Search tips
Search criteria

Results 1-25 (326264)

Clipboard (0)

Related Articles

1.  Structure and Sodium Channel Activity of an Excitatory I1-Superfamily Conotoxin † 
Biochemistry  2007;46(35):9929-9940.
Conotoxin ι-RXIA, from the fish-hunting species Conus radiatus, is a member of the recently characterized I1-superfamily, which contains eight cysteine residues arranged in a −C-C-CC-CC-C-C- pattern. ι-RXIA (formerly designated r11a) is one of three characterized I1 peptides in which the third last residue is post-translationally isomerized to the d- configuration. Naturally occurring ι-RXIA with d-Phe44 is significantly more active as an excitotoxin than the l-Phe analogue both in vitro and in vivo. We have determined the solution structures of both forms by NMR spectroscopy, the first for an I1-superfamily member. The disulfide connectivities were determined from structure calculations and confirmed chemically as 5-19, 12-22, 18-27, and 21-38, suggesting that ι-RXIA has an ICK structural motif with one additional disulfide (21-38). Indeed, apart from the first few residues, the structure is well defined up to around residue 35 and does adopt an ICK structure. The C-terminal region, including Phe44, is disordered. Comparison of the d-Phe44 and l-Phe44 forms indicates that the switch from one enantiomer to the other has very little effect on the structure, even though it is clearly important for receptor interaction based on activity data. Finally, we identify the target of ι-RXIA as a voltage-gated sodium channel; ι-RXIA is an agonist, shifting the voltage dependence of activation of mouse NaV1.6 expressed in Xenopus oocytes to more hyperpolarized potentials. Thus, there is a convergence of structure and function in ι-RXIA, as its disulfide pairing and structure resemble those of funnel web spider toxins that also target sodium channels.
PMCID: PMC2566796  PMID: 17696362
2.  Single-cell analysis of sodium channel expression in dorsal root ganglion neurons 
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 µm) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 µm) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, Nav1.7) and TTX-R (Nav1.8, Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, Nav1.9) sensory neurons.
PMCID: PMC3005531  PMID: 20816971
Sodium channel; dorsal root ganglia; single-cell RT-PCR; Necl-1; NF200; peripherin
3.  Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy 
Molecular Pain  2009;5:14.
Neuropathic pain caused by peripheral nerve injury is a chronic disorder that represents a significant clinical challenge because the pathological mechanisms have not been fully elucidated. Several studies have suggested the involvement of various sodium channels, including tetrodotoxin-resistant NaV1.8, in affected dorsal root ganglion (DRG) neurons. We have hypothesized that altered local expression of NaV1.8 in the peripheral axons of DRG neurons could facilitate nociceptive signal generation and propagation after neuropathic injury.
After unilateral sciatic nerve entrapment injury in rats, compound action potential amplitudes were increased in both myelinated and unmyelinated fibers of the ipsilateral sciatic nerve. Tetrodotoxin resistance of both fiber populations and sciatic nerve NaV1.8 immunoreactivity were also increased. Further analysis of NaV1.8 distribution revealed that immunoreactivity and mRNA levels were decreased and unaffected, respectively, in the ipsilateral L4 and L5 DRG; however sciatic nerve NaV1.8 mRNA showed nearly an 11-fold ipsilateral increase. Nav1.8 mRNA observed in the sciatic nerve was likely of axonal origin since it was not detected in non-neuronal cells cultured from nerve tissue. Absence of changes in NaV1.8 mRNA polyadenylation suggests that increased mRNA stability was not responsible for the selective peripheral mRNA increase. Furthermore, mRNA levels of NaV1.3, NaV1.5, NaV1.6, NaV1.7, and NaV1.9 were not significantly different between ipsilateral and contralateral nerves. We therefore propose that selective NaV1.8 mRNA axonal transport and local up-regulation could contribute to the hyperexcitability of peripheral nerves in some neuropathic pain states.
Cuff entrapment injury resulted in significantly elevated axonal excitability and increased NaV1.8 immunoreactivity in rat sciatic nerves. The concomitant axonal accumulation of NaV1.8 mRNA may play a role in the pathogenesis of this model of neuropathic pain.
