PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1321457)

Clipboard (0)
None

Related Articles

1.  IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(3):463-468.
Objective
High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease.
Methods
1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay.
Results
In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE.
Conclusions
The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements.
SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and haematopoietic systems. Humoral autoimmunity is a hallmark of SLE, and patients frequently have circulating auto-antibodies directed against dsDNA, as well as RNA binding proteins (RBP). Anti-RBP autoantibodies include antibodies which recognize Ro, La, Smith (anti-Sm), and ribonucleoprotein (anti-nRNP), collectively referred to as anti-retinol-binding protein). Anti-retinol-binding protein and anti-dsDNA auto-antibodies are rare in the healthy population.1 These auto-antibodies can be present in sera for years preceding the onset of clinical SLE illness2 and are likely pathogenic in SLE.34
doi:10.1136/annrheumdis-2011-200463
PMCID: PMC3307526  PMID: 22088620
2.  Genetic Variation at the IRF7/PHRF1 Locus Is Associated With Autoantibody Profile and Serum Interferon-α Activity in Lupus Patients 
Arthritis and rheumatism  2010;62(2):553-561.
Objective
Interferon-α (IFNα) is a heritable risk factor for systemic lupus erythematosus (SLE). Genetic variation near IRF7 is implicated in SLE susceptibility. SLE-associated autoantibodies can stimulate IFNα production through the Toll-like receptor/IRF7 pathway. This study was undertaken to determine whether variants of IRF7 act as risk factors for SLE by increasing IFNα production and whether autoantibodies are important to this phenomenon.
Methods
We studied 492 patients with SLE (236 African American, 162 European American, and 94 Hispanic American subjects). Serum levels of IFNα were measured using a reporter cell assay, and single-nucleotide polymorphisms (SNPs) in the IRF7/PHRF1 locus were genotyped.
Results
In a joint analysis of European American and Hispanic American subjects, the rs702966 C allele was associated with the presence of anti–double-stranded DNA (anti-dsDNA) antibodies (odds ratio [OR] 1.83, P = 0.0069). The rs702966 CC genotype was only associated with higher serum levels of IFNα in European American and Hispanic American patients with anti-dsDNA antibodies (joint analysis P = 4.1 × 10−5 in anti-dsDNA–positive patients and P = 0.99 in anti-dsDNA–negative patients). In African American subjects, anti-Sm antibodies were associated with the rs4963128 SNP near IRF7 (OR 1.95, P = 0.0017). The rs4963128 CT and TT genotypes were associated with higher serum levels of IFNα only in African American patients with anti-Sm antibodies (P = 0.0012). In African American patients lacking anti-Sm antibodies, an effect of anti-dsDNA–rs702966 C allele interaction on serum levels of IFNα was observed, similar to the other patient groups (overall joint analysis P = 1.0 × 10−6). In European American and Hispanic American patients, the IRF5 SLE risk haplotype showed an additive effect with the rs702966 C allele on IFNα level in anti-dsDNA–positive patients.
Conclusion
Our findings indicate that IRF7/PHRF1 variants in combination with SLE-associated autoantibodies result in higher serum levels of IFNα, providing a biologic relevance for this locus at the protein level in human SLE in vivo.
doi:10.1002/art.27182
PMCID: PMC2832192  PMID: 20112359
3.  Association of IRF5 polymorphisms with activation of the interferon α pathway 
Annals of the rheumatic diseases  2009;69(3):611-617.
Objective
The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway.
Methods
Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation.
Results
The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα.
Conclusions
SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE.
doi:10.1136/ard.2009.118315
PMCID: PMC3135414  PMID: 19854706
4.  Genetic variants and disease-associated factors contribute to enhanced IRF-5 expression in blood cells of systemic lupus erythematosus patients 
Arthritis and rheumatism  2010;62(2):562-573.
Objective
Genetic variants of the interferon (IFN) regulatory factor 5 (IRF5) gene are associated with systemic lupus erythematosus (SLE) susceptibility. The contribution of these variants to IRF-5 expression in primary blood cells of SLE patients has not been addressed, nor has the role of type I IFN. The aim of this study was to determine the association between increased IRF-5 expression and the IRF5 risk haplotype in SLE patients.
Methods
IRF-5 transcript and protein levels in 44 Swedish patients with SLE and 16 healthy controls were measured by quantitative real-time PCR, minigene assay, and flow cytometry. The rs2004640, rs10954213, rs10488631 and the CGGGG indel were genotyped in these patients. Genotypes of these polymorphisms defined a common risk and protective haplotype.
Results
IRF-5 expression and alternative splicing were significantly upregulated in SLE patients versus healthy donors. Enhanced transcript and protein levels were associated with the risk haplotype of IRF5; rs10488631 gave the only significant independent association that correlated with increased transcription from non-coding exon 1C. Minigene experiments demonstrated an important role for rs2004640 and the CGGGG indel, along with type I IFNs in regulating IRF-5 expression.
