PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (855767)

Clipboard (0)
None

Related Articles

1.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Background:
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
Objectives:
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Methods:
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Results:
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Conclusions:
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
GLOSSARY
= Automated Anatomic Labeling;
= Alzheimer disease;
= Alzheimer’s Disease Research Center;
= American version of the National Adult Reading Test;
= analysis of covariance;
= Blessed Dementia Scale;
= cerebral amyloid angiopathy;
= Clinical Dementia Rating;
= Clinical Dementia Rating Sum of Boxes;
= dementia with Lewy bodies;
= distribution volume ratio;
= Cued Selective Reminding Test;
= Free Selective Reminding Test;
= Hoehn and Yahr;
= Massachusetts General Hospital;
= Mini-Mental State Examination;
= normal control;
= neurofibrillary tangle;
= Neuropsychiatric Inventory Questionnaire;
= not significant;
= Parkinson disease;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= region of interest;
= Statistical Parametric Mapping;
= UK Parkinson’s Disease Society Brain Bank Research Center;
= United Parkinson’s Disease Rating Scale;
= Wechsler Adult Intelligence Scale–Revised.
doi:10.1212/01.wnl.0000326146.60732.d6
PMCID: PMC2637553  PMID: 18794492
2.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Background
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
Objectives
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Methods
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Results
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Conclusions
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
doi:10.1212/01.wnl.0000326146.60732.d6
PMCID: PMC2637553  PMID: 18794492
3.  Reduced striatal tyrosine hydroxylase in incidental Lewy body disease 
Acta neuropathologica  2007;115(4):445-451.
Incidental Lewy body disease (ILBD) is the term used when Lewy bodies are found in the nervous system of subjects without clinically documented parkinsonism or dementia. The prevalence of ILBD in the elderly population has been estimated at between 3.8 and 30%, depending on subject age and anatomical site of sampling. It has been speculated that ILBD represents the preclinical stage of Parkinson’s disease (PD) and/or dementia with Lewy bodies (DLB). Studies of ILBD could potentially identify early diagnostic signs of these disorders. At present, however, it is impossible to know whether ILBD is a precursor to PD or DLB or is just a benign finding of normal aging. We hypothesized that, if ILBD represents an early stage of PD or DLB, it should be associated with depletion of striatal dopaminergic markers. Eleven subjects with ILBD and 27 control subjects were studied. The ILBD subjects ranged in age from 74 to 96 years (mean 86.5) while the control subjects’ age ranged from 75 to 102 years (mean 86.7). Controls and subjects did not differ in terms of age, postmortem interval, gender distribution, medical history conditions, brain weight, neuritic plaque density or Braak neurofibrillary stage. Quantitative ELISA measurement of striatal tyrosine hydroxylase (TH), the principal enzyme for dopamine synthesis, showed a 49.8% (P = 0.01) reduction in ILBD cases, as compared with control cases. The finding suggests that ILBD is not a benign condition but is likely a precursor to PD and/or DLB.
doi:10.1007/s00401-007-0313-7
PMCID: PMC2724592  PMID: 17985144
Striatum; Dopamine; Parkinson’s disease; Lewy bodies; Pathogenesis; Aging
4.  Analysis of the Substantia Innominata Volume in Patients with Parkinson’s Disease with Dementia, Dementia with Lewy Bodies, and Alzheimer’s Disease 
Journal of Movement Disorders  2011;4(2):68-72.
Background and Purpose
The substantia innominata (SI) contains the nucleus basalis of Meynert, which is the major source of cholinergic input to the cerebral cortex. We hypothesized that degeneration of the SI and its relationship to general cognitive performance differs in amyloidopathy and synucleinopathy.
Methods
We used magnetic resonance imaging (MRI)-based volumetric analysis to evaluate the SI volume in patients with amnestic mild cognitive impairment (aMCI), Alzheimer’s disease (AD), Parkinson’s disease-mild cognitive impairment (PD-MCI), PD with dementia (PDD), dementia with Lewy bodies (DLB), and healthy elderly controls. The correlation between SI volume and general cognitive performance, measured using the Korean version of the Mini-Mental State Examination (K-MMSE), was examined.
Results
Compared to control subjects, the mean normalized SI volume was significantly decreased in all of the other groups. The normalized SI volume did not differ between the subjects with PDD and DLB, whereas it was significantly smaller in subjects with PDD (p = 0.029) and DLB (p = 0.011) compared with AD. In subjects with PD-related cognitive impairment (PD-MCI, PDD, or DLB), there was a significant positive correlation between the SI volume and K-MMSE score (r = 0.366, p < 0.001), whereas no correlation was seen in subjects with AD-related cognitive impairment (aMCI or AD).
Conclusions
Our data suggest that the SI loss is greater in synucleinopathy-related dementia (PDD or DLB) than in AD and that the contribution of the SI to cognitive performance is greater in synucleinopathy than in amyloidopathy.
doi:10.14802/jmd.11014
PMCID: PMC4027689  PMID: 24868398
The substantia innominata; Alzheimer’s disease; Parkinson’s disease-related cognitive dysfunction
5.  In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia 
Neurology  2010;74(1):77-84.
Objective:
To investigate the specificity of in vivo amyloid imaging with [11C]–Pittsburgh Compound B (PIB) in Parkinson disease dementia (PDD).
Methods:
We performed detailed neuropathologic examination for 3 individuals with PDD who had PIB PET imaging within 15 months of death.
Results:
We observed elevated cortical uptake of [11C]-PIB on in vivo PET imaging in 2 of the 3 cases. At autopsy, all 3 individuals had abundant cortical Lewy bodies (Braak PD stage 6), and were classified as low-probability Alzheimer disease (AD) based on NIA-Reagan criteria. The 2 PIB-positive individuals had abundant diffuse Aβ plaques but only sparse neuritic plaques and intermediate neurofibrillary tangle pathology. The PIB-negative individual had rare diffuse plaques, no neuritic plaques, and low neurofibrillary tangle burden.
