PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1022224)

Clipboard (0)
None

Related Articles

1.  Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells 
Molecular cancer therapeutics  2008;7(2):297-313.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R–like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK−/− cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B–dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methylade-nine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
doi:10.1158/1535-7163.MCT-07-2166
PMCID: PMC3204355  PMID: 18281515
2.  MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism 
Molecular cancer therapeutics  2009;8(5):1280-1291.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
doi:10.1158/1535-7163.MCT-09-0073
PMCID: PMC2889018  PMID: 19417161
3.  OSU-03012 enhances Ad.mda-7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins 
Cancer biology & therapy  2010;9(7):526-536.
The present studies focused on determining whether the autophagy-inducing drug OSU-03012 (AR-12) could enhance the toxicity of recombinant adenoviral delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) in glioblastoma multiforme (GBM) cells. The toxicity of a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7) was enhanced by OSU-03012 in a diverse panel of primary human GBM cells. The enhanced toxicity correlated with reduced ERK1/2 phosphorylation and expression of MCL-1 and BCL-XL, and was blocked by molecular activation of ERK1/2 and by inhibition of the intrinsic, but not the extrinsic, apoptosis pathway. Both OSU-03012 and expression of MDA-7/IL-24 increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) that correlated with increased levels of autophagy and expression of dominant negative PERK blocked autophagy induction and tumor cell death. Knockdown of ATG5 or Beclin1 suppressed OSU-03012 enhanced MDA-7/IL-24-induced autophagy and blocked the lethal interaction between the two agents. Ad.mda-7-infected GBM cells secreted MDA-7/IL-24 into the growth media and this conditioned media induced expression of MDA-7/IL-24 in uninfected GBM cells. OSU-03012 interacted with conditioned media to kill GBM cells and knockdown of MDA-7/IL-24 in these cells suppressed tumor cell killing. Collectively, our data demonstrate that the induction of autophagy and mitochondrial dysfunction by a combinatorial treatment approach represents a potentially viable strategy to kill primary human GBM cells.
PMCID: PMC2888700  PMID: 20107314
ROS; caspase; ER stress; CD95; cell death
4.  OSU-03012 Stimulates PKR-Like Endoplasmic Reticulum-Dependent Increases in 70-kDa Heat Shock Protein Expression, Attenuating Its Lethal Actions in Transformed Cells 
Molecular pharmacology  2008;73(4):1168-1184.
We have further defined mechanism(s) by which 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide [OSU-03012 (OSU)], a derivative of the cyclooxygenase-2 (COX2) inhibitor celecoxib but lacking COX2 inhibitory activity, kills transformed cells. In cells lacking expression of protein kinase R-like endoplasmic reticulum kinase (PERK-/-), the lethality of OSU was attenuated. OSU enhanced the expression of Beclin 1 and ATG5 and cleavage of pro-caspase 4 in a PERK-dependent fashion and promoted the Beclin 1- and ATG5-dependent formation of vacuoles containing LC3, followed by a subsequent caspase 4-dependent cleavage of cathepsin B and a cathepsin B-dependent formation of low pH intracellular vesicles; cathepsin B was activated and released into the cytosol and genetic suppression of caspase 4, cathepsin B, or apoptosis-inducing factor function significantly suppressed cell killing. In parallel, OSU caused PERK-dependent increases in 70-kDa heat shock protein (HSP70) expression and decreases in 90-kDa heat shock protein (HSP90) and Grp78/BiP expression. Changes in HSP70 expression were post-transcriptional. Knockdown or small-molecule inhibition of HSP70 expression enhanced OSU toxicity, and overexpression of HSP70 suppressed OSU-induced low pH vesicle formation and lethality. Our data demonstrate that OSU-03012 causes cell killing that is dependent on PERK-induced activation of multiple toxic proteases. OSU-03012 also increased expression of HSP70 in a PERK-dependent fashion, providing support for the contention that OSU-03012-induced PERK signaling promotes both cell survival and cell death processes.
doi:10.1124/mol.107.042697
PMCID: PMC2674576  PMID: 18182481
5.  PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells 
Cancer research  2010;70(3):1120-1129.