Conclusions
This study provides the first formal proof that IRF-5 expression and alternative splicing are significantly upregulated in primary blood cells of SLE patients. The risk haplotype is associated with enhanced IRF-5 transcript and protein expression in SLE patients.
doi:10.1002/art.27223
PMCID: PMC3213692  PMID: 20112383
5.  Cis-regulation of IRF5 expression is unable to fully account for systemic lupus erythematosus association: analysis of multiple experiments with lymphoblastoid cell lines 
Introduction
Interferon regulatory factor 5 gene (IRF5) polymorphisms are strongly associated with several diseases, including systemic lupus erythematosus (SLE). The association includes risk and protective components. They could be due to combinations of functional polymorphisms and related to cis-regulation of IRF5 expression, but their mechanisms are still uncertain. We hypothesised that thorough testing of the relationships between IRF5 polymorphisms, expression data from multiple experiments and SLE-associated haplotypes might provide useful new information.
Methods
Expression data from four published microarray hybridisation experiments with lymphoblastoid cell lines (57 to 181 cell lines) were retrieved. Genotypes of 109 IRF5 polymorphisms, including four known functional polymorphisms, were considered. The best linear regression models accounting for the IRF5 expression data were selected by using a forward entry procedure. SLE-associated IRF5 haplotypes were correlated with the expression data and with the best cis-regulatory models.
Results
A large fraction of variability in IRF5 expression was accounted for by linear regression models with IRF5 polymorphisms, but at a different level in each expression data set. Also, the best models from each expression data set were different, although there was overlap between them. The SNP introducing an early polyadenylation signal, rs10954213, was included in the best models for two of the expression data sets and in good models for the other two data sets. The SLE risk haplotype was associated with high IRF5 expression in the four expression data sets. However, there was also a trend towards high IRF5 expression with some protective and neutral haplotypes, and the protective haplotypes were not associated with IRF5 expression. As a consequence, correlation between the cis-regulatory best models and SLE-associated haplotypes, regarding either the risk or protective component, was poor.
Conclusions
Our analysis indicates that although the SLE risk haplotype of IRF5 is associated with high expression of the gene, cis-regulation of IRF5 expression is not enough to fully account for IRF5 association with SLE susceptibility, which indicates the need to identify additional functional changes in this gene.
doi:10.1186/ar3343
PMCID: PMC3218890  PMID: 21627826
systemic lupus erythematosus; IRF5; lymphoblastoid cell lines; cis-regulation; disease susceptibility; linear regression models
6.  IRF5 activation in monocytes of SLE patients is triggered by circulating autoantigens independent of type I IFN 
Arthritis and Rheumatism  2012;64(3):788-798.
Objective
Genetic variants of interferon regulatory factor 5 (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). IRF5 regulates the expression of proinflammatory cytokines and type I interferons (IFN) believed to be involved in SLE pathogenesis. The aim of this study was to determine the activation status of IRF5 by assessing its nuclear localization in immune cells of SLE patients and healthy donors, and to identify SLE triggers of IRF5 activation.
Methods
IRF5 nuclear localization in subpopulations of peripheral blood mononuclear cells (PBMC) from 14 genotyped SLE patients and 11 healthy controls was assessed using imaging flow cytometry. IRF5 activation and function were examined after ex vivo stimulation of healthy donor monocytes with SLE serum or components of SLE serum. Cellular localization was determined by ImageStream and cytokine expression by Q-PCR and ELISA.
Results
IRF5 was activated in a cell type-specific manner; monocytes of SLE patients had constitutively elevated levels of nuclear IRF5 compared to NK and T cells. SLE serum was identified as a trigger for IRF5 nuclear accumulation; however, neither IFNα nor SLE immune complexes could induce nuclear localization. Instead, autoantigens comprised of apoptotic/necrotic material triggered IRF5 nuclear accumulation in monocytes. Production of cytokines IFNα, TNFα and IL6 in monocytes stimulated with SLE serum or autoantigens was distinct yet correlated with the kinetics of IRF5 nuclear localization.
Conclusion
This study provides the first formal proof that IRF5 activation is altered in monocytes of SLE patients that is in part contributed by the SLE blood environment.
doi:10.1002/art.33395
PMCID: PMC3288585  PMID: 21968701
7.  Genetic Variation near IRF8 is Associated with Serologic and Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis 
Genes and immunity  2013;14(8):10.1038/gene.2013.42.
Alleles of IRF8 are associated with susceptibility to both systemic lupus erythematosus (SLE) and multiple sclerosis (MS). While high type I interferon (IFN) is thought to be causal in SLE, type I IFN is used as a therapy in MS. We investigated whether IRF8 alleles were associated with type I IFN levels or serologic profiles in SLE and MS. Alleles which have been previously associated with SLE or MS were genotyped in SLE and MS patients. The MS-associated rs17445836G allele was associated with anti-dsDNA autoantibodies in SLE patients (meta-analysis OR=1.92). The same allele was associated with decreased serum IFN activity in SLE patients with anti-dsDNA antibodies, and with decreased type I IFN-induced gene expression in PBMC from anti-dsDNA negative SLE patients. In secondary progressive MS patients, rs17445836G was associated with decreased serum type I IFN. Rs17445836G was associated with increased IRF8 expression in SLE patient B cells. In summary, IRF8 rs17445836G is associated with human autoimmune disease characterized by low type I IFN levels, and this may have pharmacogenetic relevance as type I IFN is modulated in SLE and MS. The association with autoantibodies and increased IRF8 expression in B cells supports a role for rs17445836G in humoral tolerance.