Conclusions:
[11C]–Pittsburgh Compound B (PIB) PET is specific for fibrillar Aβ molecular pathology but not for pathologic diagnosis of comorbid Alzheimer disease in individuals with Parkinson disease dementia. The ability to specifically identify fibrillar Aβ amyloid in the setting of α-synucleinopathy makes [11C]-PIB PET a valuable tool for prospectively evaluating how the presence of Aβ amyloid influences the clinical course of dementia in patients with Lewy body disorders.
GLOSSARY
= Alzheimer disease;
= binding potentials;
= Clinical Dementia Rating;
= dementia of the Alzheimer type;
= dementia with Lewy bodies;
= distribution volume;
= Mental State Examination;
= Neuropsychiatric Inventory Questionnaire;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= Unified Parkinson's Disease Rating Scale.
doi:10.1212/WNL.0b013e3181c7da8e
PMCID: PMC2809026  PMID: 20038776
6.  Relative preservation of MMSE scores in autopsy-proven dementia with Lewy bodies 
Neurology  2009;73(14):1127-1133.
Background:
Recent studies raised questions about the severity of cognitive impairment associated with dementia with Lewy bodies (DLB). However, there have been few analyses of large, multicenter data registries for clinical–pathologic correlation.
Methods:
We evaluated data from the National Alzheimer's Coordinating Center registry (n = 5,813 cases meeting initial inclusion criteria) and the University of Kentucky Alzheimer's Disease Center autopsy series (n = 527) to compare quantitatively the severity of cognitive impairment associated with DLB pathology vs Alzheimer disease (AD) and AD+DLB pathologies.
Results:
Mini-Mental State Examination (MMSE) scores showed that persons with pure DLB had cognitive impairment of relatively moderate severity (final MMSE score 15.6 ± 8.7) compared to patients with pure AD and AD+DLB (final MMSE score 10.7 ± 8.6 and 10.6 ± 8.6). Persons with pure DLB pathology from both data sets had more years of formal education and were more likely to be male. Differences in final MMSE scores were significant (p < 0.01) between pure DLB and both AD+DLB and pure AD even after correction for education level, gender, and MMSE–death interval. Even in cases with extensive neocortical LBs, the degree of cognitive impairment was most strongly related to the amount of concomitant AD-type neurofibrillary pathology.
Conclusions:
Dementia with Lewy bodies can constitute a debilitating disease with associated psychiatric, motoric, and autonomic dysfunction. However, neocortical Lewy bodies are not a substrate for severe global cognitive impairment as assessed by the Mini-Mental State Examination. Instead, neocortical Lewy bodies appear to constitute or reflect an additive disease process, requiring Alzheimer disease or other concomitant brain diseases to induce severe global cognitive deterioration.
GLOSSARY
= Alzheimer disease;
= AD Center;
= Consortium to Establish a Registry for Alzheimer's Disease;
= dementia with Lewy bodies;
= Lewy bodies;
= Mini-Mental State Examination;
= National Alzheimer's Coordinating Center;
= neurofibrillary;
= National Institute of Aging-Reagan Institute;
= University of Kentucky Alzheimer's Disease Center.
doi:10.1212/WNL.0b013e3181bacf9e
PMCID: PMC2764396  PMID: 19805729
7.  Dementia with Lewy bodies and Alzheimer disease 
Neurology  2010;74(22):1814-1821.
Objective:
To identify the patterns of diffusivity changes in patients with dementia with Lewy bodies (DLB) and Alzheimer disease (AD) and to determine whether diffusion tensor MRI (DTI) is complementary to structural MRI in depicting the tissue abnormalities characteristic of DLB and AD.
Methods:
We studied clinically diagnosed age-, gender-, and education-matched subjects with DLB (n = 30), subjects with AD (n = 30), and cognitively normal (CN) subjects (n = 60) in a case-control study. DTI was performed at 3T with a fluid-attenuated inversion recovery–based DTI sequence that enabled cortical diffusion measurements. Mean diffusivity (MD) and gray matter (GM) density were measured from segmented cortical regions. Tract-based diffusivity was measured using color-coded fractional anisotropy (FA) maps.
Results:
Patients with DLB were characterized by elevated MD in the amygdala and decreased FA in the inferior longitudinal fasciculus (ILF). ILF diffusivity was associated with the presence of visual hallucinations (p = 0.007), and amygdala diffusivity was associated with Unified Parkinson's Disease Rating Scale (r = 0.50; p = 0.005) in DLB. In contrast, patients with AD were characterized by elevated MD in the medial temporal, temporal, and parietal lobe association cortices and decreased FA in the fornix, cingulum, and ILF. Amygdala diffusivity was complementary to GM density in discriminating DLB from CN; hippocampal and parahippocampal diffusivity was complementary to GM density in discriminating AD from CN.
Conclusion:
Increased amygdalar diffusivity in the absence of tissue loss in dementia with Lewy bodies (DLB) may be related to microvacuolation, a common pathology associated with Lewy body disease in the amygdala. Diffusivity measurements were complementary to structural MRI, demonstrating that measures of diffusivity on diffusion tensor MRI are valuable tools for characterizing the tissue abnormalities characteristic of Alzheimer disease and DLB.