PMCID: PMC2667430  PMID: 19320998
4.  Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation 
Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation.
Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats.
Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain.
Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
PMCID: PMC4007624  PMID: 24606981
Aβ-fibers; Allodynia; Complete Freund’s adjuvant; Electrophysiology; Sodium channel blocker
5.  Spontaneous Excitation Patterns Computed for Axons with Injury-like Impairments of Sodium Channels and Na/K Pumps 
PLoS Computational Biology  2012;8(9):e1002664.
In injured neurons, “leaky” voltage-gated sodium channels (Nav) underlie dysfunctional excitability that ranges from spontaneous subthreshold oscillations (STO), to ectopic (sometimes paroxysmal) excitation, to depolarizing block. In recombinant systems, mechanical injury to Nav1.6-rich membranes causes cytoplasmic Na+-loading and “Nav-CLS”, i.e., coupled left-(hyperpolarizing)-shift of Nav activation and availability. Metabolic injury of hippocampal neurons (epileptic discharge) results in comparable impairment: left-shifted activation and availability and hence left-shifted INa-window. A recent computation study revealed that CLS-based INa-window left-shift dissipates ion gradients and impairs excitability. Here, via dynamical analyses, we focus on sustained excitability patterns in mildly damaged nodes, in particular with more realistic Gaussian-distributed Nav-CLS to mimic “smeared” injury intensity. Since our interest is axons that might survive injury, pumps (sine qua non for live axons) are included. In some simulations, pump efficacy and system volumes are varied. Impacts of current noise inputs are also characterized. The diverse modes of spontaneous rhythmic activity evident in these scenarios are studied using bifurcation analysis. For “mild CLS injury”, a prominent feature is slow pump/leak-mediated EIon oscillations. These slow oscillations yield dynamic firing thresholds that underlie complex voltage STO and bursting behaviors. Thus, Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns. This minimalist “device” could have physiological analogs. At first nodes of Ranvier and at nociceptors, e.g., localized lipid-tuning that modulated Nav midpoints could produce Nav-CLS, as could co-expression of appropriately differing Nav isoforms.
Author Summary
Nerve cells damaged by trauma, stroke, epilepsy, inflammatory conditions etc, have chronically leaky sodium channels that eventually kill. The usual job of sodium channels is to make brief voltage signals –action potentials– for long distance propagation. After sodium channels open to generate action potentials, sodium pumps work harder to re-establish the intracellular/extracellular sodium imbalance that is, literally, the neuron's battery for firing action potentials. Wherever tissue damage renders membranes overly fluid, we hypothesize, sodium channels become chronically leaky. Our experimental findings justify this. In fluidized membranes, sodium channel voltage sensors respond too easily, letting channels spend too much time open. Channels leak, pumps respond. By mathematical modeling, we show that in damaged channel-rich membranes the continual pump/leak counterplay would trigger the kinds of bizarre intermittent action potential bursts typical of injured neurons. Arising ectopically from injury regions, such neuropathic firing is unrelated to events in the external world. Drugs that can silence these deleterious electrical barrages without blocking healthy action potentials are needed. If fluidized membranes house the problematic leaky sodium channels, then drug side effects could be diminished by using drugs that accumulate most avidly into fluidized membranes, and that bind their targets with highest affinity there.