doi:10.1038/gene.2013.42
PMCID: PMC3856198  PMID: 23965942
systemic lupus erythematosus; type I interferon; autoantibodies; interferon regulatory factors
8.  Interferon Regulatory Factors in Human Lupus Pathogenesis 
Systemic lupus erythematosus (SLE) is a severe multi-system autoimmune disease which results from both genetic predisposition and environmental factors. Many lines of investigation support interferon alpha (IFN-α) as a causal agent in human lupus, and high levels of serum IFN-α are a heritable risk factor for SLE. Interferon regulatory factors (IRFs) are a family of transcription factors involved in host defense, which can induce transcription of IFN-α and other immune response genes following activation. In SLE, circulating immune complexes which contain nucleic acid are prevalent. These complexes are recognized by endosomal Toll-like receptors, resulting in activation of downstream IRF proteins. Genetic variants in the IRF5 and IRF7 genes have been associated with SLE susceptibility, and these same variants are associated with increased serum IFN-α in SLE patients. The increase in serum IFN-α related to IRF5 and 7 genotypes is observed only in patients with particular antibody specificities. This suggests that chronic stimulation of the endosomal Toll-like receptors by autoantibody immune complexes is required for IRF SLE-risk variants to cause elevation of circulating IFN-α and subsequent risk of SLE. Recently, genetic variation in the IRF8 gene has been associated with SLE and multiple sclerosis, and studies support an impact of IRF8 genotype on the IFN-α pathway. In summary, the SLE-associated polymorphisms in the IRF family of proteins appear to be gain-of-function variants, and understanding the impact of these variants upon the IFN-α pathway in vivo may guide therapeutic strategies directed at the Toll-like receptor/IRF/IFN-α pathway in SLE.
doi:10.1016/j.trsl.2011.01.006
PMCID: PMC3096827  PMID: 21575916
Interferon Alpha; Genetics; Systemic Lupus Erythematosus; Interferon Regulatory Factor; Autoantibodies; Autoimmunity
9.  IRF5 SLE-Risk Haplotype is Associated with Asymptomatic Serologic Autoimmunity and Progression to Clinical Autoimmunity in Neonatal Lupus Mothers 
Arthritis and rheumatism  2012;64(10):3383-3387.
Objective
Genetic variation in interferon regulatory factor 5 (IRF5) has been associated with risk of developing systemic lupus erythematosus (SLE), and this association is largely dependent upon anti-Ro autoantibodies. We studied a unique cohort of anti-Ro positive individuals with diverse diagnoses to determine if IRF5 genotype associated with maternal diagnosis or progression of autoimmunity.
Methods
We genotyped haplotype-tagging polymorphisms in IRF5 in 93 European ancestry subjects recruited to the Research Registry for Neonatal Lupus who all had high titer anti-Ro autoantibodies and a child with neonatal lupus (NL), and allele frequencies were compared to non-autoimmune controls. The mothers diagnoses included SLE, Sjogren’s syndrome (SS), undifferentiated autoimmune syndrome (UAS), and asymptomatic.
Results
The SLE-risk haplotype of IRF5 was enriched in all anti-Ro positive subjects except those with SS (OR = 2.55, p=8.8×10−4). Even asymptomatic individuals with anti-Ro antibodies were enriched for the SLE-risk haplotype (OR=2.69, p=0.019). The same haplotype was more prevalent in subjects who were initially asymptomatic, but developed symptomatic SLE during follow up (OR=5.83, p=0.0024). Interestingly, SS was associated with two minor IRF5 haplotypes, and these same haplotypes were decreased in frequency in those with SLE and UAS.
Conclusions
The IRF5 SLE-risk haplotype was associated with anti-Ro antibodies in asymptomatic individuals as well as progression to SLE in asymptomatic anti-Ro positive individuals. SS in NL mothers was associated with different IRF5 haplotypes. These data suggest that IRF5 polymorphisms play a role in serologic autoimmunity in humans and may promote the progression to clinical autoimmunity.
doi:10.1002/art.34571
PMCID: PMC3449035  PMID: 22674082
systemic lupus erythematosus; interferon; autoantibodies; neonatal lupus; Sjogren’s syndrome
10.  Age- and Sex-Related Patterns of Serum Interferon-α Activity in Lupus Families 
Arthritis and rheumatism  2008;58(7):2113-2119.
Objective
Interferon-α (IFNα) levels are elevated in many patients with systemic lupus erythematosus (SLE) and may play a primary role in its pathogenesis. The purpose of this study was to determine whether serum IFNα activity in SLE patients and their healthy first-degree relatives is highest in early adulthood, when the incidence of SLE is greatest.
Methods
Serum samples from 315 SLE patients, 359 healthy first-degree relatives, and 141 healthy unrelated donors were measured for IFNα activity using a functional reporter cell assay. IFNα activity was analyzed in relation to age, and subgroups with high levels of IFNα activity were identified within the large data sets using a Mann-Whitney sliding window segmentation algorithm. The significance of each subgrouping was ranked by Kruskal-Wallis testing.