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R–like endoplasmic reticulum kinase (PERK), Ca++ elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca++ induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7–killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca2+, and ROS, which in turn promote glioma cell autophagy and cell death.
doi:10.1158/0008-5472.CAN-09-4043
PMCID: PMC2890071  PMID: 20103619
6.  Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation 
Cancer biology & therapy  2008;7(10):1648-1662.
We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2α phosphorylation; suppression of eIF2α function abolished drug combination lethality. Cell killing was paralleled by PERK- and eIF2α-dependent lowering of c-FLIP-s protein levels and over-expression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRβ and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Over-expression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2α -↓c-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).
PMCID: PMC2674577  PMID: 18787411
Vorinostat; Sorafenib; CD95; c-FLIP-s; PDGFRβ; FLT3; autophagy; ceramide; cell death; ASMase
7.  Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by Ad.5/3 gene delivery 
Cancer Biology & Therapy  2010;10(12):1290-1305.
We have determined whether an adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, more effectively infects and kills renal carcinoma cells (RCCs) compared to a serotype 5 virus, Ad.5-mda-7. RCCs are a tumor cell type that generally does not express the receptor for the type 5 adenovirus; the coxsakie and adenovirus receptor (CAR). Ad.5/3-mda-7 infected RCCs to a much greater degree than Ad.5-mda-7. MDA-7/IL-24 protein secreted from Ad.5/3-mda-7-infected RCCs induced MDA-7/IL-24 expression and promoted apoptosis in uninfected “bystander” RCCs. MDA-7/IL-24 killed both infected and bystander RCCs via CD95 activation. Knockdown of intracellular MDA-7/IL-24 in uninfected RCCs blocked the lethal effects of conditioned media. Infection of RCC tumors in one flank, with Ad.5/3-mda-7, suppressed growth of infected tumors and reduced the growth rate of uninfected tumors implanted on the opposite flank. The toxicity of the serotype 5/3 recombinant adenovirus to express MDA-7/IL-24 was enhanced by combined molecular or small molecule inhibition of MEK1/2 and PI3K; inhibition of mTOR, PI3K and MEK1/2; or use of the multi-kinase inhibitor sorafenib. In RCCs, combined inhibition of cytoprotective cell signaling pathways enhanced the MDA-7/IL-24-induction of CD95 activation, with greater mitochondrial dysfunction due to loss of MCL-1 and BCL-XL expression and tumor cell death. Treatment of RCC tumors in vivo with sorafenib also enhanced Ad.5/3-mda-7 toxicity and prolonged animal survival. Future combinations of these approaches hold promise for developing a more effective therapy for kidney cancer.
doi:10.4161/cbt.10.12.13497
PMCID: PMC3047088  PMID: 20948318
ERK; JNK; PI3K; AKT; MDA-7/IL-24; sorafenib; PERK; MAPK; interleukin; RCC; kidney
8.  The activation of c-Jun NH2-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells 
Background
c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression.
Methods
Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy.
Results
In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy.
Conclusions
These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression.
doi:10.1186/1756-9966-33-8
PMCID: PMC3901759  PMID: 24438216
c-Jun NH2-terminal kinase; Beclin 1; Apoptosis; LC3; Autophagy; Pancreatic cancer; Dihydroartemisinin
9.  Regulation of autophagy by ceramide-CD95-PERK signaling 
Autophagy  2008;4(7):929-931.
The manuscripts by Park et al.1 and Zhang et al.2 were initially planned as studies to understand the regulation of cell survival in transformed cells treated with sorafenib and vorinostat, and in primary hepatocytes treated with a bile acid+MEK1/2 inhibitor. In both cell systems we discovered that the toxicity of sorafenib and vorinostat or bile acid+MEK1/2 inhibitor exposure depended on the generation of ceramide and the ligand-independent activation of the CD95 death receptor, with subsequent activation of pro-caspase 8. We noted, however, in these systems that, in parallel with death receptor–induced activation of the extrinsic pathway, CD95 signaling also promoted increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2α, increased expression of ATG5, and increased processing of LC3 and vesicularization of a GFP-LC3 construct. The knockdown of ATG5 expression blocked GFP-LC3 vesicularization and enhanced cell killing. Thus ceramide-CD95 signaling promoted cell death via activation of pro-caspase 8 and cell survival via autophagy. PERK was shown to signal in a switch-hitting fashion; PERK promoted CD95-DISC formation and an eIF2α-dependent reduction in c-FLIP-s levels that were essential for cell killing to proceed, but in parallel it also promoted autophagy that was protective. The death receptor-induced apoptosis and autophagy occur proximal to the receptor rather than the mitochondrion, and the relative flow of death receptor signaling into either pathway may determine cell fate. Finally, death receptor induced apoptosis and autophagy could be potential targets for therapeutic intervention.