GLOSSARY
= Alzheimer disease;
= cognitively normal;
= dementia with Lewy bodies;
= diffusion tensor MRI;
= fractional anisotropy;
= false discovery rate;
= fluid-attenuated inversion recovery;
= gray matter;
= inferior longitudinal fasciculus;
= Lewy body;
= mean diffusivity;
= REM sleep behavior disorder;
= region of interest;
= superior longitudinal fasciculus;
= echo time;
= inversion time;
= repetition time;
= Unified Parkinson's Disease Rating Scale;
= white matter.
doi:10.1212/WNL.0b013e3181e0f7cf
PMCID: PMC2882217  PMID: 20513818
8.  Rapid eye movement sleep behavior disorder and subtypes in autopsy-confirmed dementia with Lewy bodies 
OBJECTIVE
To determine whether dementia with Lewy bodies with or without probable rapid eye movement sleep behavior disorder differ clinically or pathologically.
METHODS
Patients with dementia with Lewy bodies who have probable rapid eye movement sleep behavior sleep disorder (n=71) were compared to those without it (n=19) on demographics, clinical variables (core features of dementia with Lewy bodies, dementia duration, rate of cognitive/motor changes) and pathologic indices (Lewy body distribution, neuritic plaque score, Braak neurofibrillary tangle stage).
RESULTS
Individuals with probable rapid eye movement sleep behavior disorder were predominantly male (82% versus 47%), and had a shorter duration of dementia (mean 8 years versus 10 years), earlier onset of parkinsonism (mean 2 years versus 5 years), and earlier onset of visual hallucinations (mean 3 years versus 6 years). These patients also had a lower Braak neurofibrillary tangle stage (Stage IV versus Stage VI) and lower neuritic plaque scores (18% frequent versus 85% frequent), but no difference in Lewy body distribution. When probable rapid eye movement sleep behavior disorder developed early (at or before dementia onset), the onset of parkinsonism and hallucinations was earlier and Braak neurofibrillary tangle stage was lower compared to those who developed the sleep disorder after dementia onset. Women with autopsy-confirmed DLB without a history of dream enactment behavior during sleep had a later onset of hallucinations and parkinsonism and a higher Braak NFT stage.
CONCLUSIONS
Probable rapid eye movement sleep behavior disorder is associated with distinct clinical and pathologic characteristics of dementia with Lewy bodies.
doi:10.1002/mds.24003
PMCID: PMC3513369  PMID: 22038951
Parkinson’s disease; REM sleep behavior disorder; Dementia with Lewy bodies; Lewy body disease; Alzheimer’s disease
9.  Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? 
Brain : a journal of neurology  2011;134(0 5):1493-1505.
Summary
The relative importance of Lewy- and Alzheimer-type pathologies to dementia in Parkinson’s disease remains unclear. We have examined the combined associations of α-synuclein, tau and amyloid-β accumulation in 56 pathologically confirmed Parkinson’s disease cases, 29 of whom had developed dementia. Cortical and subcortical amyloid-β scores were obtained, while tau and α-synuclein pathologies were rated according to the respective Braak stages. Additionally, cortical Lewy body and Lewy neurite scores were determined and Lewy body densities were generated using morphometry. Non-parametric statistics, together with regression models, receiver-operating characteristic curves and survival analyses were applied. Cortical and striatal amyloid-β scores, Braak tau stages, cortical Lewy body, Lewy neurite scores and Lewy body densities, but not Braak α-synuclein stages, were all significantly greater in the Parkinson’s disease-dementia group (P < 0.05), with all the pathologies showing a significant positive correlation to each other (P < 0.05). A combination of pathologies [area under the receiver-operating characteristic curve = 0.95 (0.88–1.00); P < 0.0001] was a better predictor of dementia than the severity of any single pathology. Additionally, cortical amyloid-β scores (r = −0.62; P = 0.043) and Braak tau stages (r = −0.52; P = 0.028), but not Lewy body scores (r = −0.25; P = 0.41) or Braak α-synuclein stages (r = −0.44; P = 0.13), significantly correlated with mini-mental state examination scores in the subset of cases with this information available within the last year of life (n = 15). High cortical amyloid-β score (P = 0.017) along with an older age at onset (P = 0.001) were associated with a shorter time-to-dementia period. A combination of Lewy- and Alzheimer-type pathologies is a robust pathological correlate of dementia in Parkinson’s disease, with quantitative and semi-quantitative assessment of Lewy pathology being more informative than Braak α-synuclein stages. Cortical amyloid-β and age at disease onset seem to determine the rate to dementia.
doi:10.1093/brain/awr031
PMCID: PMC4194668  PMID: 21596773
lewy bodies; amyloid-β; tau; Parkinson’s disease; dementia
10.  APOE ε4 Increases Risk for Dementia in Pure Synucleinopathies 
JAMA neurology  2013;70(2):223-228.
Objective
To test for an association between the apolipoprotein E (APOE) ε4 allele and dementias with synucleinopathy.
Design
Genetic case-control association study.
Setting
Academic research.
Patients
Autopsied subjects were classified into 5 categories: dementia with high-level Alzheimer disease (AD) neuropathologic changes (NCs) but without Lewy body disease (LBD) NCs (AD group; n=244), dementia with LBDNCs and high-level ADNCs (LBD-AD group; n=224), dementia with LBDNCs and no or low levels of ADNCs (pure DLB [pDLB] group; n=91), Parkinson disease dementia (PDD) with no or low levels of ADNCs (n=81), and control group (n=269).
Main Outcome Measure
The APOE allele frequencies.
Results
The APOE ε4 allele frequency was significantly higher in the AD (38.1%), LBD-AD (40.6%), pDLB (31.9%), and PDD (19.1%) groups compared with the control group (7.2%; overall χ42=185.25; P=5.56×10−39), and it was higher in the pDLB group than the PDD group (P=.01). In an age-adjusted and sex-adjusted dominant model, ε4 was strongly associated with AD (odds ratio, 9.9; 95% CI, 6.4–15.3), LBD-AD (odds ratio, 12.6; 95% CI, 8.1–19.8), pDLB (odds ratio, 6.1; 95% CI, 3.5–10.5), and PDD (odds ratio, 3.1; 95% CI, 1.7–5.6).