PMCID: PMC3441427  PMID: 23028273
6.  An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier 
Neurons are highly polarized cells with functionally distinct axonal and somatodendritic compartments. Voltage-gated sodium channels Nav1.2 and Nav1.6 are highly enriched at axon initial segments (AIS) and nodes of Ranvier, where they are necessary for generation and propagation of action potentials. Previous studies using reporter proteins in unmyelinated cultured neurons suggest that an ankyrinG-binding motif within intracellular loop 2 (L2) of sodium channels is sufficient for targeting these channels to the AIS, but mechanisms of channel targeting to nodes remain poorly understood. Using a CD4-Nav1.2/L2 reporter protein in rat dorsal root ganglion neuron-Schwann cell myelinating co-cultures, we show that the ankyrinG-binding motif is sufficient for protein targeting to nodes of Ranvier. However, reporter proteins cannot capture the complexity of full-length channels. To determine how native, full-length sodium channels are clustered in axons, and to show the feasibility of studying these channels in vivo, we constructed fluorescently-tagged and functional mouse Nav1.6 channels for in vivo analysis using in utero brain electroporation. We show here that wild-type tagged-Nav1.6 channels are efficiently clustered at nodes and AIS in vivo. Furthermore, we show that mutation of a single invariant glutamic acid residue (E1100) within the ankyrinG-binding motif blocked Nav1.6 targeting in neurons both in vitro and in vivo. Additionally, we show that caseine kinase phosphorylation sites within this motif, while not essential for targeting, can modulate clustering at the AIS. Thus, the ankyrinG- binding motif is both necessary and sufficient for the clustering of sodium channels at nodes of Ranvier and the AIS.
PMCID: PMC3413458  PMID: 22623668
Ion Channel; Axon Initial Segment; Nodes of Ranvier; cytoskeleton; in utero electroporation
7.  Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons 
Molecular Pain  2011;7:32.
Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons).
We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs.
We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system.
Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP.
PMCID: PMC3101130  PMID: 21569247
8.  Localization of Sodium Channel Subtypes in Mouse Ventricular Myocytes Using Quantitative Immunocytochemistry 
Journal of molecular and cellular cardiology  2013;64:10.1016/j.yjmcc.2013.08.004.
Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
PMCID: PMC3851329  PMID: 23982034
9.  Association between Tetrodotoxin Resistant Channels and Lipid Rafts Regulates Sensory Neuron Excitability 
PLoS ONE  2012;7(8):e40079.
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. NaV1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. NaV1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for NaV1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated NaV1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that NaV1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that NaV1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and NaV1.8. By calcium imaging we demonstrated that the lack of association between rafts and NaV1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of NaV1.8 in nociceptors and highlight the importance of the association between NaV1.8 and lipid rafts in the control of nociceptor excitability.
PMCID: PMC3411591  PMID: 22870192
10.  Left-Shifted Nav Channels in Injured Bilayer: Primary Targets for Neuroprotective Nav Antagonists? 
Mechanical, ischemic, and inflammatory injuries to voltage-gated sodium channel (Nav)-rich membranes of axon initial segments and nodes of Ranvier render Nav channels dangerously leaky. By what means? The behavior of recombinant Nav1.6 (Wang et al., 2009) leads us to postulate that, in neuropathologic conditions, structural degradation of axolemmal bilayer fosters chronically left-shifted Nav channel operation, resulting in ENa rundown. This “sick excitable cell Nav-leak” would encompass left-shifted fast- and slow-mode based persistent INa (i.e., Iwindow and slow-inactivating INa). Bilayer-damage-induced electrophysiological dysfunctions of native-Nav channels, and effects on inhibitors on those channels, should, we suggest, be studied in myelinated axons, exploiting INa(V,t) hysteresis data from sawtooth ramp clamp. We hypothesize that (like dihydropyridines for Ca channels), protective lipophilic Nav antagonists would partition more avidly into disorderly bilayers than into the well-packed bilayers characteristic of undamaged, healthy plasma membrane. Whereas inhibitors using aqueous routes would access all Navs equally, differential partitioning into “sick bilayer” would co-localize lipophilic antagonists with “sick-Nav channels,” allowing for more specific targeting of impaired cells. Molecular fine-tuning of Nav antagonists to favor more avid partitioning into damaged than into intact bilayers could reduce side effects. In potentially salvageable neurons of traumatic and/or ischemic penumbras, in inflammatory neuropathies, in muscular dystrophy, in myocytes of cardiac infarct borders, Nav-leak driven excitotoxicity overwhelms cellular repair mechanisms. Precision-tuning of a lipophilic Nav antagonist for greatest efficacy in mildly damaged membranes could render it suitable for the prolonged continuous administration needed to allow for the remodeling of the excitable membranes, and thus functional recovery.