Results
Age was inversely correlated with IFNα activity in female SLE patients (r = −0.20, P = 0.001) as well as their healthy female first-degree relatives (r = −0.16, P = 0.02). In male patients and their healthy male first-degree relatives, there was no significant overall correlation between age and serum IFNα activity. The segmentation algorithm revealed significantly increased IFNα activity between the ages of 12 and 22 years in female SLE patients and between the ages of 16 and 29 years in male SLE patients. Both male and female healthy first-degree relatives had significantly decreased IFNα activity after the age of 50 years.
Conclusion
Serum IFNα activity is higher in younger individuals in the SLE family cohorts, and this tendency is accentuated in affected individuals. This age-related pattern of IFNα activity may contribute to the increased incidence of SLE in early adulthood, and interestingly, males and females had similar age-related patterns of IFNα activity.
doi:10.1002/art.23619
PMCID: PMC2729701  PMID: 18576315
11.  Association of Endogenous Anti–Interferon-α Autoantibodies With Decreased Interferon-Pathway and Disease Activity in Patients With Systemic Lupus Erythematosus 
Arthritis and rheumatism  2011;63(8):2407-2415.
Objective
Numerous observations implicate interferon-α (IFNα) in the pathophysiology of systemic lupus erythematosus (SLE); however, the potential impact of endogenous anti-IFNα autoantibodies (AIAAs) on IFN-pathway and disease activity is unclear. The aim of this study was to characterize IFN-pathway activity and the serologic and clinical profiles of AIAA-positive patients with SLE.
Methods
Sera obtained from patients with SLE (n = 49), patients with rheumatoid arthritis (n = 25), and healthy control subjects (n = 25) were examined for the presence of AIAAs, using a biosensor immunoassay. Serum type I IFN bioactivity and the ability of AIAA-positive sera to neutralize IFNα activity were determined using U937 cells. Levels of IFN-regulated gene expression in peripheral blood were determined by microarray, and serum levels of BAFF, IFN-inducible chemokines, and other autoantibodies were measured using immunoassays.
Results
AIAAs were detected in 27% of the serum samples from patients with SLE, using a biosensor immunoassay. Unsupervised hierarchical clustering analysis identified 2 subgroups of patients, IFNlow and IFNhigh, that differed in the levels of serum type I IFN bioactivity, IFN-regulated gene expression, BAFF, anti-ribosomal P, and anti-chromatin autoantibodies, and in AIAA status. The majority of AIAA-positive patients had significantly lower levels of serum type I IFN bioactivity, reduced downstream IFN-pathway activity, and lower disease activity compared with the IFNhigh patients. AIAA-positive sera were able to effectively neutralize type I IFN activity in vitro.
Conclusion
Patients with SLE commonly harbor AIAAs. AIAA-positive patients have lower levels of serum type I IFN bioactivity and evidence for reduced downstream IFN-pathway and disease activity. AIAAs may influence the clinical course in SLE by blunting the effects produced by IFNα.
doi:10.1002/art.30399
PMCID: PMC4028124  PMID: 21506093
12.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production 
PLoS Genetics  2011;7(3):e1001323.
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can involve virtually any organ system. SLE patients produce antibodies that bind to their own cells and proteins (autoantibodies) which can cause irreversible organ damage. One particular SLE–related autoantibody directed at double-stranded DNA (anti–dsDNA) is associated with kidney involvement and more severe disease. Previous genome-wide association studies (GWAS) in SLE have studied SLE itself, not particular SLE manifestations. Therefore, we conducted this GWAS of anti–dsDNA autoantibody production to identify genetic associations with this clinically important autoantibody. We found that many previously identified SLE–associated genes are more strongly associated with anti–dsDNA autoantibody production than SLE itself, and they may be more accurately described as autoantibody propensity genes. No strong genetic associations were observed for SLE patients who do not produce anti–dsDNA autoantibodies, suggesting that other factors may have more influence in developing this type of SLE. Further investigation of these autoantibody propensity genes may lead to greater insight into the causes of autoantibody production and organ damage in SLE.
doi:10.1371/journal.pgen.1001323
PMCID: PMC3048371  PMID: 21408207
13.  Association of an IRF5 gene functional polymorphism with Sjögren's syndrome 
Arthritis and Rheumatism  2007;56(12):3989-3994.
Objective
Interferon (IFN) regulatory factor 5 (IRF-5) is a transcription factor involved in the regulation of host defense. Previous reports have demonstrated a significant association of various IRF-5 polymorphisms with systemic lupus erythematosus (SLE), among Caucasians. This case-control study aimed to investigate whether IRF-5 polymorphisms were involved in the genetic predisposition to primary Sjögren Syndrome (pSS), an autoimmune disease closely related to SLE.
Methods
We analyzed IRF-5 rs2004640, rs2070197, rs10954213, and rs2280714 polymorphisms in a cohort of 212 pSS patients and 162 controls, all of Caucasian origin. The four studied polymorphisms were genotyped by competitive allele specific polymerase chain reaction (PCR) using FRET technology.