Conclusions
The APOE ε4 allele is a strong risk factor across the LBD spectrum and occurs at an increased frequency in pDLB relative to PDD. This suggests that ε4 increases the likelihood of presenting with dementia in the context of a pure synucleinopathy. The elevated ε4 frequency in the pDLB and PDD groups, in which the overall brain neuritic plaque burden was low, indicates that apoE might contribute to neurodegeneration through mechanisms unrelated to amyloid processing.
doi:10.1001/jamaneurol.2013.600
PMCID: PMC3580799  PMID: 23407718
11.  Brain amyloid and cognition in Lewy body diseases 
Background
Many patients with Parkinson disease (PD) develop dementia (PDD), a syndrome that overlaps clinically and pathologically with dementia with Lewy bodies (DLB); PDD and DLB differ chiefly in the relative timing of dementia and parkinsonism. Brain amyloid deposition is an early feature of DLB and may account in part for its early dementia. We sought to confirm this hypothesis and also to determine whether amyloid accumulation contributes to cognitive impairment and dementia in the broad range of parkinsonian diseases.
Methods
29 cognitively normal PD, 14 PD subjects with mild cognitive impairment (PD-MCI), 18 with DLB, 12 with PDD and 85 healthy control subjects (HCS) underwent standardized neurologic and neuropsychological examinations and PiB imaging with PET. Apolipoprotein (APOE) genotypes were obtained in many patients. PiB retention was expressed as the distribution volume ratio using a cerebellar tissue reference.
Results
PiB retention was significantly higher in DLB than in any of the other diagnostic groups. PiB retention did not differ across PDD, PD-MCI, PD, and HCS. Amyloid burden increased with age and with the presence of the APOEε4 allele in all patient groups. Only in the DLB group was amyloid deposition associated with impaired cognition.
Conclusions
DLB subjects have higher amyloid burden than subjects with PDD, PD-MCI, PD or HCS; amyloid deposits are linked to cognitive impairment only in DLB. Early amyloid deposits in DLB relative to PDD may account for their difference in the timing of dementia and parkinsonism.
doi:10.1002/mds.25048
PMCID: PMC3725259  PMID: 22693110
dementia; Lewy; Parkinson; amyloid; PiB
12.  Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease 
Introduction
Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn.
Methods
We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme-linked immunosorbent assay, in soluble and insoluble fractions of midfrontal, cingulate and parahippocampal cortex and thalamus, from cases of Parkinson’s disease (PD) with (PDD; n = 12) and without dementia (PDND; n = 23), dementia with Lewy bodies (DLB; n = 10) and age-matched controls (n = 17). We also examined the relationship of these measurements to cognitive decline, as measured by time-to-dementia and the mini-mental state examination (MMSE) score in the PD patients, and to Braak tangle stage.
Results
In most brain regions, the concentration of insoluble pSer129 α-syn correlated positively, and soluble pSer129 α-syn negatively, with the levels of soluble and insoluble Aβ. Insoluble pSer129 α-syn also correlated positively with Braak stage. In most regions, the levels of insoluble and soluble Aβ and the proportion of insoluble α-syn that was phosphorylated at Ser129 were significantly higher in the PD and DLB groups than the controls, and higher in the PDD and DLB groups than the PDND brains. In PD, the MMSE score correlated negatively with the level of insoluble pSer129 α-syn. Exposure of SH-SY5Y cells to aggregated Aβ42 significantly increased the proportion of α-syn that was phosphorylated at Ser129 (aggregated Aβ40 exposure had a smaller, non-significant effect).
Conclusions
Together, these data show that the concentration of pSer129 α-syn in brain tissue homogenates is directly related to the level of Aβ and Braak tangle stage, and predicts cognitive status in Lewy body diseases.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0077-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13195-014-0077-y
PMCID: PMC4248436  PMID: 25452767
13.  Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders 
Acta neuropathologica  2008;117(2):169-174.
Involvement of the olfactory bulb by Lewy-type α-synucleinopathy (LTS) is known to occur at an early stage of Parkinson's disease (PD) and Lewy body disorders and is therefore of potential usefulness diagnostically. An accurate estimate of the specificity and sensitivity of this change has not previously been available. We performed immunohistochemical α-synuclein staining of the olfactory bulb in 328 deceased individuals. All cases had received an initial neuropathological examination that included α-synuclein immunohistochemical staining on sections from brainstem, limbic and neocortical regions, but excluded olfactory bulb. These cases had been classified based on their clinical characteristics and brain regional distribution and density of LTS, as PD, dementia with Lewy bodies (DLB), Alzheimer's disease with LTS (ADLS), Alzheimer's disease without LTS (ADNLS), incidental Lewy body disease (ILBD) and elderly control subjects. The numbers of cases found to be positive and negative, respectively, for olfactory bulb LTS were: PD 55/3; DLB 34/1; ADLS 37/5; ADNLS 19/84; ILBD 14/7; elderly control subjects 5/64. The sensitivities and specificities were, respectively: 95 and 91% for PD versus elderly control; 97 and 91% for DLB versus elderly control; 88 and 91% for ADLS versus elderly control; 88 and 81% for ADLS versus ADNLS; 67 and 91% for ILBD versus elderly control. Olfactory bulb synucleinopathy density scores correlated significantly with synucleinopathy scores in all other brain regions (Spearman R values between 0.46 and 0.78) as well as with scores on the Mini-Mental State Examination and Part 3 of the unified Parkinson's Disease Rating Scale (Spearman R −0.27, 0.35, respectively). It is concluded that olfactory bulb LTS accurately predicts the presence of LTS in other brain regions. It is suggested that olfactory bulb biopsy be considered to confirm the diagnosis in PD subjects being assessed for surgical therapy.
doi:10.1007/s00401-008-0450-7
PMCID: PMC2631085  PMID: 18982334
Parkinson's disease, surgery; Deep brain stimulation; Gene therapy; Transplantation; Dementia with Lewy bodies, diagnosis, therapy, clinical trial; α-Synuclein, Lewy bodies, incidental Lewy body disease; Biopsy; Olfactory bulb
14.  Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia 
F1000Research  2014;3:108.
