PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (786139)

Clipboard (0)
None

Related Articles

1.  Lung Function and Incidence of Chronic Obstructive Pulmonary Disease after Improved Cooking Fuels and Kitchen Ventilation: A 9-Year Prospective Cohort Study 
PLoS Medicine  2014;11(3):e1001621.
Pixin Ran, Nanshan Zhong, and colleagues report that cleaner cooking fuels and improved ventilation were associated with better lung function and reduced COPD among a cohort of villagers in Southern China.
Please see later in the article for the Editors' Summary
Background
Biomass smoke is associated with the risk of chronic obstructive pulmonary disease (COPD), but few studies have elaborated approaches to reduce the risk of COPD from biomass burning. The purpose of this study was to determine whether improved cooking fuels and ventilation have effects on pulmonary function and the incidence of COPD.
Methods and Findings
A 9-y prospective cohort study was conducted among 996 eligible participants aged at least 40 y from November 1, 2002, through November 30, 2011, in 12 villages in southern China. Interventions were implemented starting in 2002 to improve kitchen ventilation (by providing support and instruction for improving biomass stoves or installing exhaust fans) and to promote the use of clean fuels (i.e., biogas) instead of biomass for cooking (by providing support and instruction for installing household biogas digesters); questionnaire interviews and spirometry tests were performed in 2005, 2008, and 2011. That the interventions improved air quality was confirmed via measurements of indoor air pollutants (i.e., SO2, CO, CO2, NO2, and particulate matter with an aerodynamic diameter of 10 µm or less) in a randomly selected subset of the participants' homes. Annual declines in lung function and COPD incidence were compared between those who took up one, both, or neither of the interventions.
Use of clean fuels and improved ventilation were associated with a reduced decline in forced expiratory volume in 1 s (FEV1): decline in FEV1 was reduced by 12 ml/y (95% CI, 4 to 20 ml/y) and 13 ml/y (95% CI, 4 to 23 ml/y) in those who used clean fuels and improved ventilation, respectively, compared to those who took up neither intervention, after adjustment for confounders. The combined improvements of use of clean fuels and improved ventilation had the greatest favorable effects on the decline in FEV1, with a slowing of 16 ml/y (95% CI, 9 to 23 ml/y). The longer the duration of improved fuel use and ventilation, the greater the benefits in slowing the decline of FEV1 (p<0.05). The reduction in the risk of COPD was unequivocal after the fuel and ventilation improvements, with an odds ratio of 0.28 (95% CI, 0.11 to 0.73) for both improvements.
Conclusions
Replacing biomass with biogas for cooking and improving kitchen ventilation are associated with a reduced decline in FEV1 and risk of COPD.
Trial Registration
Chinese Clinical Trial Register ChiCTR-OCH-12002398
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Nearly 3 billion people in developing countries heat their homes and cook by burning biomass—wood, crop waste, and animal dung—in open fires and leaky stoves. Burning biomass this way releases pollutants into the home that impair lung function and that are responsible for more than a million deaths from chronic obstructive pulmonary disease (COPD) every year. COPD is a group of diseases that interfere with breathing. Normally, air is breathed in through the nose or mouth and travels down the windpipe into two bronchial tubes (airways) in the lungs. These tubes branch into smaller tubes (bronchioles) that end in bunches of tiny air sacs (alveoli). Oxygen in the air passes through the thin walls of these sacs into small blood vessels and is taken to the heart for circulation round the body. The two main types of COPD—chronic bronchitis (long-term irritation and swelling of the bronchial tubes) and emphysema (damage to the walls of the alveoli)—make it hard for people to breathe. Most people with COPD have both chronic bronchitis and emphysema, both of which are caused by long-term exposure to cigarette smoke, indoor air pollution, and other lung irritants. Symptoms of COPD include breathlessness during exercise and a persistent cough that produces large amounts of phlegm (mucus). There is no cure for COPD, but drugs and oxygen therapy can relieve its symptoms, and avoiding lung irritants can slow disease progression.
Why Was This Study Done?
Exposure to indoor air pollution has been associated with impaired lung function and COPD in several studies. However, few studies have assessed the long-term effects on lung function and on the incidence of COPD (the proportion of a population that develops COPD each year) of replacing biomass with biogas (a clean fuel produced by bacterial digestion of biodegradable materials) for cooking and heating, or of improving kitchen ventilation during cooking. Here, the researchers undertook a nine-year prospective cohort study in rural southern China to investigate whether these interventions are associated with any effects on lung function and on the incidence of COPD. A prospective cohort study enrolls a group of people, determines their characteristics at baseline, and follows them over time to see whether specific characteristic are associated with specific outcomes.
What Did the Researchers Do and Find?
The researchers offered nearly 1,000 people living in 12 villages in southern China access to biogas and to improved kitchen ventilation. All the participants, who adopted these interventions according to personal preferences, completed a questionnaire about their smoking habits and occupational exposure to pollutants and had their lung function measured using a spirometry test at the start and end of the study. Some participants also completed a questionnaire and had their lung function measured three and six years into the study. Finally, the researchers measured levels of indoor air pollution in a randomly selected subset of homes at the end of the study to confirm that the interventions had reduced indoor air pollution. Compared with non-use, the use of clean fuels and of improved ventilation were both associated with a reduction in the decline in lung function over time after adjusting for known characteristics that affect lung function, such as smoking. The use of both interventions reduced the decline in lung function more markedly than either intervention alone, and the benefits of using the interventions increased with length of use. Notably, the combined use of both interventions reduced the risk of COPD occurrence among the study participants.
What Do These Findings Mean?
These findings suggest that, among people living in rural southern China, the combined interventions of use of biogas instead of biomass and improved kitchen ventilation were associated with a reduced decline in lung function over time and with a reduced risk of COPD. Because participants were not randomly allocated to intervention groups, the people who adopted the interventions may have shared other unknown characteristics (confounders) that affected their lung function (for example, having a healthier lifestyle). Thus, it is not possible to conclude that either intervention actually caused a reduction in the decline in lung function. Nevertheless, these findings suggest that the use of biogas as a substitute for biomass for cooking and heating and improvements in kitchen ventilation might lead to a reduction in the global burden of COPD associated with biomass smoke.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001621.
The US National Heart, Lung, and Blood Institute provides detailed information for the public about COPD
The US Centers for Disease Control and Prevention provides information about COPD and links to other resources (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about COPD, personal stories, and links to other resources
The British Lung Foundation, a not-for-profit organization, provides information about COPD in several languages
The Global Initiative for Chronic Obstructive Lung Disease works to improve prevention and treatment of COPD around the world
The World Health Organization provides information about all aspects of indoor air pollution and health (in English, French, and Spanish)
MedlinePlus provides links to other information about COPD (in English and Spanish)
doi:10.1371/journal.pmed.1001621
PMCID: PMC3965383  PMID: 24667834
2.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Technology
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
mortality
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
complications
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
3.  PTEN IDENTIFIED AS IMPORTANT RISK FACTOR OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE 
Respiratory medicine  2009;103(12):1866-1870.