PMCID: PMC3292039  PMID: 18719356
Vorinostat; Sorafenib; bile acid; CD95; autophagy; ceramide; cell death; ASMase
10.  Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation 
BMC Cancer  2012;12:156.
Background
Glioblastoma multiforme (GBM) is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate.
Methods
The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia), a copper compound, on rat malignant glioma C6 cells was investigated.
Results
Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS) and increased activity of c-jun NH2-terminal kinase (JNK). The presence of 3-methyladenine (as selective autophagy inhibitor) increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine) decreased apoptosis, autophagy and JNK activity. Moreover, the JNK –specific inhibitor SP600125 prevented Cas III-ia-induced cell death.
Conclusions
Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS –dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma.
doi:10.1186/1471-2407-12-156
PMCID: PMC3404907  PMID: 22540380
Copper compounds; Autophagy; Apoptosis; ROS; NK; Casiopeinas
11.  Carnosol Induces ROS-Mediated Beclin1-Independent Autophagy and Apoptosis in Triple Negative Breast Cancer 
PLoS ONE  2014;9(10):e109630.
Background
In this study we investigated the in vitro and in vivo anticancer effect of carnosol, a naturally occurring polyphenol, in triple negative breast cancer.
Results
We found that carnosol significantly inhibited the viability and colony growth induced G2 arrest in the triple negative MDA-MB-231. Blockade of the cell cycle was associated with increased p21/WAF1 expression and downregulation of p27. Interestingly, carnosol was found to induce beclin1-independent autophagy and apoptosis in MDA-MB-231 cells. The coexistence of both events, autophagy and apoptosis, was confirmed by electron micrography. Induction of autophagy was found to be an early event, detected within 3 h post-treatment, which subsequently led to apoptosis. Carnosol treatment also caused a dose-dependent increase in the levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2). Moreover, we show that carnosol induced DNA damage, reduced the mitochondrial potential and triggered the activation of the intrinsic and extrinsic apoptotic pathway. Furthermore, we found that carnosol induced a dose-dependent generation of reactive oxygen species (ROS) and inhibition of ROS by tiron, a ROS scavenger, blocked the induction of autophagy and apoptosis and attenuated DNA damage. To our knowledge, this is the first report to identify the induction of autophagy by carnosol.
Conclusion
In conclusion our findings provide strong evidence that carnosol may be an alternative therapeutic candidate against the aggressive form of breast cancer and hence deserves more exploration.
doi:10.1371/journal.pone.0109630
PMCID: PMC4192122  PMID: 25299698
12.  Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine mda-7/IL-24 
Cancer research  2010;70(9):3667-3676.
mda-7/IL-24 is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties including induction of cancer-specific apoptosis. Adenoviral mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum stress response that is associated with ceramide production and autophagy in some cancer cells. Here we report that Ad.mda-7-induced ER stress and ceramide production triggers autophagy in human prostate cancer cells, but not normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, atg5 and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection but a switch to apoptosis occurs by 48 hr post-infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of anti-apoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer.
doi:10.1158/0008-5472.CAN-09-3647
PMCID: PMC2874885  PMID: 20406981
mda-7/IL-24; protective autophagy; apoptosis; Beclin-1; atg5
13.  The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells 
Cell death and differentiation  2008;15(9):1460-1471.
In mammalian cells, endoplasmic reticulum (ER) stress has recently been shown to induce autophagy and the induction requires the unfolded protein response (UPR) signaling pathways. However, little is known whether autophagy regulates UPR pathways and how specific UPR targets might control autophagy. Here, we demonstrated that whereas ER stress-induced autophagy was suppressed by PI3KC3 inhibitor 3-methyladenine (3-MA), wortmannin and knockdown of Beclin1 using siRNA, only 3-MA suppressed UPR activation. We discovered that the UPR regulator and ER chaperone GRP78/BiP is required for stress-induced autophagy. In cells where GRP78 expression was knockdown by siRNA, despite spontaneous activation of UPR pathways and LC3 conversion, autophagosome formation induced by ER stress as well as by nutrition starvation was inhibited. GRP78 knockdown did not disrupt PI3KC3-Beclin1 association. However, electron microscopic analysis of the intracellular organelle structure reveals that the ER, a putative membrane source for generating autophagosomal double membrane, was massively expanded and disorganized in cells where GRP78 was knockdown. ER expansion is known to be dependent on the UPR transcription factor XBP-1. Simultaneous knockdown of GRP78 and XBP-1 recovered normal levels of stress-induced autophagosome formation. Thus, these studies uncover 3-MA as an inhibitor of UPR activation and establish GRP78 as a novel obligatory component of autophagy in mammalian cells.