Results
The IRF-5 rs2004640 GT or TT genotypes (T allele carriers) were found among 87% of pSS patients compared with 77% in controls (P=0.01; OR1.93, 95%IC [1.15–3.42]). Likewise, IRF-5 rs2004640 T allele was found on 59% of chromosomes in pSS patients compared with 52% in controls (P=0.04; OR 1.36, 95% CI [1.01–1.83]). No significant association was evidenced with rs2070197, rs10954213, and rs2280714 when analyzed independently. Nevertheless, haplotype reconstructions based on the four studied polymorphisms suggest that various allele combinations of rs2004640 and rs2070197 could define susceptibility or protective haplotypes.
Conclusion
We demonstrated for the first time a significant association of IRF-5 rs2004640 T allele with pSS. These results, which require further replication on larger sample sized populations suggest that, beside association with identical major histocompatibility complex (MHC) gene polymorphisms, pSS and SLE also share IRF-5 polymorphism as a common genetic susceptibility factor.
doi:10.1002/art.23142
PMCID: PMC3184606  PMID: 18050197
Alleles; Case-Control Studies; Genetic Predisposition to Disease; genetics; Genotype; Haplotypes; Humans; Interferon Regulatory Factors; genetics; Lupus Erythematosus, Systemic; genetics; Polymorphism, Single Nucleotide; genetics; Sjogren's Syndrome; genetics; IRF-5; Sjögren's syndrome; genetic polymorphism; haplotype
14.  RNA-Seq for Enrichment and Analysis of IRF5 Transcript Expression in SLE 
PLoS ONE  2013;8(1):e54487.
Polymorphisms in the interferon regulatory factor 5 (IRF5) gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE). IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s), it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1) SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2) an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3) an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.
doi:10.1371/journal.pone.0054487
PMCID: PMC3548774  PMID: 23349905
15.  Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation 
Human molecular genetics  2006;16(6):579-591.
Results from two studies have implicated the interferon regulatory gene IRF5 as a susceptibility gene in systemic lupus erythematosus (SLE). In this study, we conducted a family-based association analysis in 380 UK SLE nuclear families. Using a higher density of markers than has hitherto been screened, we show that there is association with two SNPs in the first intron, rs2004640 (P = 3.4 × 10−4) and rs3807306 (P = 4.9 × 10−4), and the association extends into the 3′-untranslated region (UTR). There is a single haplotype block encompassing IRF5 and we show for the first time that the gene comprises two over-transmitted haplotypes and a single under-transmitted haplotype. The strongest association is with a TCTAACT haplotype (T:U = 1.92, P = 5.8 × 10−5), which carries all the over-transmitted alleles from this study. Haplotypes carrying the T alleles of rs2004640 and rs2280714 and the A allele of rs10954213 are over-transmitted in SLE families. The TAT haplotype shows a dose-dependent relationship with mRNA expression. A differential expression pattern was seen between two expression probes located each side of rs10954213 in the 3′-UTR. rs10954213 shows the strongest association with RNA expression levels (P = 1 × 10−14). The A allele of rs10954213 creates a functional polyadenylation site and the A genotype correlates with increased expression of a transcript variant containing a shorter 3′-UTR. Expression levels of transcript variants with the shorter or longer 3′-UTRs are inversely correlated. Our data support a new mechanism by which an IRF5 polymorphism controls the expression of alternate transcript variants which may have different effects on interferon signalling.
doi:10.1093/hmg/ddl469
PMCID: PMC3706933  PMID: 17189288
16.  Influence of Atg5 Mutation in SLE Depends on Functional IL-10 Genotype 
PLoS ONE  2013;8(10):e78756.
Increasing evidence supports the involvement of autophagy in the etiopathology of autoimmune diseases. Despite the identification of autophagy-related protein (Atg)-5 as one of the susceptibility loci in systemic Lupus erythematosus (SLE), the consequences of the carriage of these mutations for patients remain unclear. The present work analyzed the association of Atg5 rs573775 single nucleotide polymorphism (SNP) with SLE susceptibility, IFNα, TNFα and IL-10 serum levels, and clinical features, in 115 patients and 170 healthy individuals. Patients who where carriers of the rs573775 T* minor allele presented lower IFNα levels than those with the wild genotype, whereas the opposite result was detected for IL-10. Thus, since IL-10 production was regulated by rs1800896 polymorphisms, we evaluated the effect of this Atg5 mutation in genetically high and low IL-10 producers. Interestingly, we found that the rs573775 T* allele was a risk factor for SLE in carriers of the high IL-10 producer genotype, but not among genetically low producers. Moreover, IL-10 genotype influences SLE features in patients presenting the Atg5 mutated allele. Specifically, carriage of the rs573775 T* allele led to IL-10 upregulation, reduced IFNα and TNFα production and a low frequency of cytopenia in patients with the high IL-10 producer genotype, whereas patients with the same Atg5 allele that were low IL-10 producers presented reduced amounts of all these cytokines, had a lower prevalence of anti-dsDNA antibodies and the latest onset age. In conclusion, the Atg5 rs573775 T* allele seems to influence SLE susceptibility, cytokine production and disease features depending on other factors such as functional IL-10 genotype.
doi:10.1371/journal.pone.0078756
PMCID: PMC3799636  PMID: 24205307
17.  IFNα Serum Levels Are Associated with Endothelial Progenitor Cells Imbalance and Disease Features in Rheumatoid Arthritis Patients 
PLoS ONE  2014;9(1):e86069.