Common genetic variation may play an important role in altering chronic obstructive pulmonary disease (COPD) risk. In Xuanwei, China, the COPD rate is more than twice the Chinese national average, and COPD is strongly associated with in-home coal use. To identify genetic variation that may be associated with COPD in a population with substantial in-home coal smoke exposures, we evaluated 1,261 single nucleotide polymorphisms (SNPs) in 380 candidate genes potentially relevant for cancer and other human diseases in a population-based case-control study in Xuanwei (53 cases; 107 controls). PTEN was the most significantly associated gene with COPD in a minP analysis using 20,000 permutations (P = 0.00005). SNP-based analyses found that homozygote variant carriers of PTEN rs701848 (ORTT = 0.12, 95%CI = 0.03 - 0.47) had a significant decreased risk of COPD. PTEN, or phosphatase and tensin homolog, is an important regulator of cell cycle progression and cellular survival via the AKT signaling pathway. Our exploratory analysis suggests that genetic variation in PTEN may be an important risk factor of COPD in Xuanwei. However, due to the small sample size, additional studies are needed to evaluate these associations within Xuanwei and other populations with coal smoke exposures.
doi:10.1016/j.rmed.2009.06.016
PMCID: PMC2783799  PMID: 19625176
COPD; cell cycle; apoptosis; AKT; PTEN
4.  Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China 
Thorax  2007;62(10):889-897.
Background
There is increasing evidence for a possible association between chronic obstructive pulmonary disease (COPD) and the use of biomass fuels for cooking and heating in developing countries. Data on the prevalence of COPD and objective measurements of indoor pollution from biomass fuel have not been widely available from China. A study was undertaken to investigate the prevalence of COPD in two study communities in Guangdong province in China and to measure the association between COPD and indoor biomass fuel air pollution.
Methods
A cluster disproportional random sampling survey was performed in populations aged over 40 years in urban (Liwang) and rural (Yunyan) areas in Guangdong, China. Spirometry was performed in all subjects and a post‐bronchodilator ratio of the forced expiratory volume in 1 s to forced vital capacity of <0.70 was defined as COPD. Measurements of indoor and outdoor air pollutants were also performed in a random sample of households.
Results
The overall prevalence of COPD in the two areas (Liwang and Yunyan) was 9.4%. The prevalence of COPD in both the whole population and a subpopulation of non‐smoking women in rural Yunyan was significantly higher than in urban Liwang (12.0% vs 7.4%, and 7.2% vs 2.5%, respectively). The use of biomass fuel was higher in rural Yunyan than in urban Liwang (88.1% vs 0.7%). Univariate analysis showed a significant association between COPD and exposure to biomass fuel for cooking. Multivariate analysis showed a positive association between COPD and urban/rural area (surrogate for fuel type and local exhaust ventilation in kitchen) after adjustment for sex, age group, body mass index, education, occupational exposure, respiratory disease in family, smoking status, life quality and cough in childhood; similar results were found in non‐smoking women. Pollutants measurements showed that concentrations of carbon monoxide, particulate matter with an aerodynamic diameter ⩽10 μm, sulphur dioxide and nitrogen dioxide in the kitchen during biomass fuel combustion were significantly higher than those during LPG combustion.
Conclusions
Indoor pollutants from biomass fuels may be an important risk factor for COPD in rural South China.
doi:10.1136/thx.2006.061457
PMCID: PMC2094241  PMID: 17483137
5.  Role of Glutathione S Transferase Polymorphism in COPD with Special Reference to Peoples Living in the Vicinity of the Open Cast Coal Mine of Assam 
PLoS ONE  2014;9(5):e96739.
Background
COPD may develop due to variation in the functioning of antioxidants along with smoking and environmental factors in genetically susceptible individuals. Since there are different views about the antioxidants responsible for detoxifying xenobiotic compound in the human body whose functional variation may lead to obstructive disease, this associative study has been taken up between GST gene polymorphism and COPD in populations exposed to coal dusts.
Methods
Genotypes of the 70 COPD patients and 85 non COPD patients were determined by PCR based methods followed by multiplex PCR of GSTT1 and GSTM1 genes taking albumin gene as a control. Suspended particulate analyses were determined through the Respirable Dust sampler along with the FTIR analysis of the dust samples from the glass microfiber filters.
Results
Dust sampling analysis reveals higher level of respirable suspended particulate matter, non respirable particulate matter, SO2 and NO2 present in air of the study site. FTIR analysis also suggests a higher concentration of organic silicone and aliphatic C-F compounds present in air of the study site and when spirometry was done, low lung function was observed among most of the subjects. GSTM1 null type was significantly associated with low lung function in smoker groups and the presence of at least one active allele (either GSTM1/GSTT1) seemed to have a protective role in the development of COPD.
Conclusions
GSTM1 (null genotype) appeared to be a risk factor for lower lung function in smokers living in the vicinity of coal mines. Apart from polluted environment and genetic susceptibility, mixed coal dust exposure rich in organic silicone and aliphatic C-F compounds also appears to be a factor for the low lung function.
doi:10.1371/journal.pone.0096739
PMCID: PMC4014550  PMID: 24809844
6.  Prevalence of chronic obstructive pulmonary disease in rural women of Tamilnadu: implications for refining disease burden assessments attributable to household biomass combustion 
Global Health Action  2011;4:10.3402/gha.v4i0.7226.
Background
Chronic obstructive pulmonary disease (COPD) is the 13th leading cause of burden of disease worldwide and is expected to become 5th by 2020. Biomass fuel combustion significantly contributes to COPD, although smoking is recognized as the most important risk factor. Rural women in developing countries bear the largest share of this burden resulting from chronic exposures to biomass fuel smoke. Although there is considerable strength of evidence for the association between COPD and biomass smoke exposure, limited information is available on the background prevalence of COPD in these populations.
Objective
This study was conducted to estimate the prevalence of COPD and its associated factors among non-smoking rural women in Tiruvallur district of Tamilnadu in Southern India.
Design
This cross-sectional study was conducted among 900 non-smoking women aged above 30 years, from 45 rural villages of Tiruvallur district of Tamilnadu in Southern India in the period between January and May 2007. COPD assessments were done using a combination of clinical examination and spirometry. Logistic regression analysis was performed to examine the association between COPD and use of biomass for cooking. R software was used for statistical analysis.