PMCID: PMC3284691  PMID: 22375118
traumatic brain injury; spinal; riluzole; ranolazine; simulation; modeling
Neuroscience  2008;155(3):797-808.
The expression of voltage-gated sodium channels is regulated at multiple levels, and in this study we addressed the potential for alternative splicing of the Nav1.2, Nav1.3, Nav1.6 and Nav1.7 mRNAs. We isolated novel mRNA isoforms of Nav1.2 and Nav1.3 from adult mouse and rat dorsal root ganglia (DRG), Nav1.3 and Nav1.7 from adult mouse brain, and Nav1.7 from neonatal rat brain. These alternatively spliced isoforms introduce an additional exon (Nav1.2 exon 17A and topologically equivalent Nav1.7 exon 16A) or exon pair (Nav1.3 exons 17A and 17B) that contain an in-frame stop codon and result in predicted two-domain, truncated proteins. The mouse and rat orthologous exon sequences are highly conserved (94-100% identities), as are the paralogous Nav1.2 and Nav1.3 exons (93% identity in mouse) to which the Nav1.7 exon has only 60% identity. Previously, Nav1.3 mRNA has been shown to be upregulated in rat DRG following peripheral nerve injury, unlike the downregulation of all other sodium channel transcripts. Here we show that the expression of Nav1.3 mRNA containing exons 17A and 17B is unchanged in mouse following peripheral nerve injury (axotomy), whereas total Nav1.3 mRNA expression is upregulated by 33% (P=0.003), suggesting differential regulation of the alternatively spliced transcripts. The alternatively spliced rodent exon sequences are highly conserved in both the human and chicken genomes, with 77-89% and 72-76% identities to mouse, respectively. The widespread conservation of these sequences strongly suggests an additional level of regulation in the expression of these channels, that is also tissue-specific.
PMCID: PMC2726981  PMID: 18675520
DRG; brain; alternative splicing; Scn2a; Scn3a; Scn9a
12.  Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. 
The origin of the action potential in the cochlea has been a long-standing puzzle. Since voltage-dependent Na+ (Nav) channels are essential for action potential generation, we investigated the detailed distribution of Nav1.6 and Nav1.2 in the cochlear ganglion, cochlear nerve, and organ of Corti, including the Type I and Type II ganglion cells. In most Type I ganglion cells, Nav1.6 was present at the first nodes flanking the myelinated bipolar cell body and at subsequent nodes of Ranvier. In the other ganglion cells, including Type II, Nav1.6 clustered in the initial segments of both of the axons that flank the unmyelinated bipolar ganglion cell bodies. In the organ of Corti, Nav1.6 was localized in the short segments of the afferent axons and their sensory endings beneath each inner hair cell. Surprisingly, the outer spiral fibers and their sensory endings were well labeled beneath the outer hair cells over their entire trajectory. In contrast, Nav1.2 in the organ of Corti was localized to the unmyelinated efferent axons and their endings on the inner and outer hair cells. We present a computational model illustrating the potential role of the Nav channel distribution described here. In the deaf mutant quivering mouse, the localization of Nav1.6 was disrupted in the sensory epithelium and ganglion. Taken together, these results suggest that distinct Nav channels generate and regenerate action potentials at multiple sites along the cochlear ganglion cells and nerve fibers, including the afferent endings, ganglionic initial segments, and nodes of Ranvier.
PMCID: PMC1378182  PMID: 16033895
Axon initial segment; Nav1.6; Nav1.2; Spiral ganglion; Cochlear nucleus; Hair cells; Quivering mutation; Computational model
13.  Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn 
Molecular Pain  2012;8:82.
Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn.
Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF), exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals.
The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.
PMCID: PMC3517774  PMID: 23134641
Dorsal root ganglia; Dorsal horn; Intraepidermal nerve fiber; Pain pathway; Sodium channel; Spinal cord
14.  Inactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization 
Molecular Pain  2007;3:12.