doi:10.1038/cdd.2008.81
PMCID: PMC2758056  PMID: 18551133
autophagy; GRP78; unfolded protein response
14.  Aristolochic Acid I Induced Autophagy Extenuates Cell Apoptosis via ERK 1/2 Pathway in Renal Tubular Epithelial Cells 
PLoS ONE  2012;7(1):e30312.
Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3–6 hrs after low dose of AAI (10 µM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition.
doi:10.1371/journal.pone.0030312
PMCID: PMC3262826  PMID: 22276178
15.  Evaluation of Wuchereria bancrofti GST as a Vaccine Candidate for Lymphatic Filariasis 
Background
Lymphatic filarial parasites survive within the lymphatic vessels for years despite the complex immune environment surrounding them. Parasites possibly accomplish this by adopting various immunomodulatory strategies, which include release of glutathione-S-transferases (GSTs) that counteract the oxidative free radicals produced by the host. Since GSTs produced by parasites appear to be critical for the survival of parasites in the host, several studies evaluated the potential of parasite GSTs as vaccine candidates especially against schistosomiasis, fascioliasis and Seteria cervi. However, vaccine potential of GSTs of lymphatic filarial parasites has not been evaluated before.
Methods/Principal Findings
In the present study, the GST gene was cloned from the third stage larval (L3) cDNA libraries of Wuchereria bancrofti, and recombinant GST (WbGST) was expressed and purified. Serum samples from individuals living in an endemic area were analyzed for their reactivity with rWbGST. These findings showed that sera from endemic normal individuals (EN) carry significant levels of anti-WbGST IgG antibodies compared to subjects who are microfilaraemic (Mf) or show symptoms of clinical pathology (CP). Isotype analysis of the anti-WbGST IgG antibodies showed a predominance of IgG1 and IgG3 antibodies in EN individuals. Subsequent functional analysis of the rWbGST showed that the rWbGST protein retained the enzymatic activity of GST and the antibodies in EN sera could inhibit this enzymatic activity. Similar results were obtained when anti-rWbGST antibodies raised in mice were used in the neutralization assay. Brugia malayi GST and WbGST show significant sequence similarity. Therefore, to evaluate the vaccine potential of rWbGST, we used B. malayi L3 as challenge parasites. Vaccine potential of rWbGST was initially evaluated by confirming the role of human and mice WbGST antibodies in an antibody dependent cellular cytotoxicity (ADCC) assay. Subsequent vaccination studies in a jird model showed that approximately 61% protection could be achieved against a B. malayi L3 challenge infection in jirds immunized with rWbGST.
Conclusions
Results of this study show that rWbGST is a potential vaccine candidate against lymphatic filariasis. Nearly 61% protection can be achieved against a B. malayi challenge infection in a jird model. The study also showed that the WbGST protein retained the enzymatic activity of GST and this enzymatic activity appears to be critical for the survival of the parasite in the host.
Author Summary
Lymphatic parasites survive for years in a complex immune environment by adopting various strategies of immune modulation, which includes counteracting the oxidative free radical damage caused by the host. We now know that the filarial parasites secrete antioxidant enzymes. Among these, the glutathione-S-transferases (GSTs) have the potent ability to effectively neutralize cytotoxic products arising from reactive oxygen species (ROS) that attack cell membranes. Thus, GSTs have the potential to protect the parasite against host oxidative stress. GSTs of several helminthes, including schistosomes, fasciola and the filarial parasite Seteria cervi, are also involved in inducing protective immunity in the host. The schistosome 28 kDa GST has been successfully developed into a vaccine and is currently in Phase II clinical trials. Thus, GST appears to be a potential target for vaccine development. Therefore, in the present study, we cloned W. bancrofti GST, and expressed and purified the recombinant protein. Immunization and challenge experiments showed that 61% of protection could be achieved against B. malayi infections in a jird model. In vitro studies confirm that the anti-WbGST antibodies participate in the killing of B. malayi L3 through an ADCC mechanism and enzymatic activity of WbGST appears to be critical for this larvicidal function.
doi:10.1371/journal.pntd.0000457
PMCID: PMC2685978  PMID: 19513102
16.  Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress 
Oncotarget  2014;5(6):1526-1537.