Results
The overall prevalence of COPD in this study was found to be 2.44% (95% CI: 1.43–3.45). COPD prevalence was higher in biomass fuel users than the clean fuel users 2.5 vs. 2%, (OR: 1.24; 95% CI: 0.36–6.64) and it was two times higher (3%) in women who spend >2 hours/day in the kitchen involved in cooking. Use of solid fuel was associated with higher risk for COPD, although no statistically significant results were obtained in this study.
Conclusion
The estimates generated in this study will contribute significantly to the growing database of available information on COPD prevalence in rural women. Moreover, with concomitant indoor air pollution measurements, it may be possible to increase the resolution of the association between biomass use and COPD prevalence and refine available attributable burden of disease estimates.
doi:10.3402/gha.v4i0.7226
PMCID: PMC3208970  PMID: 22065945
chronic obstructive pulmonary disease; prevalence; biomass fuel users; rural women; disease burden
7.  Health-related quality of life and chronic obstructive pulmonary disease in North Carolina 
Background:
Comparisons of health-related quality of life (HRQOL) between persons with chronic obstructive pulmonary disease (COPD) and adults in the general population are not well described.
Aims:
To examine associations between COPD and four measures of HRQOL in a population-based sample.
Patients & Methods:
These relationships were examined using data from 13,887 adults aged >18 years who participated in the 2007 Behavioral Risk Factor Surveillance System (BRFSS) conducted in North Carolina (NC). Logistic regression was used to obtain adjusted relative odds (aOR).
Results:
The age-adjusted prevalence of COPD among NC adults was 5.4% (standard error 0.27). Nearly half of adults with COPD reported fair/poor health compared with 15% of those without the condition (age-aOR, 5.5; 95% confidence interval [ CI] , 4.4 to 6.8). On average, adults with COPD reported twice as many unhealthy days (physical/mental) as those without the condition. The age-adjusted prevalence of >14 unhealthy days during the prior 30 days was 45% for adults with COPD and 17% for those without. The aOR of >14 unhealthy days was 1.7 (95% CI, 1.4 to 2.2) times greater among adults with COPD compared with those without.
Conclusions:
These results suggest COPD is independently associated with lower levels of HRQOL and reinforce the importance of preventing COPD and its complications through health education messages stressing efforts to reduce total personal exposure to tobacco smoke, occupational dusts and chemicals, and other indoor and outdoor air pollutants linked to COPD and early disease recognition. Our findings represent one of the few statewide efforts in the US and provide guidance for disease management and policy decision making.
doi:10.4297/najms.2010.260
PMCID: PMC3354436  PMID: 22624116
Health-related quality of life; chronic obstructive pulmonary disease; North Carolina; behavioral risk factor surveillance system; age-adjusted prevalence; adults; pollutants; tobacco; occupational dusts; chemicals; policy decision making
8.  An epidemiological study of lung cancer in Xuan Wei County, China: current progress. Case-control study on lung cancer and cooking fuel. 
In Xuan Wei County, Yunnan Province, lung cancer mortality rates are among China's highest in males and females. Previous studies have shown a strong association of lung cancer mortality with air pollution from "smoky" coal combustion. In the present quantitative risk assessment of indoor air pollution study, the result strongly shows an obvious on-site exposure-response relationship between benzo[a]pyrene concentration in indoor air and lung cancer mortality and strongly supports the hypothesis that indoor air pollution is the main risk factor in inducing lung cancer in Xuan Wei County. In the present case-control study, the result shows that in females, the presence of lung cancer is statistically significantly associated with chronic bronchitis and family history of lung cancer. The results also suggest an association of lung cancer with duration of cooking food, but not with passive smoking. In males, the presence of lung cancer is associated with smoking, bronchitis, family history of lung cancer, and personal history of cooking food.
PMCID: PMC1567943  PMID: 1954946
9.  In-Home Air Pollution Is Linked to Respiratory Morbidity in Former Smokers with Chronic Obstructive Pulmonary Disease 
Rationale: The effect of indoor air pollutants on respiratory morbidity among patients with chronic obstructive pulmonary disease (COPD) in developed countries is uncertain.
Objectives: The first longitudinal study to investigate the independent effects of indoor particulate matter (PM) and nitrogen dioxide (NO2) concentrations on COPD morbidity in a periurban community.
Methods: Former smokers with COPD were recruited and indoor air was monitored over a 1-week period in the participant’s bedroom and main living area at baseline, 3 months, and 6 months. At each visit, participants completed spirometry and questionnaires assessing respiratory symptoms. Exacerbations were assessed by questionnaires administered at clinic visits and monthly telephone calls.
Measurements and Main Results: Participants (n = 84) had moderate or severe COPD with a mean FEV1 of 48.6% predicted. The mean (± SD) indoor PM2.5 and NO2 concentrations were 11.4 ± 13.3 µg/m3 and 10.8 ± 10.6 ppb in the bedroom, and 12.2 ± 12.2 µg/m3 and 12.2 ± 11.8 ppb in the main living area. Increases in PM2.5 concentrations in the main living area were associated with increases in respiratory symptoms, rescue medication use, and risk of severe COPD exacerbations. Increases in NO2 concentrations in the main living area were independently associated with worse dyspnea. Increases in bedroom NO2 concentrations were associated with increases in nocturnal symptoms and risk of severe COPD exacerbations.
Conclusions: Indoor pollutant exposure, including PM2.5 and NO2, was associated with increased respiratory symptoms and risk of COPD exacerbation. Future investigations should include intervention studies that optimize indoor air quality as a novel therapeutic approach to improving COPD health outcomes.
doi:10.1164/rccm.201211-1987OC
PMCID: PMC3734614  PMID: 23525930
indoor air; chronic obstructive pulmonary disease; particulate matter; nitrogen dioxide; exacerbations
10.  Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to determine the effectiveness and cost-effectiveness of smoking cessation interventions in the management of chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Tobacco smoking is the main risk factor for COPD. It is estimated that 50% of older smokers develop COPD and more than 80% of COPD-associated morbidity is attributed to tobacco smoking. According to the Canadian Community Health Survey, 38.5% of Ontarians who smoke have COPD. In patients with a significant history of smoking, COPD is usually present with symptoms of progressive dyspnea (shortness of breath), cough, and sputum production. Patients with COPD who smoke have a particularly high level of nicotine dependence, and about 30.4% to 43% of patients with moderate to severe COPD continue to smoke. Despite the severe symptoms that COPD patients suffer, the majority of patients with COPD are unable to quit smoking on their own; each year only about 1% of smokers succeed in quitting on their own initiative.
Technology
Smoking cessation is the process of discontinuing the practice of inhaling a smoked substance. Smoking cessation can help to slow or halt the progression of COPD. Smoking cessation programs mainly target tobacco smoking, but may also encompass other substances that can be difficult to stop smoking due to the development of strong physical addictions or psychological dependencies resulting from their habitual use.