Small neurons of the dorsal root ganglion (DRG) express five of the nine known voltage-gated sodium channels. Each channel has unique biophysical characteristics which determine how it contributes to the generation of action potentials (AP). To better understand how AP amplitude is maintained in nociceptive DRG neurons and their centrally projecting axons, which are subjected to depolarization within the dorsal horn, we investigated the dependence of AP amplitude on membrane potential, and how that dependence is altered by the presence or absence of sodium channel Nav1.8.
In small neurons cultured from wild type (WT) adult mouse DRG, AP amplitude decreases as the membrane potential is depolarized from -90 mV to -30 mV. The decrease in amplitude is best fit by two Boltzmann equations, having V1/2 values of -73 and -37 mV. These values are similar to the V1/2 values for steady-state fast inactivation of tetrodotoxin-sensitive (TTX-s) sodium channels, and the tetrodotoxin-resistant (TTX-r) Nav1.8 sodium channel, respectively. Addition of TTX eliminates the more hyperpolarized V1/2 component and leads to increasing AP amplitude for holding potentials of -90 to -60 mV. This increase is substantially reduced by the addition of potassium channel blockers. In neurons from Nav1.8(-/-) mice, the voltage-dependent decrease in AP amplitude is characterized by a single Boltzmann equation with a V1/2 value of -55 mV, suggesting a shift in the steady-state fast inactivation properties of TTX-s sodium channels. Transfection of Nav1.8(-/-) DRG neurons with DNA encoding Nav1.8 results in a membrane potential-dependent decrease in AP amplitude that recapitulates WT properties.
We conclude that the presence of Nav1.8 allows AP amplitude to be maintained in DRG neurons and their centrally projecting axons even when depolarized within the dorsal horn.
PMCID: PMC1892009  PMID: 17540018
15.  Reduced expression and activation of voltage-gated sodium channels contributes to blunted baroreflex sensitivity in heart failure rats 
Journal of neuroscience research  2010;88(15):3337-3349.
Voltage-gated sodium (Nav) channels are responsible for initiation and propagation of action potential in the neurons. To explore the mechanisms for chronic heart failure (CHF)-induced baroreflex dysfunction, we measured the expression and current density of Nav channel subunits (Nav1.7, Nav1.8, and Nav1.9) in the aortic baroreceptor neurons and investigated the role of Nav channels on aortic baroreceptor neuron excitability and baroreflex sensitivity in sham and CHF rats. CHF was induced by left coronary artery ligation. The development of CHF (6–8 weeks after the coronary ligation) was confirmed by hemodynamic and morphological characteristics. Immunofluorescent data indicated that Nav1.7 was expressed in A-type (myelinated) and C-type (unmyelinated) nodose neurons but Nav1.8 and Nav1.9 were expressed only in C-type nodose neurons. Real-time RT-PCR and western blot data showed that CHF reduced mRNA and protein expression levels of Nav channels in nodose neurons. In addition, using the whole cell patch-clamp technique, we found that Nav current density and cell excitability of the aortic baroreceptor neurons were lower in CHF rats than that in sham rats. Aortic baroreflex sensitivity was blunted in anesthetized CHF rats, compared with that in sham rats. Furthermore, Nav channel activator (rATX II, 100 nM) significantly enhanced Nav current density and cell excitability of aortic baroreceptor neurons and improved aortic baroreflex sensitivity in CHF rats. These results suggest that reduced expression and activation of the Nav channels is involved in the attenuation of baroreceptor neuron excitability, which subsequently contributes to the impairment of baroreflex in CHF state.
PMCID: PMC2953570  PMID: 20857502
Aortic baroreceptor neuron; Baroreflex; Heart failure; Sodium channel
16.  Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes 
The Journal of General Physiology  2012;139(4):305-319.