Introduction
IFNα has been largely implicated in the ethiopathogenesis of autoimmune diseases but only recently it has been linked to endothelial damage and accelerated atherosclerosis in autoimmunity. In addition, proinflammatory conditions are supposed to be implicated in the cardiovascular status of these patients. Since a role for IFNα in endothelial damage and impaired Endothelial Progenitor Cell (EPC) number and function has been reported in other diseases, we aimed to evaluate the potential associations of IFNα serum levels on EPC populations and cytokine profiles in Rheumatoid Arthritis (RA) patients.
Methods
pre-EPC, EPC and mature EPC (mEPC) populations were quantified by flow cytometry analyzing their differential CD34, CD133 and VEGFR2 expression in blood samples from 120 RA patients, 52 healthy controls (HC), and 83 systemic lupus erythematosus (SLE) patients as disease control. Cytokine serum levels were measured by immunoassays and clinical and immunological data, including cardiovascular (CV) events and CV risk factors, were retrospectively obtained by reviewing clinical records.
Results
Long-standing, but not recent onset RA patients displayed a significant depletion of all endothelial progenitor populations, unless high IFNα levels were present. In fact, the IFNhigh RA patient group (n = 40, 33%), showed increased EPC levels, comparable to SLE patients. In addition, high IFNα serum levels were associated with higher disease activity (DAS28), presence of autoantibodies, higher levels of IL-1β, IL-6, IL-10 and MIP-1α, lower amounts of TGF-β, and increased mEPC/EPC ratio, thus suggesting higher rates of endothelial damage and an endothelial repair failure. Finally, the relationship between high IFNα levels and occurrence of CV events observed in RA patients seems to support this hypothesis.
Conclusions
IFNα serum marker could be used to identify a group of RA patients with increased disease activity, EPC imbalance, enhanced proinflammatory profile and higher cardiovascular risk, probably due, at least in part, to an impaired endothelial repair.
doi:10.1371/journal.pone.0086069
PMCID: PMC3897639  PMID: 24465874
18.  IFNα CONFERS RESISTANCE OF SLE NEPHRITIS TO THERAPY IN NZB/WF1 MICE 
The critical role of IFNα in the pathogenesis of human systemic lupus erythematosus (SLE) has been highlighted in recent years. Exposure of young lupus-prone NZB/W F1 mice to IFNα in vivo leads to an accelerated lupus phenotype that is dependent on T cells and is associated with elevated serum levels of BAFF, IL-6 and TNFα, increased splenic expression of IL-6 and IL-21, formation of large germinal centers and the generation of large numbers of short-lived plasma cells that produce IgG2a and IgG3 autoantibodies. Here we show that both IgG2a and IgG3 autoantibodies are pathogenic in IFNα accelerated lupus and their production can be dissociated by using low dose CTLA4Ig. Only high dose CTLA4Ig attenuates both IgG2a and IgG3 autoantibody production and significantly delays death from lupus nephritis. In contrast, BAFF/APRIL blockade has no effect on germinal centers or the production of IgG anti-dsDNA antibodies but, if given at the time of IFNα challenge, delays the progression of lupus by attenuating systemic and renal inflammation. Temporary remission of nephritis induced by combination therapy with cyclophosphamide (CTX), anti-CD40L antibody and CTLA4Ig is associated with abrogation of germinal centers and depletion of short-lived plasma cells but relapse occurs more rapidly than in conventional NZB/W F1 mice. Our study demonstrates that IFNα renders NZB/W F1 relatively resistant to therapeutic intervention and suggests that the IFN signature should be taken into account when randomizing patients into and analyzing the results of human clinical trials in SLE.
doi:10.4049/jimmunol.1004142
PMCID: PMC3140572  PMID: 21705616
19.  Vitamin D deficiency is associated with an increased autoimmune response in healthy individuals and in patients with systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(9):1569-1574.
Objectives
Vitamin D deficiency is widespread and has been associated with many chronic diseases, including autoimmune disorders. A study was undertaken to explore the impact of low vitamin D levels on autoantibody production in healthy individuals, as well as B cell hyperactivity and interferon α (IFNα) activity in patients with systemic lupus erythematosus (SLE).
Methods
Serum samples from 32 European American female patients with SLE and 32 matched controls were tested for 25-hydroxyvitamin D (25(OH)D) levels, lupus-associated autoantibodies and serum IFNα activity. Isolated peripheral blood mononuclear cells were tested for intracellular phospho-ERK 1/2 as a measure of B cell activation status.
Results
Vitamin D deficiency (25(OH)D <20 ng/ml) was significantly more frequent among patients with SLE (n=32, 69%) and antinuclear antibody (ANA)-positive controls (n=14, 71%) compared with ANA-negative controls (n=18, 22%) (OR 7.7, 95% CI 2.0 to 29.4, p=0.003 and OR 8.8, 95% CI 1.8 to 43.6, p=0.011, respectively). Patients with high B cell activation had lower mean (SD) 25(OH)D levels than patients with low B cell activation (17.2 (5.1) vs 24.2 (3.9) ng/ml; p=0.009). Patients with vitamin D deficiency also had higher mean (SD) serum IFNα activity than patients without vitamin D deficiency (3.5 (6.6) vs 0.3 (0.3); p=0.02).