Smoking cessation strategies include both pharmacological and nonpharmacological (behavioural or psychosocial) approaches. The basic components of smoking cessation interventions include simple advice, written self-help materials, individual and group behavioural support, telephone quit lines, nicotine replacement therapy (NRT), and antidepressants. As nicotine addiction is a chronic, relapsing condition that usually requires several attempts to overcome, cessation support is often tailored to individual needs, while recognizing that in general, the more intensive the support, the greater the chance of success. Success at quitting smoking decreases in relation to:
a lack of motivation to quit,
a history of smoking more than a pack of cigarettes a day for more than 10 years,
a lack of social support, such as from family and friends, and
the presence of mental health disorders (such as depression).
Research Question
What are the effectiveness and cost-effectiveness of smoking cessation interventions compared with usual care for patients with COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on June 24, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations (1950 to June Week 3 2010), EMBASE (1980 to 2010 Week 24), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and the Centre for Reviews and Dissemination for studies published between 1950 and June 2010. A single reviewer reviewed the abstracts and obtained full-text articles for those studies meeting the eligibility criteria. Reference lists were also examined for any additional relevant studies not identified through the search. Data were extracted using a standardized data abstraction form.
Inclusion Criteria
English-language, full reports from 1950 to week 3 of June, 2010;
either randomized controlled trials (RCTs), systematic reviews and meta-analyses, or non-RCTs with controls;
a proven diagnosis of COPD;
adult patients (≥ 18 years);
a smoking cessation intervention that comprised at least one of the treatment arms;
≥ 6 months’ abstinence as an outcome; and
patients followed for ≥ 6 months.
Exclusion Criteria
case reports
case series
Outcomes of Interest
≥ 6 months’ abstinence
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Nine RCTs were identified from the literature search. The sample sizes ranged from 74 to 5,887 participants. A total of 8,291 participants were included in the nine studies. The mean age of the patients in the studies ranged from 54 to 64 years. The majority of studies used the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD staging criteria to stage the disease in study subjects. Studies included patients with mild COPD (2 studies), mild-moderate COPD (3 studies), moderate–severe COPD (1 study) and severe–very severe COPD (1 study). One study included persons at risk of COPD in addition to those with mild, moderate, or severe COPD, and 1 study did not define the stages of COPD. The individual quality of the studies was high. Smoking cessation interventions varied across studies and included counselling or pharmacotherapy or a combination of both. Two studies were delivered in a hospital setting, whereas the remaining 7 studies were delivered in an outpatient setting. All studies reported a usual care group or a placebo-controlled group (for the drug-only trials). The follow-up periods ranged from 6 months to 5 years. Due to excessive clinical heterogeneity in the interventions, studies were first grouped into categories of similar interventions; statistical pooling was subsequently performed, where appropriate. When possible, pooled estimates using relative risks for abstinence rates with 95% confidence intervals were calculated. The remaining studies were reported separately.
Abstinence Rates
Table ES1 provides a summary of the pooled estimates for abstinence, at longest follow-up, from the trials included in this review. It also shows the respective GRADE qualities of evidence.
Summary of Results*
Abbreviations: CI, confidence interval; NRT, nicotine replacement therapy.
Statistically significant (P < 0.05).
One trial used in this comparison had 2 treatment arms each examining a different antidepressant.
Conclusions
Based on a moderate quality of evidence, compared with usual care, abstinence rates are significantly higher in COPD patients receiving intensive counselling or a combination of intensive counselling and NRT.
Based on limited and moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving NRT compared with placebo.
Based on a moderate quality of evidence, abstinence rates are significantly higher in COPD patients receiving the antidepressant bupropion compared to placebo.
PMCID: PMC3384371  PMID: 23074432
11.  The impact of SHS exposure on health status and exacerbations among patients with COPD 
Secondhand smoke (SHS) is a major contributor to indoor air pollution. Because it contains respiratory irritants, it may adversely influence the clinical course of persons with chronic obstructive pulmonary disease (COPD). We used data from nonsmoking members of the FLOW cohort of COPD (n = 809) to elucidate the impact of SHS exposure on health status and exacerbations (requiring emergency department visits or hospitalization). SHS exposure was measured by a validated survey instrument (hours of exposure during the past week). Physical health status was measured by the SF-12 Physical Component Summary Score and disease-specific health-related quality of life (HRQL) by the Airways Questionnaire 20-R. Health care utilization for COPD was determined from Kaiser Permanente Northern California computerized databases. Compared to no SHS exposure, higher level SHS exposure was associated with poorer physical health status (mean score decrement −1.78 points; 95% confidence interval [CI] −3.48 to −0.074 points) after controlling for potential confounders. Higher level SHS exposure was also related to poorer disease-specific HRQL (mean score increment 0.63; 95% CI 0.016 to 1.25) and less distance walked during the Six-Minute Walk test (mean decrement −50 feet; 95% CI −102 to 1.9). Both lower level and higher level SHS exposure was related to increased risk of emergency department (ED) visits (hazard ratio [HR] 1.40; 95% CI 0.96 to 2.05 and HR 1.41; 95% CI 0.94 to 2.13). Lower level and higher level SHS exposure were associated with a greater risk of hospital-based care for COPD, which was a composite endpoint of either ED visits or hospitalizations for COPD (HR 1.52; 95% CI 1.06 to 2.18 and HR 1.40; 95% CI 0.94 to 2.10, respectively). In conclusion, SHS was associated with poorer health status and a greater risk of COPD exacerbation. COPD patients may comprise a vulnerable population for the health effects of SHS.
PMCID: PMC2685143  PMID: 19516915
chronic obstructive pulmonary disease; chronic bronchitis; pulmonary emphysema; tobacco smoke pollution
12.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
doi:10.1371/journal.pgen.1000421
PMCID: PMC2650282  PMID: 19300482
13.  Four SNPs in the CHRNA3/5 Alpha-Neuronal Nicotinic Acetylcholine Receptor Subunit Locus Are Associated with COPD Risk Based on Meta-Analyses 
PLoS ONE  2014;9(7):e102324.
Background
Several single nucleotide polymorphisms (SNPs) in an α-neuronal nicotinic acetylcholine receptor subunit (CHRNA3/5) were identified to be associated with chronic obstructive pulmonary disease (COPD) in a study based on a Norwegian population. However, results from subsequent studies have been controversial, particularly in studies recruiting Asians. In the present study, we conducted a comprehensive search and meta-analyses to identify susceptibility SNPs for COPD in the CHRNA3/5 locus.