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.
PMCID: PMC4039229  PMID: 24681637
autophagy; reactive oxygen species; mitoquinone; breast cancer
17.  Adenoviral ER-targeted mda-7/IL-24 vector enhances human cancer cell killing 
Molecular cancer therapeutics  2008;7(8):2528-2535.
We developed several adenoviral vectors designed to target MDA-7 expression to different subcellular compartments (ie, ER, mitochondria, nucleus, and cytosol) and evaluated their ability to enhance apoptosis. Adenoviral ER-targeted mda-7/IL-24 vector (Ad-ER-mda7) selectively and effectively inhibited the growth and proliferation of lung (A549 and H1299) and esophageal (Seg1 and Bic1) cancer cells by enhancing cell killing. Both Ad-mda7 and Ad-ER-mda7 activated a novel pathway of ER stress-induced apoptosis characterized by unregulated expression of phosphorylated JNK (p-JNK), phosphorylated cJun (p-cJun), and phosphorylated RNA-dependent protein kinase (p-PKR). Caspase-4 activation mediated Ad-mda7- and Ad-ER-mda7-induced cell death. In addition, Ad-mda7- and Ad-ER-mda7-mediated growth inhibition correlated with activation of ER molecular markers PKR and JNK both in vitro (in Ad-mda7- or Ad-ER-mda7-treated lung cancer cells) and in vivo. These findings suggest that vectors targeting the endoplasmic reticulum (Ad-ER-mda7) may be more effective in cancer gene therapy possibly through more effective induction or ER stress pathways.
doi:10.1158/1535-7163.MCT-08-0083
PMCID: PMC2597048  PMID: 18723497
Apoptosis; MDA-7; adenovirus; gene therapy
18.  Simultaneous Induction of Non-Canonical Autophagy and Apoptosis in Cancer Cells by ROS-Dependent ERK and JNK Activation 
PLoS ONE  2010;5(4):e9996.
Background
Chemotherapy-induced reduction in tumor load is a function of apoptotic cell death, orchestrated by intracellular caspases. However, the effectiveness of these therapies is compromised by mutations affecting specific genes, controlling and/or regulating apoptotic signaling. Therefore, it is desirable to identify novel pathways of cell death, which could function in tandem with or in the absence of efficient apoptotic machinery. In this regard, recent evidence supports the existence of a novel cell death pathway termed autophagy, which is activated upon growth factor deprivation or exposure to genotoxic compounds. The functional relevance of this pathway in terms of its ability to serve as a stress response or a truly death effector mechanism is still in question; however, reports indicate that autophagy is a specialized form of cell death under certain conditions.
Methodology/Principal Findings
We report here the simultaneous induction of non-canonical autophagy and apoptosis in human cancer cells upon exposure to a small molecule compound that triggers intracellular hydrogen peroxide (H2O2) production. Whereas, silencing of beclin1 neither inhibited the hallmarks of autophagy nor the induction of cell death, Atg 7 or Ulk1 knockdown significantly abrogated drug-induced H2O2-mediated autophagy. Furthermore, we provide evidence that activated extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) are upstream effectors controlling both autophagy and apoptosis in response to elevated intracellular H2O2. Interestingly, inhibition of JNK activity reversed the increase in Atg7 expression in this system, thus indicating that JNK may regulate autophagy by activating Atg7. Of note, the small molecule compound triggered autophagy and apoptosis in primary cells derived from patients with lymphoma, but not in non-transformed cells.
Conclusions/Significance
Considering that loss of tumor suppressor beclin 1 is associated with neoplasia, the ability of this small molecule compound to engage both autophagic and apoptotic machineries via ROS production and subsequent activation of ERK and JNK could have potential translational implications.
doi:10.1371/journal.pone.0009996
PMCID: PMC2848860  PMID: 20368806
19.  Enhanced selenium effect on growth arrest by BiP/GRP78 knockdown in p53-null human prostate cancer cells 
Oncogene  2006;25(4):546-554.