Conclusions
The observation that ANA-positive healthy controls are significantly more likely to be deficient in vitamin D than ANA-negative healthy controls, together with the finding that vitamin D deficiency is associated with certain immune abnormalities in SLE, suggests that vitamin D plays an important role in autoantibody production and SLE pathogenesis.
doi:10.1136/ard.2010.148494
PMCID: PMC3149865  PMID: 21586442
20.  The Systemic Lupus Erythematosus IRF5 Risk Haplotype Is Associated with Systemic Sclerosis 
PLoS ONE  2013;8(1):e54419.
Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P  = 1.34×10−8, OR  = 1.22, CI 95%  = 1.14–1.30; rs2004640: P  = 4.60×10−7, OR  = 0.84, CI 95%  = 0.78–0.90; rs10488631: P  = 7.53×10−20, OR  = 1.63, CI 95%  = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P  = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P  = 9.04×10−22, OR  = 1.75, CI 95%  = 1.56–1.97) better explained the observed association (likelihood P-value  = 1.48×10−4), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific.
doi:10.1371/journal.pone.0054419
PMCID: PMC3553151  PMID: 23372721
21.  Interferon alpha on NZM2328.Lc1R27: Enhancing autoimmunity and immune complex-mediated glomerulonephritis without end stage renal failure 
Interferon alpha (IFNα) may play a significant role in systemic lupus erythematosus (SLE) pathogenesis. Recent literature suggests that IFNα does not correlate with disease activities and blockade of IFNα is not effective in treating SLE. This study aims to delineate further the role of IFNα in SLE. 12-week old NZM2328 and its congenic NZM2328.Lc1R27 (R27) female mice were challenged with adenovirus-IFNα (adeno-IFNα) or adenovirus-LacZ (adeno-LacZ). Only adeno-IFNα treated NZM2328 developed severe proteinuria and died of chronic glomerulonephritis (GN) and end stage renal disease. Adeno-IFNα treated R27 did develop immune complex-mediated GN but had normal renal function. Adeno-LacZ treated NZM2328 showed enlarged glomeruli and increased cellularity without immune complex deposition. Adeno-LacZ treated R27 did not show serological and histological abnormalities. Adeno-IFNα induced anti-dsDNA and anti-kidney autoantibodies in NZM2328 and R27. These results suggest that end organ damage is host-dependent and less related to autoimmunity and may have significant implications in SLE pathogenesis.
doi:10.1016/j.clim.2014.06.008
PMCID: PMC4167638  PMID: 24981059
SLE; Interferon α; Mouse model for lupus nephritis
22.  Interferon alpha Accelerates Murine SLE in a T Cell Dependent Manner 
Arthritis and rheumatism  2011;63(1):219-229.
Objective
To investigate the mechanism for lupus acceleration by interferon alpha (IFNα) in NZB/W mice.
Methods
NZB/W mice were treated with an adenovirus expressing IFNα. T cells were depleted in some mice with an anti-CD4 antibody. The production of anti-dsDNA antibodies was measured by ELISA and ELISpot assays. Germinal centers and antibody-secreting cells (ASCs) in spleens and IgG deposition and leukocyte infiltrates in kidneys were visualized by immunofluorescence staining. The phenotype of splenic cells was determined by flow cytometry. Finally, somatic hypermutation and gene usage in heavy chain variable regions of IgG2a and IgG3 were studied by single cell PCR.
Results
IFNα accelerated lupus in NZB/W mice is associated with elevated serum levels of IgG2 and IgG3 anti-dsDNA antibodies, and accumulation of many IgG ASCs in the spleen, which do not develop into long-lived plasma cells. Furthermore, IgG2a and IgG3 antibodies in these mice are highly somatically mutated and use distinct repertoires of VH genes. The induction of SLE in these mice is associated with an increase in B cell TLR7 expression, increased serum levels of BAFF, IL-6 and TNFα, and induction of T cells expressing IL-21. Although IFNα drives a T-independent increase in serum levels of IgG, autoantibody induction and the development of nephritis are both completely dependent on CD4 T cell help.
Conclusion
Our study shows that although IFNα activates both innate and adaptive immune responses in NZB/W mice, CD4 T cells are necessary for IFNα driven induction of anti-dsDNA antibodies and clinical SLE.
doi:10.1002/art.30087
PMCID: PMC3014995  PMID: 20954185
SLE; B cells; Cytokines; Rodent; Interferon alpha
23.  Exon 6 variants carried on systemic lupus erythematosus (SLE) risk haplotypes modulate IRF5 function 
Autoimmunity  2010;44(2):82-89.