Dementia with Lewy Bodies (DLB) and Parkinson’s Disease Dementia (PDD) together, represent the second most common cause of dementia, after Alzheimer’s disease (AD). The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9), anterior cingulated gyrus (BA24) and parietal cortex (BA40) from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles) and for α-synuclein (Lewy bodies).
Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia.
doi:10.12688/f1000research.3786.1
PMCID: PMC4309165
Alzheimer’s disease; Dementia with Lewy bodies; Parkinson’s disease with dementia; synaptic dysfunction; vesicle recycling; synaptic plasticity; beta amyloid; tau; cognitive impairment
15.  Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia 
Acta neuropathologica  2012;125(3):425-438.
We recently reported a missense mutation and four variants in eukaryotic translation initiation factor 4-gamma (EIF4G1) associated with parkinsonism, dementia or both. In those with a positive family history, the mode of inheritance was autosomal dominant. Detailed neuropathologic descriptions of individuals with EIF4G1 genetic variants have not been reported. Herein, we report neuropathologic findings of three individuals from two American families with EIF4G1 variants. The patients had initial clinical presentations of dementia or parkinsonism and all had dementia at the time of autopsy. One family carried an EIF4G1 double variant, c.2056G>T (p.G686C) and c.3589C>T (p.R1197W), and one family carried variant c.1505C>T (p.A502V). All three patients also carried at least one ε4 allele of apolipoprotein E. One individual presented with cognitive impairment without significant parkinsonism; one presented with memory problems followed by bradykinesia; and the third presented with cardinal signs of Parkinson’s disease, followed more than a year later by cognitive dysfunction. Pathological examination showed diffuse cortical Lewy bodies and Lewy neurites in all patients. A small subset of Lewy bodies and Lewy neurites were immunopositive for eIF4G1. All patients had moderate to frequent non-neuritic, cortical amyloid plaques, mostly medial temporal neurofibrillary pathology (Braak neurofibrillary tangle stages of II to IV), and minimal or no TDP-43 pathology. The results suggest that in some patients variants in EIF4G1 can be associated with pathology that has a high likelihood of association with clinical features of dementia with Lewy bodies.
doi:10.1007/s00401-012-1059-4
PMCID: PMC3580022  PMID: 23124435
APOE; dementia with Lewy bodies; diffuse Lewy body disease; EIF4G1; parkinsonism; α-synuclein; tau
16.  Factors associated with resistance to dementia despite high Alzheimer disease pathology 
Neurology  2009;72(4):354-360.
Background:
Autopsy series have shown that some elderly people remain with normal cognitive function during life despite having high burdens of pathologic lesions associated with Alzheimer disease (AD) at death. Understanding why these individuals show no cognitive decline, despite high AD pathologic burdens, may be key to discovery of neuroprotective mechanisms.
Methods:
A total of 36 subjects who on autopsy had Braak stage V or VI and moderate or frequent neuritic plaque scores based on Consortium to Establish a Registry for Alzheimer's Disease (CERAD) standards were included. Twelve had normal cognitive function and 24 a diagnosis of AD before death. Demographic characteristics, clinical and pathologic data, as well as antemortem brain volumes were compared between the groups.
Results:
In multiple regression analysis, antemortem hippocampal and total brain volumes were significantly larger in the group with normal cognitive function after adjusting for gender, age at MRI, time from MRI to death, Braak stage, CERAD neuritic plaque score, and overall presence of vascular disease.
Conclusion:
Larger brain and hippocampal volumes were associated with preserved cognitive function during life despite a high burden of Alzheimer disease (AD) pathologic lesions at death. A better understanding of processes that lead to preservation of brain volume may provide important clues for the discovery of mechanisms that protect the elderly from AD.
GLOSSARY
= Alzheimer disease;
= Clinical Dementia Rating Scale;
= Consortium to Establish a Registry for Alzheimer's Disease;
= Cumulative Illness Rating Scale;
= intracranial volume;
= Lewy bodies;
= Mini-Mental State Examination;
= Neurobehavioral Cognitive Status Examination;
= neurofibrillary tangle;
= National Institute on Aging;
= neuritic plaques;
= Oregon Health & Science University;
= reference;
= socioeconomic status;
= Unified Parkinson's Disease Rating Scale.
doi:10.1212/01.wnl.0000341273.18141.64
PMCID: PMC2677499  PMID: 19171833
17.  Motor and cognitive function in Lewy body dementia: comparison with Alzheimer's and Parkinson's diseases. 
OBJECTIVE: Motor and cognitive function were compared in patients with Lewy body dementia, Parkinson's disease, or Alzheimer's disease, to identify features that may be clinically useful in differentiating Lewy body dementia from Alzheimer's disease and Parkinson's disease. METHODS: A range of neuropsychological function and extrapyrimidal signs (EPS) was assessed in 16 patients with Lewy body dementia, 15 with Parkinson's disease, 25 with Alzheimer's disease, and 22 control subjects. RESULTS: The severity of total motor disability scores increased in the following order: controls approximately = Alzheimer's disease << Parkinson's disease < Lewy body dementia. Compared with patients with Parkinson's disease, patients with Lewy body dementia had greater scores for rigidity and deficits in the finger tapping test, but rest tremor and left/right asymmetry in EPS were more evident in Parkinson's disease. Patients with Lewy body dementia were also less likely to present with left/right asymmetry in EPS at the onset of their parkinsonism. "Sensitivity" to neuroleptic drugs was noted in 33% of patients with Lewy body dementia. Alzheimer's disease and Lewy body dementia groups had greater severity of dementia compared with the Parkinson's disease group and controls. Neuropsychological evaluation disclosed severe but similar degrees of impaired performances in tests of attention (digit span), frontal lobe function (verbal fluency, category, and Nelson card sort test) and motor sequencing in both Lewy body dementia and Alzheimer's disease groups, than Parkinson's disease and controls. In the clock face test, improved performance was noted in the "copy" compared to "draw" part of the test in controls, patients with Alzheimer's disease, and those with Parkinson's disease, but not in the patients with Lewy body dementia, who achieved equally poor scores in both parts of the test. CONCLUSIONS: EPS in Lewy body dementia resemble those seen in idiopathic Parkinson's disease, although less rest tremor and left/right asymmetry but more severe rigidity favours a diagnosis of Lewy body dementia. The unique profile of patients with Lewy body dementia seen in the clock face test suggests that this simple and easy to administer test may be useful in the clinical setting to differentiate Lewy body dementia and Alzheimer's disease.