Redox modification of thiol/disulfide interchange in proteins by selenium could lead to protein unfolding. When this occurs in the endoplasmic reticulum (ER), a process known as unfolded protein response (UPR) is orchestrated for survival through activation of PERK–eIF2α(PERK: double-stranded RNA-activated protein kinase-like ER kinase; eIF2α: eucaryotic initiation factor 2α), ATFα(ATFα: activating transcription factor 6) and inositol requiring 1 (IRE1)-x-box-binding protein 1 (XBP1) signalings. All three UPR transducer pathways were upregulated very rapidly when PC-3 cells were exposed to selenium. These changes were accompanied by increased expression of UPR target genes, including immunoglobulin heavy chain-binding protein/glucose-regulated protein, 78 kDa and CCAAT/enhancer binding protein-homologous protein/growth arrest- and DNA damage- inducible gene (CHOP/GADD153). Induction of BiP/GRP78, an ER-resident chaperone, is part of the damage control mechanism, while CHOP/GADD153 is a transcription factor associated with growth arrest and apoptosis in the event of prolonged ER stress. Knocking down BiP/GRP78 induction by small interference RNA produced a differential response of the three transducers to selenium, suggesting that the signaling intensity of each transducer could be fine-tuned depending on BiP/GRP78 availability. In the presence of selenium, CHOP/GADD153 expression was raised even higher by BiP/GRP78 knockdown. Under this condition, the selenium effect on wild-type p53-activated fragment p21 (p21WAF), cyclin-dependent kinase (CDK)1 and CDK2 was also magnified in a manner consistent with enhanced cell growth arrest. Additional experiments with CHOP/GADD153 siRNA knockdown strongly suggested that CHOP/GADD153 may play a positive role in upregulating the expression of p21WAF in a p53-independent manner (PC-3 cells are p53 null). Collectively, the above findings support the idea that UPR could be an important mechanism in mediating the anticancer activity of selenium.
doi:10.1038/sj.onc.1209071
PMCID: PMC2424019  PMID: 16205645
selenium; unfolded protein response; BiP/GRP78 knockdown; ER stress signalings
20.  Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy 
Cell Death and Differentiation  2010;18(2):350-361.
The sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) have recently been implicated in autophagy. In this study, we report that depletion of sphingosine-1-phosphate phosphohydrolase-1 (SPP1), an endoplasmic reticulum (ER)-resident enzyme that specifically dephosphorylates S1P, induced autophagy. Although the mammalian target of rapamycin and class III phosphoinositide 3-kinase/Beclin-1 pathways were not involved and this autophagy was p53 independent, C/EBP homologous protein, BiP, and phospho-eucaryotic translation initiation factor-2α, and cleavage of procaspases 2 and 4, downstream targets of ER stress, were increased after SPP1 depletion. Autophagy was suppressed by depletion of protein kinase regulated by RNA-like ER kinase (PERK), inositol-requiring transmembrane kinase/endonuclease-1α, or activating transcription factor 6, three sensors of the unfolded protein response (UPR) to ER stress. Autophagy triggered by downregulation of SPP1 did not lead to apoptosis but rather stimulated, in a PERK dependent manner, the survival signal Akt, whose inhibition then sensitized cells to apoptosis. Although depletion of SPP1 increased intracellular levels of S1P and its secretion, activation of cell surface S1P receptors did not induce autophagy. Nevertheless, increases in intracellular pools of S1P, but not dihydro-S1P, induced autophagy and ER stress. Thus, SPP1, by regulating intracellular S1P homeostasis, can control the UPR and ER stress-induced autophagy.
doi:10.1038/cdd.2010.104
PMCID: PMC3131882  PMID: 20798685
sphingosine-1-phosphate phosphatase-1; autophagy; ER stress; apoptosis; Akt
21.  HYPOXIA INDUCES AUTOPHAGIC CELL DEATH IN APOPTOSIS-COMPETENT CELLS THROUGH A MECHANISM INVOLVING BNIP3 
Autophagy  2007;4(2):195-204.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosis-resistant. Autophagy (cellular “self digestion”) has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O2). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 over-expression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.