Interferon response factor 5 (IRF5) regulates innate immune responses to viral infection. IRF5 genetic variants have been shown to be strongly associated with risk for systemic lupus erythematosus (SLE). Functional roles of IRF5 exon 6 structural variants that occur as part of a SLE risk-associated haplotype, including a 30-bp in/del (in/del-10) and a 48-bp splice-site variant (SV-16), have not been established. In this study, we used IRF5 deficient cells overexpressing human IRF5 variants to investigate the roles of exon 6 in/del-10 and SV-16 in regulation of the apoptosis response, nuclear translocation, and ability to transactivate IRF5 responsive cytokines. We found that expression of IRF5 isoforms including either SV-16 or in/del-10 confers ability of IRF5 to impair the apoptotic response and correlates with reduced capacity for IRF5 nuclear translocation in MEFs after a DNA-damaging stimulus treatment. Interestingly, the presence or absence of both SV-16 and in/del-10 results in abrogation of both the anti-apoptotic and enhanced nuclear translocation effects of IRF5 expression. Only cells expressing IRF5 bearing SV-16 show increased IL-6 production upon LPS stimulation. MEFs expressing hIRF5 variants containing in/del-10 showed no significant difference from the control; however, cells carrying hIRF5 lacking both SV-16 and in/del-10 showed reduced IL-6 production. Our overall findings suggest that exon 6 SV-16 is more potent than in/del-10 for IRF5-driven resistance to apoptosis and promotion of cytokine production; however, in/del-10 co-expression can neutralize these effects of SV-16.
doi:10.3109/08916934.2010.491842
PMCID: PMC3104271  PMID: 20695768
SLE; IRF5 variants; exon 6; apoptosis; nuclear translocation
24.  Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population 
Recently, two studies provided convincing evidence that IFN regulatory factor 5 (IRF5) gene polymorphisms are significantly associated with systemic lupus erythematosus (SLE) in several white populations. To replicate the association with SLE in an Asian population, we examined the genetic effects in our SLE cohort from a Korean population. A total of 1,565 subjects, composed of 593 cases and 972 controls, were genotyped using the TaqMan® (Applied Biosystems, Foster City, CA, USA) method. The genetic effects of polymorphisms on the risk of SLE were evaluated using χ2 tests and a Mantel–Haenszel meta-analysis. Statistical analysis revealed results in the Korean population were similar to the previous reports from white populations. The rs2004640 T allele had a higher frequency in SLE cases (0.385) than controls (0.321; odds ratio (OR) = 1.32, P = 0.0003). In combined analysis, including all seven independent cohorts from the three studies so far, robust and consistent associations of the rs2004640 T allele with SLE were observed. The estimate of risk was OR = 1.44 (range, 1.34–1.55), with an overall P = 1.85 × 10-23 for the rs2004640 T allele. The haplotype (rs2004640T–rs2280714T) involved in both the alternative splice donor site and the elevated expression of IRF5 also had a highly significant association with SLE (pooled, P = 2.11 × 10-16). Our results indicate that the genetic effect on the risk of SLE mediated by IRF5 variants can be generally accepted in both white and Asian populations.
doi:10.1186/ar2152
PMCID: PMC1906810  PMID: 17389033
25.  Association of Functional Polymorphisms in Interferon Regulatory Factor 2 (IRF2) with Susceptibility to Systemic Lupus Erythematosus: A Case-Control Association Study 
PLoS ONE  2014;9(10):e109764.
Interferon regulatory factor 2 (IRF2) negatively regulates type I interferon (IFN) responses, while it plays a role in induction of Th1 differentiation. Previous linkage and association studies in European-American populations suggested genetic role of IRF2 in systemic lupus erythematosus (SLE); however, this observation has not yet been confirmed. No studies have been reported in the Asian populations. Here we investigated whether IRF2 polymorphisms contribute to susceptibility to SLE in a Japanese population. Association study of 46 IRF2 tag single nucleotide polymorphisms (SNPs) detected association of an intronic SNP, rs13146124, with SLE. When the association was analyzed in 834 Japanese patients with SLE and 817 healthy controls, rs13146124 T was significantly increased in SLE compared with healthy controls (dominant model, P = 5.4×10−4, Bonferroni-corrected P [Pc] = 0.026, odds ratio [OR] 1.48, 95% confidence interval [CI] 1.18–1.85). To find causal SNPs, resequencing was performed by next-generation sequencing. Twelve polymorphisms in linkage disequilibrium with rs13146124 (r2: 0.30–1.00) were identified, among which significant association was observed for rs66801661 (allele model, P = 7.7×10−4, Pc = 0.037, OR 1.53, 95%CI 1.19–1.96) and rs62339994 (dominant model, P = 9.0×10−4, Pc = 0.043, OR 1.46, 95%CI 1.17–1.82). The haplotype carrying both of the risk alleles (rs66801661A–rs62339994A) was significantly increased in SLE (P = 9.9×10−4), while the haplotype constituted by both of the non-risk alleles (rs66801661G–rs62339994G) was decreased (P = 0.0020). A reporter assay was carried out to examine the effect of the IRF2 haplotypes on the transcriptional activity, and association of the IRF2 risk haplotype with higher transcriptional activity was detected in Jurkat T cells under IFNγ stimulation (Tukey's test, P = 1.2×10−4). In conclusion, our observations supported the association of IRF2 with susceptibility to SLE, and the risk haplotype was suggested to be associated with transcriptional activation of IRF2.
doi:10.1371/journal.pone.0109764
PMCID: PMC4186848  PMID: 25285625

Results 1-25 (1321457)