Methods
A comprehensive literature search was conducted to find studies that have reported an association between SNPs in the CHRNA3/5 locus and COPD risk. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) for each SNP were calculated with the major allele or genotype as the reference group. The influence of individual studies on pooled measures was assessed, in addition to publication bias.
Results
A total of 12 articles with 14 eligible studies were included in this analysis. Association between 4 SNPs in the CHRNA3/5 locus and COPD was evaluated and included rs1051730, rs8034191, rs6495309, and rs16969968. Significant associations between the 4 SNPs and COPD were identified under allele (rs1051730: OR = 1.14, 95%CI = 1.10–1.18; rs8034191: OR = 1.29, 95%CI = 1.18–1.41; rs6495309: OR = 1.26, 95%CI = 1.09–1.45; rs16969968: OR = 1.27, 95%CI = 1.17–1.39) and genotype models. Subgroup analysis conducted for rs1051730 showed a significant association between this SNP and COPD risk in non-Asians (OR = 1.14, 95%CI = 1.10–1.18), but not Asians (OR = 1.23, 95%CI = 0.91–1.67). Rs1051730 and rs6495309 were also significantly associated with COPD after adjusting for multiple variables, including age and smoking status.
Conclusion
Our results indicate that 4 SNPs in the CHRNA3/5 locus are associated with COPD risk. Rs1051730 was particularly associated with COPD in non-Asians, but its role in Asians still needs to be verified. Additional studies will be necessary to assess the effect of rs6495309 on COPD. Although rs1051730 and rs6495309 were shown to be independent risk factors for COPD, validation studies should be performed.
doi:10.1371/journal.pone.0102324
PMCID: PMC4106784  PMID: 25051068
14.  Pulmonary Rehabilitation for Patients With Chronic Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based review was to determine the effectiveness and cost-effectiveness of pulmonary rehabilitation in the management of chronic obstructive pulmonary disease (COPD).
Technology
Pulmonary rehabilitation refers to a multidisciplinary program of care for patients with chronic respiratory impairment that is individually tailored and designed to optimize physical and social performance and autonomy. Exercise training is the cornerstone of pulmonary rehabilitation programs, though they may also include components such as patient education and psychological support. Pulmonary rehabilitation is recommended as the standard of care in the treatment and rehabilitation of patients with COPD who remain symptomatic despite treatment with bronchodilators.
For the purpose of this review, the Medical Advisory Secretariat focused on pulmonary rehabilitation programs as defined by the Cochrane Collaboration—that is, any inpatient, outpatient, or home-based rehabilitation program lasting at least 4 weeks that includes exercise therapy with or without any form of education and/or psychological support delivered to patients with exercise limitations attributable to COPD.
Research Questions
What is the effectiveness and cost-effectiveness of pulmonary rehabilitation compared with usual care (UC) for patients with stable COPD?
Does early pulmonary rehabilitation (within 1 month of hospital discharge) in patients who had an acute exacerbation of COPD improve outcomes compared with UC (or no rehabilitation)?
Do maintenance or postrehabilitation programs for patients with COPD who have completed a pulmonary rehabilitation program improve outcomes compared with UC?
Research Methods
Literature Search
Search Strategy
For Research Questions 1and 2, a literature search was performed on August 10, 2010 for studies published from January 1, 2004 to July 31, 2010. For Research Question 3, a literature search was performed on February 3, 2011 for studies published from January 1, 2000 to February 3, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
Research questions 1 and 2:
published between January 1, 2004 and July 31, 2010
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing pulmonary rehabilitation with UC (no pulmonary rehabilitation)
duration of pulmonary rehabilitation program ≥ 6 weeks
pulmonary rehabilitation program had to include at minimum exercise training
Research question 3:
published between January 1, 2000 and February 3, 2011
randomized controlled trials, systematic reviews, and meta-analyses
COPD study population
studies comparing a maintenance or postrehabilitation program with UC (standard follow-up)
duration of pulmonary rehabilitation program ≥ 6 weeks
initial pulmonary rehabilitation program had to include at minimum exercise training
Exclusion Criteria
Research questions 1, 2, and 3:
grey literature
duplicate publications
non-English language publications
study population ≤ 18 years of age
studies conducted in a palliative population
studies that did not report primary outcome of interest
Additional exclusion criteria for research question 3:
studies with ≤ 2 sessions/visits per month
Outcomes of Interest
The primary outcomes of interest for the stable COPD population were exercise capacity and health-related quality of life (HRQOL). For the COPD population following an exacerbation, the primary outcomes of interest were hospital readmissions and HRQOL. The primary outcomes of interest for the COPD population undertaking maintenance programs were functional exercise capacity and HRQOL.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Research Question 1: Effect of Pulmonary Rehabilitation on Outcomes in Stable COPD
Seventeen randomized controlled trials met the inclusion criteria and were included in this review.
The following conclusions are based on moderate quality of evidence.
Pulmonary rehabilitation including at least 4 weeks of exercise training leads to clinically and statistically significant improvements in HRQOL in patients with COPD.1
Pulmonary rehabilitation also leads to a clinically and statistically significant improvement in functional exercise capacity2 (weighted mean difference, 54.83 m; 95% confidence interval, 35.63–74.03; P < 0.001).
Research Question 2: Effect of Pulmonary Rehabilitation on Outcomes Following an Acute Exacerbation of COPD
Five randomized controlled trials met the inclusion criteria and are included in this review. The following conclusion is based on moderate quality of evidence.
Pulmonary rehabilitation (within 1 month of hospital discharge) after acute exacerbation significantly reduces hospital readmissions (relative risk, 0.50; 95% confidence interval, 0.33–0.77; P = 0.001) and leads to a statistically and clinically significant improvement in HRQOL.3
Research Question 3: Effect of Pulmonary Rehabilitation Maintenance Programs on COPD Outcomes
Three randomized controlled trials met the inclusion criteria and are included in this review. The conclusions are based on a low quality of evidence and must therefore be considered with caution.
Maintenance programs have a nonsignificant effect on HRQOL and hospitalizations.
Maintenance programs have a statistically but not clinically significant effect on exercise capacity (P = 0.01). When subgrouped by intensity and quality of study, maintenance programs have a statistically and marginally clinically significant effect on exercise capacity.
PMCID: PMC3384375  PMID: 23074434
15.  Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive Lung Disease, and Their Joint Effects on Lung Function 
Rationale: Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied.
Objectives: To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP.
Methods: By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD.
Measurements and Main Results: Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10–12 risk alleles was associated with a reduction in FEV1 (β = –72.21 ml, P = 3.90 × 10−4) and FEV1/FVC (β = –1.53%, P = 6.35 × 10−6), and with COPD (odds ratio = 1.63, P = 1.46 × 10−5).