PMCID: PMC3164855  PMID: 18059169 CAMSID: cams1903
autophagy; hypoxia; autophagic cell death; BNIP3; cancer
22.  Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation 
Cell Death & Disease  2013;4(5):e638-.
Cancer cell resistance against chemotherapy is still a heavy burden to improve anticancer treatments. Autophagy activation and the development of hypoxic regions within the tumors are known to promote cancer cell resistance. Therefore, we sought to evaluate the role of autophagy and hypoxia on the taxol-induced apoptosis in MDA-MB-231 breast cancer cells. The results showed that taxol induced apoptosis after 16 h of incubation, and that hypoxia protected MDA-MB-231 cells from taxol-induced apoptosis. In parallel, taxol induced autophagy activation already after 2 h of incubation both under normoxia and hypoxia. Autophagy activation after taxol exposure was shown to be a protective mechanism against taxol-induced cell death both under normoxia and hypoxia. However, at longer incubation time, the autophagic process reached a saturation point under normoxia leading to cell death, whereas under hypoxia, autophagy flow still correctly took place allowing the cells to survive. Autophagy induction is induced after taxol exposure via mechanistic target of rapamycin (mTOR) inhibition, which is more important in cells exposed to hypoxia. Taxol also induced c-Jun N-terminal kinase (JNK) activation and phosphorylation of its substrates B-cell CLL/lymphoma 2 (Bcl2) and BCL2-like 1 (BclXL) under normoxia and hypoxia very early after taxol exposure. Bcl2 and BclXL phosphorylation was decreased more importantly under hypoxia after long incubation time. The role of JNK in autophagy and apoptosis induction was studied using siRNAs. The results showed that JNK activation promotes resistance against taxol-induced apoptosis under normoxia and hypoxia without being involved in induction of autophagy. In conclusion, the resistance against taxol-induced cell death observed under hypoxia can be explained by a more effective autophagic flow activated via the classical mTOR pathway and by a mechanism involving JNK, which could be dependent on Bcl2 and BclXL phosphorylation but independent of JNK-induced autophagy activation.
doi:10.1038/cddis.2013.167
PMCID: PMC3674374  PMID: 23681233
chemoresistance; breast cancer; hypoxia; apoptosis; autophagy; taxol
23.  Autophagy Fails to Alter Withaferin A-Mediated Lethality in Human Breast Cancer Cells 
Current cancer drug targets  2013;13(6):640-650.
We have shown previously that withaferin A (WA), which is a highly promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits viability of cultured breast cancer cells in association with reactive oxygen species (ROS)-dependent apoptosis induction. Because ROS production is implicated in induction of autophagy, which is an evolutionary conserved process for bulk degradation of cellular components including organelles (e.g., mitochondria) and considered a valid cancer chemotherapeutic target, we questioned whether WA treatment resulted in autophagy induction. Indeed exposure of MDA-MB-231 and MCF-7 human breast cancer cells as well as a spontaneously immortalized and non-tumorigenic normal human mammary epithelial cell line (MCF-10A) to pharmacologic concentration of WA resulted in autophagy as evidenced by transmission electron microscopy, cleavage of microtubule-associated protein 1 light chain 3 isoform B (LC3B-II), and/or acridine orange staining. Inhibition of MDA-MB-231 xenograft growth in vivo by WA administration was also associated with a significant increase in level of total LC3 protein in the tumor. However, WA-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was not compromised either by pharmacological suppression of autophagy using 3-methyl adenine or genetic repression of autophagy by RNA interference of Atg5, a critical component of the autophagic machinery. Finally, Beclin1 was dispensable for WA-mediated autophagy as well as inhibition of MDA-MB-231 cell viability. Based on these observations we conclude that autophagy induction fails to have any meaningful impact on WA-mediated lethality in breast cancer cells, which may be a therapeutic advantage because autophagy serves to protect against apoptosis by several anticancer agents.
PMCID: PMC3723758  PMID: 23607597
Withaferin A; Breast Cancer; MDA-MB-231; MCF-7; Autophagy; Atg5; Beclin1
24.  Activation of Nox4 in the Endoplasmic Reticulum Promotes Cardiomyocyte Autophagy and Survival during Energy Stress through the PERK/eIF-2α/ATF4 pathway 
Circulation research  2013;113(11):1253-1264.