Scorpion β toxins, peptides of ∼70 residues, specifically target voltage-gated sodium (NaV) channels to cause use-dependent subthreshold channel openings via a voltage–sensor trapping mechanism. This excitatory action is often overlaid by a not yet understood depressant mode in which NaV channel activity is inhibited. Here, we analyzed these two modes of gating modification by β-toxin Tz1 from Tityus zulianus on heterologously expressed NaV1.4 and NaV1.5 channels using the whole cell patch-clamp method. Tz1 facilitated the opening of NaV1.4 in a use-dependent manner and inhibited channel opening with a reversed use dependence. In contrast, the opening of NaV1.5 was exclusively inhibited without noticeable use dependence. Using chimeras of NaV1.4 and NaV1.5 channels, we demonstrated that gating modification by Tz1 depends on the specific structure of the voltage sensor in domain 2. Although residue G658 in NaV1.4 promotes the use-dependent transitions between Tz1 modification phenotypes, the equivalent residue in NaV1.5, N803, abolishes them. Gating charge neutralizations in the NaV1.4 domain 2 voltage sensor identified arginine residues at positions 663 and 669 as crucial for the outward and inward movement of this sensor, respectively. Our data support a model in which Tz1 can stabilize two conformations of the domain 2 voltage sensor: a preactivated outward position leading to NaV channels that open at subthreshold potentials, and a deactivated inward position preventing channels from opening. The results are best explained by a two-state voltage–sensor trapping model in that bound scorpion β toxin slows the activation as well as the deactivation kinetics of the voltage sensor in domain 2.
PMCID: PMC3315148  PMID: 22450487
17.  Sodium channels and mammalian sensory mechanotransduction 
Molecular Pain  2012;8:21.
Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear.
Here we show that deleting β and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro.
Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.
PMCID: PMC3378430  PMID: 22449024
Mechanotransduction; Sodium channels; Pain; Nav1.7; Nav1.8; ENaCs
18.  Structure of the analgesic μ-conotoxin KIIIA and effects on structure and function of disulfide deletion†,‡ 
Biochemistry  2009;48(6):1210-1219.
The μ-conotoxin μ-KIIIA, from Conus kinoshitai, blocks mammalian neuronal voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. We have determined its solution structure using NMR spectroscopy. Key residues identified previously as being important for activity against VGSCs (Lys7, Trp8, Arg10, Asp11, His12 and Arg14) all reside on an α-helix with the exception of Arg14. To further probe structure-activity relationships of this toxin against VGSC subtypes, we have characterised the analogue μ-KIIIA[C1A,C9A], in which the Cys residues involved in one of the three disulfides in μ-KIIIA were replaced with Ala. Its structure is quite similar to that of μ-KIIIA, indicating that the Cys1-Cys9 disulfide bond could be removed without any significant distortion of the α-helix bearing the key residues. Consistent with this, μ-KIIIA[C1A,C9A] retained activity against VGSCs, with its rank order of potency being essentially the same as that of μ-KIIIA, namely, NaV1.2 > NaV1.4 > NaV1.7 ≥ NaV1.1 > NaV1.3 > NaV1.5. Kinetics of block were obtained for NaV1.2, NaV1.4 and NaV1.7, and in each case both kon and koff values of μ-KIIIA[C1A,C9A] were larger than those of μ-KIIIA. Our results show that the key residues for VGSC binding lie mostly on an α-helix and that the first disulfide bond can be removed without significantly affecting the structure of this helix, although the modification accelerates the on- and off-rates of the peptide against all tested VGSC subtypes. These findings lay the groundwork for the design of minimized peptides and helical mimetics as novel analgesics.
PMCID: PMC4153535  PMID: 19170536
19.  Correlation of the electrophysiological profiles and sodium channel transcripts of individual rat dorsal root ganglia neurons 
Voltage gated sodium channels (Nav channels) play an important role in nociceptive transmission. They are intimately tied to the genesis and transmission of neuronal firing. Five different isoforms (Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) have been linked to nociceptive responses. A change in the biophysical properties of these channels or in their expression levels occurs in different pathological pain states. However, the precise involvement of the isoforms in the genesis and transmission of nociceptive responses is unknown. The aim of the present study was to investigate the synergy between the different populations of Nav channels that give individual neurons a unique electrophysical profile. We used the patch-clamp technique in the whole-cell configuration to record Nav currents and action potentials from acutely dissociated small diameter DRG neurons (<30 μm) from adult rats. We also performed single cell qPCR on the same neurons. Our results revealed that there is a strong correlation between Nav currents and mRNA transcripts in individual neurons. A cluster analysis showed that subgroups formed by Nav channel transcripts by mRNA quantification have different biophysical properties. In addition, the firing frequency of the neurons was not affected by the relative populations of Nav channel. The synergy between populations of Nav channel in individual small diameter DRG neurons gives each neuron a unique electrophysiological profile. The Nav channel remodeling that occurs in different pathological pain states may be responsible for the sensitization of the neurons.