Conclusions: Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.
doi:10.1164/rccm.201102-0192OC
PMCID: PMC3398416  PMID: 21965014
FEV1; FVC; genome-wide association study; modeling risk
16.  Geographic Disparity in Chronic Obstructive Pulmonary Disease (COPD) Mortality Rates among the Taiwan Population 
PLoS ONE  2014;9(5):e98170.
Chronic obstructive pulmonary disease (COPD) causes a high disease burden among the elderly worldwide. In Taiwan, the long-term temporal trend of COPD mortality is declining, but the geographical disparity of the disease is not yet known. Nationwide COPD age-adjusted mortality at the township level during 1999–2007 is used for elucidating the geographical distribution of the disease. With an ordinary least squares (OLS) model and geographically weighted regression (GWR), the ecologic risk factors such as smoking rate, area deprivation index, tuberculosis exposure, percentage of aborigines, density of health care facilities, air pollution and altitude are all considered in both models to evaluate their effects on mortality. Global and local Moran’s I are used for examining their spatial autocorrelation and identifying clusters. During the study period, the COPD age-adjusted mortality rates in males declined from 26.83 to 19.67 per 100,000 population, and those in females declined from 8.98 to 5.70 per 100,000 population. Overall, males’ COPD mortality rate was around three times higher than females’. In the results of GWR, the median coefficients of smoking rate, the percentage of aborigines, PM10 and the altitude are positively correlated with COPD mortality in males and females. The median value of density of health care facilities is negatively correlated with COPD mortality. The overall adjusted R-squares are about 20% higher in the GWR model than in the OLS model. The local Moran’s I of the GWR’s residuals reflected the consistent high-high cluster in southern Taiwan. The findings indicate that geographical disparities in COPD mortality exist. Future epidemiological investigation is required to understand the specific risk factors within the clustering areas.
doi:10.1371/journal.pone.0098170
PMCID: PMC4028296  PMID: 24845852
17.  Tumor Necrosis Factor-α +489G/A gene polymorphism is associated with chronic obstructive pulmonary disease 
Respiratory Research  2002;3(1):29.
Background
Chronic obstructive pulmonary disease (COPD) is characterized by a chronic inflammatory process, in which the pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α is considered to play a role. In the present study the putative involvement of TNF-α gene polymorphisms in pathogenesis of COPD was studied by analysis of four TNF-α gene polymorphisms in a Caucasian COPD population.
Methods
TNF-α gene polymorphisms at positions -376G/A, -308G/A, -238G/A, and +489G/A were examined in 169 Dutch COPD patients, who had a mean forced expiratory volume in one second (FEV1) of 37 ± 13%, and compared with a Dutch population control group of 358 subjects.
Results
The data showed that the TNF-α +489G/A genotype frequency tended to be different in COPD patients as compared to population controls, which was due to an enhanced frequency of the GA genotype. In line herewith, carriership of the minor allele was associated with enhanced risk of development of COPD (odds ratio = 1.9, p = 0.009). The other TNF-α gene polymorphisms studied revealed no discrimination between patients and controls. No differences in the examined four TNF-α polymorphisms were found between subtypes of COPD, which were stratified for the presence of radiological emphysema. However, comparison of the COPD subtypes with controls showed a significant difference in the TNF-α +489G/A genotype in patients without radiological emphysema (χ2-test: p < 0.025 [Bonferroni adjusted]), while no differences between COPD patients with radiological emphysema and controls were observed.
Conclusion
Based on the reported data, it is concluded that COPD, and especially a subgroup of COPD patients without radiological emphysema, is associated with TNF-α +489G/A gene polymorphism.
doi:10.1186/rr194
PMCID: PMC150514  PMID: 12537602
Caucasians; COPD; Gene polymorphism; Susceptibility; Tumor necrosis factor-α
18.  Chronic obstructive pulmonary disease: Does gender really matter? 
Background:
Limited data is available on the clinical expression of chronic obstructive pulmonary disease (COPD) from India. The impact of gender on expression of COPD has received even less attention. Apart from tobacco smoke, indoor air pollution, especially from biomass fuel may play an important role in development of COPD in women.
Materials and Methods:
Seven hundred and two patients of COPD were studied regarding the etiological and risk factors leading to COPD, gender-related differences in clinical presentation, radiological expression of COPD and the co-morbidities in COPD.
Results:
Tobacco smoke in the form of beedi smoking was the predominant smoke exposure in males, whereas smoke from biofuel burning was the predominant exposure in females. As compared to males, females were younger, reported more dyspnea, more severe bronchial obstruction, more exacerbations, and exhibited higher prevalence of systemic features. Also, females smoked less and had lesser incidence of productive cough, lower body mass index, lesser co-morbidities and less number of hospital admissions as compared to males. Males were more likely than females to have an emphysema-predominant phenotype, while airway-predominant disease was more common among females.
Conclusion:
The current study shows that gender-related differences do exist in COPD patients. Understanding these differences in etiological agent and clinical picture will help early diagnosis of COPD in females.
doi:10.4103/0970-2113.85686
PMCID: PMC3213711  PMID: 22084538
Biomass fuel; chronic obstructive pulmonary disease; gender; indoor pollution; smoking
19.  Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness, cost-effectiveness, and safety of long-term oxygen therapy (LTOT) for chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Oxygen therapy is used in patients with COPD with hypoxemia, or very low blood oxygen levels, because they may have difficulty obtaining sufficient oxygen from inspired air.
Technology
Long-term oxygen therapy is extended use of oxygen. Oxygen therapy is delivered as a gas from an oxygen source. Different oxygen sources are: 1) oxygen concentrators, electrical units delivering oxygen converted from room air; 2) liquid oxygen systems, which deliver gaseous oxygen stored as liquid in a tank; and 3) oxygen cylinders, which contain compressed gaseous oxygen. All are available in portable versions. Oxygen is breathed in through a nasal cannula or through a mask covering the mouth and nose. The treating clinician determines the flow rate, duration of use, method of administration, and oxygen source according to individual patient needs. Two landmark randomized controlled trials (RCTs) of patients with COPD established the role of LTOT in COPD. Questions regarding the use of LTOT, however, still remain.
Research Question
What is the effectiveness, cost-effectiveness, and safety of LTOT compared with no LTOT in patients with COPD, who are stratified by severity of hypoxemia?
Research Methods
Literature Search
Search Strategy
A literature search was performed on September 8, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Library, and INAHTA for studies published from January 1, 2007 to September 8, 2010.
A single clinical epidemiologist reviewed the abstracts, obtained full-text articles for studies meeting the eligibility criteria, and examined reference lists for additional relevant studies not identified through the literature search. A second clinical epidemiologist and then a group of epidemiologists reviewed articles with an unknown eligibility until consensus was established.