Images
PMCID: PMC1064153  PMID: 9069479
18.  Presence of Striatal Amyloid Plaques in Parkinson’s Disease Dementia Predicts Concomitant Alzheimer’s Disease: Usefulness for Amyloid Imaging 
Dementia is a frequent complication of Parkinson’s disease (PD). About half of PD dementia (PDD) is hypothesized to be due to progression of the underlying Lewy body pathology into limbic regions and the cerebral cortex while the other half is thought to be due to coexistent Alzheimer’s disease. Clinically, however, these are indistinguishable. The spread of amyloid plaques to the striatum has been reported to be a sensitive and specific indicator of dementia due to Alzheimer’s disease (AD). The purpose of the present study was to determine if the presence of striatal plaques might also be a useful indicator of the presence of diagnostic levels of AD pathology within PD subjects. We analyzed neuropathologically-confirmed cases of PD without dementia (PDND, N = 31), PDD without AD (PDD, N = 31) and PD with dementia meeting clinicopathological criteria for AD (PDAD, N =40). The minimum diagnostic criterion for AD was defined as including a clinical history of dementia, moderate or frequent CERAD cortical neuritic plaque density and Braak neurofibrillary stage III–VI. Striatal amyloid plaque densities were determined using Campbell-Switzer and Thioflavine S stains. Striatal plaque densities were significantly higher in PDAD compared to PDD (p<0.001). The presence of striatal plaques was approximately 80% sensitive and 80% specific for predicting AD. In comparison, the presence of cerebral cortex plaques alone was highly sensitive (100%) but had poor specificity (48% to 55%). The results suggest that striatal amyloid imaging may be clinically useful for making the distinction between PDD and PDAD.
doi:10.3233/JPD-2012-11073
PMCID: PMC3423968  PMID: 22924088
striatum; Lewy body; diagnosis; autopsy; neuropathology; biomarker
19.  Performance on the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer's disease 
Background: The relation between dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) is unknown.
Objectives: To compare the cognitive profiles of patients with DLB and PDD, and compare those with the performance of patients with a subcortical dementia (progressive supranuclear palsy) and a cortical dementia (Alzheimer's disease).
Design: Survey of cognitive features.
Setting: General community in Rogaland county, Norway, and a university dementia and movement disorder research centre in the USA.
Patients: 60 patients with DLB, 35 with PDD, 49 with progressive supranuclear palsy, and 29 with Alzheimer's disease, diagnosed by either standardised clinical procedures and criteria (all PDD and Alzheimer cases and 76% of cases of progressive supranuclear palsy), or necropsy (all DLB cases and 24% of cases of progressive supranuclear palsy). Level of dementia severity was matched using the total score on the dementia rating scale adjusted for age and education.
Main outcome measures: Dementia rating scale subscores corrected for age.
Results: No significant differences between the dementia rating scale subscores in the PDD and DLB groups were found in the severely demented patients; in patients with mild to moderate dementia the conceptualisation subscore was higher in PDD than in DLB (p = 0.03). Compared with Alzheimer's disease, PDD and DLB had higher memory subscores (p < 0.001) but lower initiation and perseveration (p = 0.008 and p=0.021) and construction subscores (p = 0.009 and p = 0.001). DLB patients had a lower conceptualisation subscore (p = 0.004). Compared with progressive supranuclear palsy, PDD and DLB patients had lower memory subscores (p < 0.001).
Conclusions: The cognitive profiles of patients with DLB and PDD were similar, but they differed from those of patients with Alzheimer's disease and progressive supranuclear palsy. The cognitive pattern in DLB and PDD probably reflects the superimposition of subcortical deficits upon deficits typically associated with Alzheimer's disease.
doi:10.1136/jnnp.74.9.1215
PMCID: PMC1738667  PMID: 12933921
20.  Mild cognitive impairment associated with limbic and neocortical lewy body disease: a clinicopathological study 
Brain  2009;133(2):540-556.