PMCID: PMC4168718  PMID: 25285069
voltage-gated sodium channel; neuronal excitability; pain; biophysical properties; dorsal root ganglia neurons
20.  Protein kinase B/Akt is required for complete Freund’s adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons 
Voltage-gated sodium channels (Nav) are essential for the generation and conduction of action potentials. Peripheral inflammation increases the expression of Nav1.7 and Nav1.8 in dorsal root ganglion (DRG) neurons, suggesting that they participate in the induction and maintenance of chronic inflammatory pain. However, how Nav1.7 and Nav1.8 are regulated in the DRG under inflammatory pain conditions remains unclear. Using a complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain model and Western blot analysis, we found that phosphorylated Akt (p-Akt) was significantly increased in the ipsilateral L4/5 DRGs of rats on days 3 and 7 after intraplantar CFA injection. Immunohistochemistry showed that the percentage of p-Akt-positive neurons in the DRG was also significantly increased in the ipsilateral L4/5 DRGs at these times. Moreover, CFA injection increased the colocalization of p-Akt with Nav1.7 and Nav1.8 in L4/5 DRG neurons. Pretreatment of rats with an intrathecal injection of Akt inhibitor IV blocked CFA-induced thermal hyperalgesia and CFA-induced increases in Nav1.7 and Nav1.8 in the L4/5 DRGs on day 7 after CFA injection. Our findings suggest that the Akt pathway participates in inflammation-induced upregulation of Nav1.7 and Nav1.8 expression in DRG neurons. This participation might contribute to the maintenance of chronic inflammatory pain.
This article presents that inhibition of Akt blocks CFA-induced thermal hyperalgesia and CFA-induced increases in dorsal root ganglion Nav1.7 and Nav1.8. These findings have potential implications for use of Akt inhibitors to prevent and/or treat persistent inflammatory pain.
PMCID: PMC3672264  PMID: 23642408
Nav1.7; Nav1.8; Akt; Dorsal root ganglion; Inflammatory pain
21.  Human and Rat Nav1.3 Voltage-Gated Sodium Channels Differ in Inactivation Properties and Sensitivity to the Pyrethroid Insecticide Tefluthrin 
Neurotoxicology  2008;30(1):81-89.
Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. The pore-forming α subunits of mammalian sodium channels are encoded by a family of 9 genes, designated Nav1.1 - Nav1.9. Native sodium channels in the adult central nervous system (CNS) are heterotrimeric complexes of one of these 9 α subunits and two auxiliary (β) subunits. Here we compare the functional properties and pyrethroid sensitivity of the rat and human Nav1.3 isoforms, which are abundantly expressed in the developing CNS. Coexpression of the rat Nav1.3 and human Nav1.3 α subunits in combination with their conspecific β1 and β2 subunits in Xenopus laevis oocytes gave channels with markedly different inactivation properties and sensitivities to the pyrethroid insecticide tefluthrin. Rat Nav1.3 channels inactivated more slowly than human Nav1.3 channels during a depolarizing pulse. The rat and human channels also differed in their voltage dependence of steady-state inactivation. Exposure of rat and human Nav1.3 channels to 100 μM tefluthrin in the resting state produced populations of channels that activated, inactivated and deactivated more slowly than unmodified channels. For both rat and human channels, application of trains of depolarizing prepulses enhanced the extent of tefluthrin modification approximately twofold; this result implies that tefluthrin may bind to both the resting and open states of the channel. Modification of rat Nav1.3 channels by 100 μM tefluthrin was four-fold greater than that measured in parallel assays with human Nav1.3 channels. Human Nav1.3 channels were also less sensitive to tefluthrin than rat Nav1.2 channels, which are considered to be relatively insensitive to pyrethroids. These data provide the first direct comparison of the functional and pharmacological properties of orthologous rat and human sodium channels and demonstrate that orthologous channels with a high degree of amino acid sequence conservation differ in both their functional properties and their sensitivities to pyrethroid insecticides.