Inclusion Criteria
patients with mild, moderate, or severe hypoxemia;
English-language articles published between January 1, 2007 and September 8, 2010;
journal articles reporting on effectiveness, cost-effectiveness, or safety for the comparison of interest;
clearly described study design and methods;
health technology assessments, systematic reviews, RCTs, or prospective cohort observational studies;
any type of observational study for the evaluation of safety.
Exclusion Criteria
no hypoxemia
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
studies comparing different oxygen therapy regimens
studies on nocturnal oxygen therapy
studies on short-burst, palliative, or ambulatory oxygen (supplemental oxygen during exercise or activities of daily living)
Outcomes of Interest
mortality/survival
hospitalizations
readmissions
forced expiratory volume in 1 second (FEV1)
forced vital capacity (FVC)
FEV1/FVC
pulmonary hypertension
arterial partial pressure of oxygen (PaO2)
arterial partial pressure of carbon dioxide (PaCO2)
end-exercise dyspnea score
endurance time
health-related quality of life
Note: Outcomes of interest were formulated according to existing studies, with arterial pressure of oxygen and carbon dioxide as surrogate outcomes.
Summary of Findings
Conclusions
Based on low quality of evidence, LTOT (~ 15 hours/day) decreases all-cause mortality in patients with COPD who have severe hypoxemia (PaO2 ~ 50 mm Hg) and heart failure.
The effect for all-cause mortality had borderline statistical significance when the control group was no LTOT: one study.
Based on low quality of evidence, there is no beneficial effect of LTOT on all-cause mortality at 3 and 7 years in patients with COPD who have mild-to-moderate hypoxemia (PaO2 ~ 59-65 mm Hg)1
Based on very low quality of evidence, there is some suggestion that LTOT may have a beneficial effect over time on FEV1 and PaCO2 in patients with COPD who have severe hypoxemia and heart failure: improved methods are needed.
Based on very low quality of evidence, there is no beneficial effect of LTOT on lung function or exercise factors in patients with COPD who have mild-to-moderate hypoxemia, whether survivors or nonsurvivors are assessed.
Based on low to very low quality of evidence, LTOT does not prevent readmissions in patients with COPD who have severe hypoxemia. Limited data suggest LTOT increases the risk of hospitalizations.
Limited work has been performed evaluating the safety of LTOT by severity of hypoxemia.
Based on low to very low quality of evidence, LTOT may have a beneficial effect over time on health-related quality of life in patients with COPD who have severe hypoxemia. Limited work using disease-specific instruments has been performed.
Ethical constraints of not providing LTOT to eligible patients with COPD prohibit future studies from examining LTOT outcomes in an ideal way.
PMCID: PMC3384376  PMID: 23074435
20.  GST genotypes and lung cancer susceptibility in Asian populations with indoor air pollution exposures: a meta-analysis 
Mutation research  2007;636(1-3):134-143.
About half of the world’s population is exposed to smoke from heating or cooking with coal, wood, or biomass. These exposures, and fumes from cooking oil use, have been associated with increased lung cancer risk. Glutathione S-transferases play an important role in the detoxification of a wide range of human carcinogens in these exposures. Functional polymorphisms have been identified in the GSTM1, GSTT1, and GSTP1 genes, which may alter the risk of lung cancer among individuals exposed to coal, wood and biomass smoke and cooking oil fumes. We performed a meta-analysis of six published studies (912 cases; 1063 controls) from regions in Asia where indoor air pollution makes a substantial contribution to lung cancer risk, and evaluated the association between the GSTM1 null, GSTT1 null, and GSTP1 105Val polymorphisms and lung cancer risk. Using a random effects model, we found that carriers of the GSTM1 null genotype had a borderline significant increased lung cancer risk (odds ratio (OR), 1.31; 95% confidence interval (CI), 0.95–1.79; p=0.100), which was particularly evident in the summary risk estimate for the four studies carried out in regions of Asia that use coal for heating and cooking (OR, 1.64; 95%CI, 1.25–2.14; p=0.0003). The GSTT1 null genotype was also associated with an increased lung cancer risk (OR, 1.49; 95%CI, 1.17–1.89; p=0.001), but no association was observed for the GSTP1 105Val allele. Previous meta- and pooled-analyses suggest at most a small association between the GSTM1 null genotype and lung cancer risk carried out in populations where the vast majority of lung cancer is attributed to tobacco, and where indoor air pollution from domestic heating and cooking is much less than in developing Asian countries. Our results suggest that the GSTM1 null genotype may be associated with a more substantial risk of lung cancer in populations with coal exposure.
doi:10.1016/j.mrrev.2007.02.002
PMCID: PMC2170530  PMID: 17428724
coal; heating and cooking; nonsmoking lung cancer; GSTM1; GSTT1; GSTP1
21.  Genetic Variations in ADIPOQ Gene Are Associated with Chronic Obstructive Pulmonary Disease 
PLoS ONE  2012;7(11):e50848.
Background
Adiponectin is reported to be related to the development of chronic obstructive pulmonary disease (COPD). Genetic variants in the gene encoding adiponectin (ADIPOQ) have been reported to be associated with adiponectin level in several genome–wide linkage and association studies. However, relatively little is known about the effects of ADIPOQ gene variants on COPD susceptibility. We determined the frequencies of single-nucleotide polymorphisms (SNPs) in ADIPOQ in a Chinese Han population and their possible association with COPD susceptibility.
Methods
We conducted a case–control study of 279 COPD patients and 367 age- and gender-distribution-matched control subjects. Seven tagging SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537 were genotyped by SNaPshot. Association analysis of genotypes/alleles and haplotypes constructed from these loci with COPD was conducted under different genetic models.
Results
The alleles or genotypes of rs1501299 distributed significantly differently in COPD patients and controls (allele: P = 0.002, OR = 1.43 and 95%CI = 1.14–1.79; genotype: P = 0.008). The allele A at rs1501299 was potentially associated with an increased risk of COPD in all dominant model analysis (P = 0.009; OR: 1.54; 95%CI: 1.11–2.13), recessive model analyses (P = 0.015; OR: 1.75; 95% CI: 1.11–2.75) and additive model analyses (P = 0.003; OR: 2.11; 95% CI: 1.29–3.47). In haplotype analysis, we observed haplotypes AAAAACT and GGACCTC had protective effects, while haplotypes AGAACTC, AGGCCTC, GGAACTC, GGACACT and GGGCCTC were significantly associated with the increased risk of COPD.