Rationale
Autophagy is an essential survival mechanism during energy stress in the heart. Oxidative stress is activated by energy stress, but its role in mediating autophagy is poorly understood. Nox4 is an enzyme that generates reactive oxygen species (ROS) at intracellular membranes. Whether Nox4 acts as a sensor of energy stress to mediate activation of autophagy is unknown.
Objective
We investigated whether Nox4 is involved in the regulation of autophagy and cell survival during energy stress in cardiomyocytes (CMs).
Methods and Results
Production of ROS in CMs was increased during glucose deprivation (GD) in a Nox4-dependent manner. Protein levels and the ROS-producing activity of Nox4 were increased in the endoplasmic reticulum (ER), but not in mitochondria, in response to GD. Selective knockdown of Nox4, but not Nox2, or selective reduction of ROS in the ER with ER-targeted catalase, but not mitochondria-targeted perioxiredoxin3, abrogated GD-induced autophagy. Nox4 promoted autophagy during GD through activation of the PKR-like ER kinase (PERK) pathway by suppression of prolyl hydroxylase4 (PHD4). The decrease in cell survival during GD in the presence of Nox4 knockdown was rescued by reactivation of autophagy by Atg7 overexpression, indicating that the effect of Nox4 upon cell survival is critically mediated through regulation of autophagy. Nox4 was activated during fasting and prolonged ischemia in the mouse heart, where Nox4 is also required for autophagy activation and cardioprotection.
Conclusions
Nox4 critically mediates autophagy in response to energy stress in CMs by eliciting ROS in the ER and stimulating the PERK signaling pathway.
doi:10.1161/CIRCRESAHA.113.301787
PMCID: PMC3937770  PMID: 24081881
Nox4; autophagy; fasting; ROS; energy stress
25.  Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms 
Molecular Cancer  2013;12:171.
Background
Autophagy is an indispensable lysosomal self-digestion process involved in the degradation of aggregated proteins and damaged organelles. Autophagy is associated with the several pathological processes, including cancer. Cancer stem cells (CSCs) play significant roles in cancer initiation, progression and drug resistance. Recent studies have demonstrated the antitumor activities of plant-derived chemopreventive agent rottlerin (Rott). However, the molecular mechanism by which Rott induces autophagy in breast CSCs has not been investigated.
Results
The objectives of this study were to examine the molecular mechanism by which Rott induces autophagy which leads to apoptosis in breast CSCs. Treatment of breast CSCs with Rott for 24 h resulted in a concentration dependent induction of autophagy, followed by apoptosis as measured by flow cytometry. Electron microscopy confirmed the presence of autophagosomes in Rott treated breast CSCs. Western blot analysis showed that Rott treatment increased the expression of LC3, Beclin-1 and Atg12 that are accumulated during autophagy. Prolonged exposure of breast CSCs to Rott caused apoptosis which was associated with the suppression of phosphorylated Akt and mTOR, upregulation of phosphorylated AMPK, and downregulation of anti-apoptosis Bcl-2, Bcl-XL, XIAP and cIAP-1. Knock-down of Atg7 or Beclin-1 by shRNA inhibited Rott-induced autophagy at 24 h. Our study also demonstrates that pre-treatment of breast CSCs with autophagosome inhibitors 3-methyladenine and Bafilomycin, as well as protein synthesis inhibitor cycloheximide inhibited Rott-induced autophagy and apoptosis. Rott induces autophagy via extensive cytoplasmic vacuolization in breast CSCs. Molecular docking results between C2-domain of protein kinase C-delta and Rott indicated that both hydrogen bonding and hydrophobic interactions contributed significantly for ligand binding with minimum binding affinity of ≈ 7.5 Kcal/mol. Although, autophagy inhibitors suppress the formation of cytoplasmic vacuolization and autophagy in breast CSCs, the potency of Rott to induce autophagy and apoptosis might be based on its capability to activate several pathways such as AMPK and proteasome inhibition.
Conclusions
A better understanding of the relationship between autophagy and apoptosis would eventually allow us to discover novel drugs for the treatment of breast cancer by eliminating CSCs.
doi:10.1186/1476-4598-12-171
PMCID: PMC3914415  PMID: 24359639
3-methyladenine (3-MA); Autophagy; Bafilomycin (Baf); Beclin-1; Cycloheximide (CHX); LC3; AMPK; Atg12

Results 1-25 (1022224)