There are little data on the relationship between Lewy body disease and mild cognitive impairment syndromes. The Mayo Clinic aging and dementia databases in Rochester, Minnesota, and Jacksonville, Florida were queried for cases who were diagnosed with mild cognitive impairment between 1 January 1996 and 30 April 2008, were prospectively followed and were subsequently found to have autopsy-proven Lewy body disease. The presence of rapid eye movement sleep behaviour disorder was specifically assessed. Mild cognitive impairment subtypes were determined by clinical impression and neuropsychological profiles, based on prospective operational criteria. The diagnosis of clinically probable dementia with Lewy bodies was based on the 2005 McKeith criteria. Hippocampal volumes, rate of hippocampal atrophy, and proton magnetic resonance spectroscopy were assessed on available magnetic resonance imaging and spectroscopy scans. Eight subjects were identified; six were male. Seven developed dementia with Lewy bodies prior to death; one died characterized as mild cognitive impairment. The number of cases and median age of onset (range) for specific features were: seven with rapid eye movement sleep behaviour disorder—60 years (27–91 years), eight with cognitive symptoms—69 years (62–89 years), eight with mild cognitive impairment—70.5 years (66–91 years), eight with parkinsonism symptoms—71 years (66–92 years), six with visual hallucinations—72 years (64–90 years), seven with dementia—75 years (67–92 years), six with fluctuations in cognition and/or arousal—76 years (68–92 years) and eight dead—76 years (71–94 years). Rapid eye movement sleep behaviour disorder preceded cognitive symptom onset in six cases by a median of 10 years (2–47 years) and mild cognitive impairment diagnosis by a median of 12 years (3–48 years). The mild cognitive impairment subtypes represented include: two with single domain non-amnestic mild cognitive impairment, three with multi-domain non-amnestic mild cognitive impairment, and three with multi-domain amnestic mild cognitive impairment. The cognitive domains most frequently affected were attention and executive functioning, and visuospatial functioning. Hippocampal volumes and the rate of hippocampal atrophy were, on average, within the normal range in the three cases who underwent magnetic resonance imaging, and the choline/creatine ratio was elevated in the two cases who underwent proton magnetic resonance spectroscopy when they were diagnosed as mild cognitive impairment. On autopsy, six had neocortical-predominant Lewy body disease and two had limbic-predominant Lewy body disease; only one had coexisting high-likelihood Alzheimer's disease. These findings indicate that among Lewy body disease cases that pass through a mild cognitive impairment stage, any cognitive pattern or mild cognitive subtype is possible, with the attention/executive and visuospatial domains most frequently impaired. Hippocampal volume and proton magnetic resonance spectroscopy data were consistent with recent data in dementia with Lewy bodies. All cases with rapid eye movement sleep behaviour disorder and mild cognitive impairment were eventually shown to have autopsy-proven Lewy body disease, indicating that rapid eye movement sleep behaviour disorder plus mild cognitive impairment probably reflects brainstem and cerebral Lewy body disease.
doi:10.1093/brain/awp280
PMCID: PMC2822633  PMID: 19889717
mild cognitive impairment; dementia; dementia with Lewy bodies; Lewy body disease; neuropathology
21.  Serum and Cerebrospinal Fluid Levels of Transthyretin in Lewy Body Disorders with and without Dementia 
PLoS ONE  2012;7(10):e48042.
Parkinson’s disease (PD) without (non-demented, PDND) and with dementia (PDD), and dementia with Lewy bodies (DLB) are subsumed under the umbrella term Lewy body disorders (LBD). The main component of the underlying pathologic substrate, i.e. Lewy bodies and Lewy neurites, is misfolded alpha-synuclein (Asyn), and - in particular in demented LBD patients - co-occurring misfolded amyloid-beta (Abeta). Lowered blood and cerebrospinal fluid (CSF) levels of transthyretin (TTR) - a clearance protein mainly produced in the liver and, autonomously, in the choroid plexus - are associated with Abeta accumulation in Alzheimer’s disease. In addition, a recent study suggests that TTR is involved in Asyn clearance. We measured TTR protein levels in serum and cerebrospinal fluid of 131 LBD patients (77 PDND, 26 PDD, and 28 DLB) and 72 controls, and compared TTR levels with demographic and clinical data as well as neurodegenerative markers in the CSF. Five single nucleotide polymorphisms of the TTR gene which are considered to influence the ability of the protein to carry its ligands were also analyzed. CSF TTR levels were significantly higher in LBD patients compared to controls. Post-hoc analysis demonstrated that this effect was driven by PDND patients. In addition, CSF TTR levels correlated negatively with CSF Abeta1–42, total tau and phospho-tau levels. Serum TTR levels did not significantly differ among the studied groups. There were no relevant associations between TTR levels and genetic, demographic and clinical data, respectively. These results suggest an involvement of the clearance protein TTR in LBD pathophysiology, and should motivate to elucidate TTR-related mechanisms in LBD in more detail.
doi:10.1371/journal.pone.0048042
PMCID: PMC3485000  PMID: 23133543
22.  Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies 
Neurology  2012;79(6):553-560.
Objective:
To determine the association between the focal atrophy measures on antemortem MRI and postmortem neuropathologic classification of dementia with Lewy bodies (DLB) using the Third Report of the DLB Consortium criteria.
Methods:
We retrospectively identified 56 subjects who underwent antemortem MRI and had Lewy body (LB) pathology at autopsy. Subjects were pathologically classified as high (n = 25), intermediate (n = 22), and low likelihood DLB (n = 9) according to the Third Report of the DLB Consortium criteria. We included 2 additional pathologic comparison groups without LBs: one with low likelihood Alzheimer disease (AD) (control; n = 27) and one with high likelihood AD (n = 33). The associations between MRI-based volumetric measurements and the pathologic classification of DLB were tested with analysis of covariance by adjusting for age, sex, and MRI-to-death interval.
Results:
Antemortem hippocampal and amygdalar volumes increased from low to intermediate to high likelihood DLB (p < 0.001, trend test). Smaller hippocampal and amygdalar volumes were associated with higher Braak neurofibrillary tangle stage (p < 0.001). Antemortem dorsal mesopontine gray matter (GM) atrophy was found in those with high likelihood DLB compared with normal control subjects (p = 0.004) and those with AD (p = 0.01). Dorsal mesopontine GM volume decreased from low to intermediate to high likelihood DLB (p = 0.01, trend test).
Conclusion:
Antemortem hippocampal and amygdalar volumes increase and dorsal mesopontine GM volumes decrease in patients with low to high likelihood DLB according to the Third Report of the DLB Consortium criteria. Patients with high likelihood DLB typically have normal hippocampal volumes but have atrophy in the dorsal mesopontine GM nuclei.
doi:10.1212/WNL.0b013e31826357a5
PMCID: PMC3413765  PMID: 22843258
23.  Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders 
Acta neuropathologica  2010;119(6):689-702.