Conclusions
We conducted the first investigation of the association between the SNPs in ADIPOQ and COPD risk. Our current findings suggest that ADIPOQ may be a potential risk gene for COPD. Further studies in larger groups are warranted to confirm our results.
doi:10.1371/journal.pone.0050848
PMCID: PMC3508992  PMID: 23209832
22.  DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality. 
The high lung cancer rate in Xuan Wei, China, is associated with smoky coal use in unvented homes, but not with wood or smokeless coal use. Smoky coal combustion emits higher polycyclic aromatic hydrocarbon (PAH) concentrations than wood combustion. This study used DNA adducts as biomarkers for human exposure to PAH from combustion emissions. DNA adducts were determined by enzyme-linked immunosorbent assays (ELISA) in placentas and peripheral and cord white blood cells (WBC) from Xuan Wei women burning smoky coal or wood and from Beijing women using natural gas. Color ELISA gave positive results in 58, 47, and 5% of the placentas from Xuan Wei women burning smoky coal without and with chimneys, and from Beijing women, respectively. Fluorescence ELISA indicated that 46, 65, 56, and 25% of placentas were positive from Xuan Wei women who lived in houses without and with chimneys, Xuan Wei women burning wood, and Beijing controls, respectively. Peripheral WBC samples were positive in 7/9, 8/9, and 3/9 for the Xuan Wei women who lived in houses without and with chimneys and Beijing women, respectively. PAH-DNA adducts were detected in a higher percentage of placentas from Xuan Wei women living in houses exposed to smoky coal or wood emissions than from those of the Beijing controls. No dose-response relationship was observed between the air benzo[alpha]pyrene concentrations and DNA adduct levels or percentage of detectable samples. The results suggest that DNA adducts can be used as a qualitative biomarker to assess human exposure to combustion emissions.
PMCID: PMC1567066  PMID: 8319664
23.  Influence of C-159T SNP of the CD14 gene promoter on lung function in smokers with chronic bronchitis 
Respiratory medicine  2009;103(9):1358-1365.
CD14, a co-receptor for endotoxin, plays a significant role in the inflammatory response to this environmentally important pollutant. The C-159T single nucleotide polymorphism (SNP) in the CD14 gene promoter is reported to affect expression of CD14, with TT homozygous persons having higher CD14 expression. This SNP has been linked to pathogenesis of asthma and with cardiovascular diseases in smokers. We hypothesize that CD14 also plays a role in development of COPD in smokers who are exposed to inhaled endotoxin by cigarette smoking and to endotoxin released from Gram-negative microbes colonizing their airways. To assess the effect of the C-159T SNP of the CD14 gene promoter on lung function and GOLD score in smokers with COPD, we recruited 246 smokers with COPD with a range of 10–156 pack-year smoking exposures. We found that the C-159T single gene polymorphism of the CD14 gene promoter may play a role in modulating severity of obstructive impairment in smokers with COPD: The TT genotype was associated with lower lung function in smokers with a moderate smoking history. However, the CC genotype was associated with decreased lung function in heavy smokers (>56 pack-years). The result on CC genotype in risk for COPD is analogous with the effect of this genotype in risk for asthma. CD14 may be a factor in the pathophysiology of COPD, as it is in asthma and smoking-related cardiovascular diseases.
doi:10.1016/j.rmed.2009.03.007
PMCID: PMC3178042  PMID: 19361972
24.  Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong 
Thorax  2007;62(9):780-785.
Aims
To assess any relationship between the levels of ambient air pollutants and hospital admissions for chronic obstructive pulmonary disease (COPD) in Hong Kong.
Methods
A retrospective ecological study was undertaken. Data of daily emergency hospital admissions to 15 major hospitals in Hong Kong for COPD and indices of air pollutants (sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), particulates with an aerodynamic diameter of <10 μm (PM10) and 2.5 μm (PM2.5)) and meteorological variables from January 2000 to December 2004 were obtained from several government departments. Analysis was performed using generalised additive models with Poisson distribution, adjusted for the effects of time trend, season, other cyclical factors, temperature and humidity. Autocorrelation and overdispersion were corrected.
Results
Significant associations were found between hospital admissions for COPD with all five air pollutants. Relative risks for admission for every 10 μg/m3 increase in SO2, NO2, O3, PM10 and PM2.5 were 1.007, 1.026, 1.034, 1.024 and 1.031, respectively, at a lag day ranging from lag 0 to cumulative lag 0–5. In a multipollutant model, O3, SO2 and PM2.5 were significantly associated with increased admissions for COPD. SO2, NO2 and O3 had a greater effect on COPD admissions in the cold season (December to March) than during the warm season.
Conclusion
Ambient concentrations of air pollutants have an adverse effect on hospital admissions for COPD in Hong Kong, especially during the winter season. This might be due to indoor exposure to outdoor pollution through open windows as central heating is not required in the mild winter. Measures to improve air quality are urgently needed.
doi:10.1136/thx.2006.076166
PMCID: PMC2117326  PMID: 17311838
25.  Decorin and TGF-β1 polymorphisms and development of COPD in a general population 
Respiratory Research  2006;7(1):89.
Background
Decorin, an extracellular matrix (ECM) proteoglycan, and TGF-β1 are both involved in lung ECM turnover. Decorin and TGF-β1 expression are decreased respectively increased in COPD lung tissue. Interestingly, they act as each other's feedback regulator. We investigated whether single nucleotide polymorphisms (SNPs) in decorin and TGF-β1 underlie accelerated decline in FEV1 and development of COPD in the general population.
Methods
We genotyped 1390 subjects from the Vlagtwedde/Vlaardingen cohort. Lung function was measured every 3 years for a period of 25 years. We tested whether five SNPs in decorin (3'UTR and four intron SNPs) and three SNPs in TGF-β1 (3'UTR rs6957, C-509T rs1800469 and Leu10Pro rs1982073), and their haplotypes, were associated with COPD (last survey GOLD stage = II). Linear mixed effects models were used to analyze genotype associations with FEV1 decline.
Results
We found a significantly higher prevalence of carriers of the minor allele of the TGF-β1 rs6957 SNP (p = 0.001) in subjects with COPD. Additionally, we found a significantly lower prevalence of the haplotype with the major allele of rs6957 and minor alleles for rs1800469 and rs1982073 SNPs in TGF-β1 in subjects with COPD (p = 0.030), indicating that this association is due to the rs6957 SNP. TGF-β1 SNPs were not associated with FEV1 decline. SNPs in decorin, and haplotypes constructed of both TGF-β1 and decorin SNPs were not associated with development of COPD or with FEV1 decline.
Conclusion
Our study shows for the first time that SNPs in decorin on its own or in interaction with SNPs in TGF-β1 do not underlie the disturbed balance in expression between these genes in COPD. TGF-β1 SNPs are associated with COPD, yet not with accelerated FEV1 decline in the general population.
doi:10.1186/1465-9921-7-89
PMCID: PMC1539000  PMID: 16780585

Results 1-25 (786139)