PMCID: PMC2696113  PMID: 19026681
Nav1.3; oocyte; sodium channel; pyrethroid; tefluthrin; rat; human
22.  Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act 
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency.
PMCID: PMC3494994  PMID: 23077037
23.  The trafficking of NaV1.8 
Neuroscience Letters  2010;486(2-13):78-83.
Research highlights
▶ The β3 subunit masks the ER retention signal of NaV1.8 and release the channel from the ER. ▶ p11 directly binds to NaV1.8 and help its translocation to the plasma membrane. ▶ PDZD2 is responsible for the functional expression of NaV1.8 on the plasma membrane. ▶ Contactin KO mice exhibit a reduction of NaV1.8 along unmyelinated axons in the sciatic nerve. ▶ PKA activation increases the NaV1.8 density on the membrane through direct phosphorylation.
The α-subunit of tetrodotoxin-resistant voltage-gated sodium channel NaV1.8 is selectively expressed in sensory neurons. It has been reported that NaV1.8 is involved in the transmission of nociceptive information from sensory neurons to the central nervous system in nociceptive [1] and neuropathic [24] pain conditions. Thus NaV1.8 has been a promising target to treat chronic pain. Here we discuss the recent advances in the study of trafficking mechanism of NaV1.8. These pieces of information are particularly important as such trafficking machinery could be new targets for painkillers.
PMCID: PMC2977848  PMID: 20816723
Sodium Channel; Sensory Neuron; Pain; Trafficking
24.  Pruning Nature: Biodiversity-Derived Discovery of Novel Sodium Channel Blocking Conotoxins from Conus bullatus 
Described herein is a general approach to identify novel compounds using the biodiversity of a megadiverse group of animals; specifically, the phylogenetic lineage of the venomous gastropods that belong to the genus Conus (“cone snails”). Cone snail biodiversity was exploited to identify three new μ-conotoxins, BuIIIA, BuIIIB and BuIIIC, encoded by the fish-hunting species Conus bullatus. BuIIIA, BuIIIB and BuIIIC are strikingly divergent in their amino acid composition compared to previous μ-conotoxins known to target the voltage-gated Na channel skeletal muscle subtype Nav1.4. Our preliminary results indicate that BuIIIB and BuIIIC are potent inhibitors of Nav1.4 (average block ~96%, at a 1 μM concentration of peptide), displaying a very slow off-rate not seen in previously characterized μ-conotoxins that block Nav1.4. In addition, the three new Conus bullatus μ-conopeptides help to define a new branch of the M-superfamily of conotoxins, namely M-5. The exogene strategy used to discover these Na channel-inhibiting peptides was based on both understanding the phylogeny of Conus, as well as the molecular genetics of venom μ-conotoxin peptides previously shown to generally target voltage-gated Na channels. The discovery of BuIIIA, BuIIIB and BuIIIC Na channel blockers expands the diversity of ligands useful in determining the structure-activity relationship of voltage-gated sodium channels.
PMCID: PMC2677393  PMID: 18950653
Biodiversity-derived compounds; Sodium channel ligands; exogenes
25.  Ankyrin-G Directly Binds to Kinesin-1 to Transport Voltage-Gated Na+ Channels into Axons 
Developmental cell  2014;28(2):117-131.
Action potentials propagating along axons require the activation of voltage-gated Na+ (Nav) channels. How Nav channels are transported into axons is unknown. Here we show KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with siRNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing action potential firing. Live-cell imaging showed that fluorescently-tagged AnkG or Nav1.2 co-transported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav but not Kv1.2 channels in the mouse cerebellum. These results indicate AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport, before anchoring them to the AIS and nodes of Ranvier.
PMCID: PMC3970081  PMID: 24412576

Results 1-25 (326264)