min at 2% grade) was employed to assess the role of PKC and its selected isoforms in phosphorylation of Hsp70 and protection of the myocardium during ischemia–reperfusion injury. It was observed that administration of the PKC inhibitor chelerythrine chloride (5 mg/kg) suppressed the activation of three exercise-induced PKC isoforms (PKCα, PKCδ, and PKCɛ) and attenuated the exercise-mediated reduction of myocardial infarct size during ischemia–reperfusion injury. While this study also demonstrated that exercise led to an alteration in the phosphorylation status of Hsp70, this posttranslational modification appeared to be dissociated from PKC activation, as exercise-induced phosphorylation of Hsp70 was unchanged following inhibition of PKC. Taken together, these results indicate that selected isoforms of PKC play an important role in exercise-mediated protection of the myocardium during ischemia–reperfusion injury. However, exercise-induced phosphorylation of Hsp70 does not appear to be a mechanism by which PKC induces this cardioprotective effect.
doi:10.1007/s12192-008-0065-x
PMCID: PMC2727986  PMID: 18668351
Signal transduction; Rat; Heart; Treadmill running; Heat shock proteins
24.  Mast cells and εPKC: A role in cardiac remodeling in hypertension-induced heart failure 
Heart failure (HF) is a chronic syndrome in which pathological cardiac remodeling is an integral part of the disease and mast cell (MC) degranulation-derived mediators have been suggested to play a role in its progression. Protein kinase C (PKC) signaling is a key event in the signal transduction pathway of MC degranulation. We recently found that inhibition of εPKC slows down the progression of hypertension-induced HF in salt-sensitive Dahl rats fed a high-salt diet. We therefore determined whether εPKC inhibition affects MC degranulation in this model. Six week-old male Dahl rats were fed with a high-salt diet to induce systemic hypertension, which resulted in concentric left ventricular hypertrophy at the age of 11 weeks, followed by myocardial dilatation and HF at the age of 17 weeks. We administered εV1-2 an εPKC-selective inhibitor peptide (3 mg/Kg/day), δV1-1, a δPKC-selective inhibitor peptide (3 mg/Kg/day), TAT (negative control; at equimolar concentration; 1.6 mg/Kg/day) or olmesartan (angiotensin receptor blocker [ARB] as a positive control; 3mg/Kg/day) between 11 weeks and 17 weeks. Treatment with εV1-2 attenuated cardiac MC degranulation without affecting MC density, myocardial fibrosis, microvessel patency, vascular thickening and cardiac inflammation in comparison to TAT- or δV1-1-treatment. Treatment with ARB also attenuated MC degranulation and cardiac remodeling, but to a lesser extent when compared to εV1-2. Finally, εV1-2 treatment inhibited MC degranulation in isolated peritoneal MCs. Together, our data suggest that εPKC inhibition attenuates pathological remodeling in hypertension-induced HF, at least in part, by preventing cardiac MC degranulation.
doi:10.1016/j.yjmcc.2008.08.009
PMCID: PMC2657602  PMID: 18804478
Mast cell degranulation; protein kinase C; PKC-selective inhibitor peptide; cardiac remodeling; heart failure
25.  Activating δPKC antagonizes the protective effect of ERK1/2 inhibition against stroke in rats 
Brain research  2008;1251:256-261.
Two pathways that have been shown to mediate cerebral ischemic damage are the MEK/ERK cascade and the pro-apoptotic δPKC pathway. We investigated the relationship between these pathways in a rat model of focal ischemia by observing and modifying the activation state of each pathway. The ERK1/2 inhibitor, U0126, injected at ischemia onset, attenuated the increase in phosphorylated ERK1/2 (P-ERK1/2) after reperfusion. The δPKC inhibitor, δV1-1, delivered at reperfusion, did not significantly change P-ERK1/2 levels. In contrast, the δPKC activator, ψδRACK, injected at reperfusion, reduced ERK1/2 phosphorylation measured 4 h after reperfusion. Additionally, U0126 pretreatment at ischemia onset reduced infarct size compared with vehicle, but U0126 injected at the onset of reperfusion had no protection. Finally, combination of U0126 injection at ischemia onset plus δV1-1 injection at reperfusion further reduced infarct size, while combination of U0126 delivered at ischemia onset with ψδRACK injected at reperfusion increased infarct size compared with U0126 alone. In conclusion, we find that inhibiting both the MEK/ERK and the δPKC pathways offers greater protection than either alone, indicating they likely act independently.
doi:10.1016/j.brainres.2008.11.051
PMCID: PMC2746701  PMID: 19063870
Cerebral ischemia; MEK/ERK cascade; δPKC; ERK1/2

Results 1-25 (735118)