A sensitive immunohistochemical method for phosphorylated α-synuclein was used to stain sets of sections of spinal cord and tissue from 41 different sites in the bodies of 92 subjects, including 23 normal elderly, 7 with incidental Lewy body disease (ILBD), 17 with Parkinson’s disease (PD), 9 with dementia with Lewy bodies (DLB), 19 with Alzheimer’s disease with Lewy bodies (ADLB) and 17 with Alzheimer’s disease with no Lewy bodies (AD-NLB). The relative densities and frequencies of occurrence of phosphorylated α-synuclein histopathology (PASH) were tabulated and correlated with diagnostic category. The greatest densities and frequencies of PASH occurred in the spinal cord, followed by the paraspinal sympathetic ganglia, the vagus nerve, the gastrointestinal tract and endocrine organs. The frequency of PASH within other organs and tissue types was much lower. Spinal cord and peripheral PASH was most common in subjects with PD and DLB, where it appears likely that it is universally widespread. Subjects with ILBD had lesser densities of PASH within all regions, but had frequent involvement of the spinal cord and paraspinal sympathetic ganglia, with less-frequent involvement of end-organs. Subjects with ADLB had infrequent involvement of the spinal cord and paraspinal sympathetic ganglia with rare involvement of end-organs. Within the gastrointestinal tract, there was a rostrocaudal gradient of decreasing PASH frequency and density, with the lower esophagus and submandibular gland having the greatest involvement and the colon and rectum the lowest.
doi:10.1007/s00401-010-0664-3
PMCID: PMC2866090  PMID: 20306269
Parkinson’s disease; Parkinsonism; Dementia with Lewy bodies; Alzheimer’s disease; Incidental Lewy bodies; α-Synuclein; Spinal cord; Sympathetic nervous system; Peripheral nervous system; Autonomic nervous system; Enteric nervous system; Submandibular gland; Esophagus; Adrenal gland; Heart; Stomach; Gastrointestinal system
24.  Demography, diagnostics, and medication in dementia with Lewy bodies and Parkinson’s disease with dementia: data from the Swedish Dementia Quality Registry (SveDem) 
Introduction
Whether dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD) should be considered as one entity or two distinct conditions is a matter of controversy. The aim of this study was to compare the characteristics of DLB and PDD patients using data from the Swedish Dementia Quality Registry (SveDem).
Methods
SveDem is a national Web-based quality registry initiated to improve the quality of diagnostic workup, treatment, and care of patients with dementia across Sweden. Patients with newly diagnosed dementia of various types were registered in SveDem during the years 2007–2011. The current cross-sectional report is based on DLB (n = 487) and PDD (n = 297) patients. Demographic characteristics, diagnostic workup, Mini-Mental State Examination (MMSE) score, and medications were compared between DLB and PDD groups.
Results
No gender differences were observed between the two study groups (P = 0.706). PDD patients were significantly younger than DLB patients at the time of diagnosis (74.8 versus 76.8 years, respectively; P < 0.001). A significantly higher prevalence of patients with MMSE score ≤24 were found in the PDD group (75.2% versus 67.6%; P = 0.030). The mean number of performed diagnostic modalities was significantly higher in the DLB group (4.9 ± 1.7) than in the PDD group (4.1 ± 1.6; P < 0.001). DLB patients were more likely than PDD patients to be treated with cholinesterase inhibitors (odds ratio = 2.5, 95% confidence interval = 1.8–3.5), whereas the use of memantine, antidepressants, and antipsychotics did not differ between the groups.
Conclusion
This study demonstrates several differences in the dementia work-up between DLB and PDD. The onset of dementia was significantly earlier in PDD, while treatment with cholinesterase inhibitors was more common in DLB patients. Severe cognitive impairment (MMSE score ≤24) was more frequent in the PDD group, whereas more diagnostic tests were used to confirm a DLB diagnosis. Some similarities also were found, such as gender distribution and use of memantine, antidepressants, and antipsychotics drugs. Further follow-up cost-effectiveness studies are needed to provide more evidence for workup and treatment guidelines of DLB and PDD.
doi:10.2147/NDT.S45840
PMCID: PMC3700781  PMID: 23847419
dementia with Lewy bodies; Parkinson’s disease with dementia; age; diagnostic approach; medication; Mini-Mental State Examination
25.  UPDATE ON DEMENTIA WITH LEWY BODIES 
Dementia with Lewy bodies (DLB) is the second most common form of dementia after Alzheimer disease (AD). DLB is characterized pathologically by Lewy body and Lewy neuritic pathology, often with variable levels of Alzheimer-type pathology. Core clinical features include fluctuating cognition, visual hallucinations, and parkinsonism resulting in greater impairments of quality of life, more caregiver burden, and higher health-related costs compared with AD. These issues, together with a high sensitivity to adverse events with treatment with antipsychotic agents, make the need for an early and accurate diagnosis of DLB essential. Unfortunately, current consensus criteria are highly specific but lack sufficient sensitivity. Use of composite risk scores may improve accuracy of clinical diagnosis. Imaging findings, particularly targeting dopaminergic systems have shown promise as potential markers to differentiate DLB from AD. A combination of non-pharmacologic treatments and pharmacotherapy interventions may maximize cognitive function and overall quality of life in DLB patients.
doi:10.1007/s13670-013-0053-6
PMCID: PMC4219734  PMID: 25379359
Dementia with Lewy bodies; Alzheimer’s disease; Parkinson’s disease; Lewy bodies; Risk Scores; Aging; Neuropathology; Neuroimaging; Biomarkers; Genetics; Therapeutics

Results 1-25 (855767)