PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1522902)

Clipboard (0)
None

Related Articles

1.  MODOMICS: a database of RNA modification pathways—2013 update 
Nucleic Acids Research  2012;41(Database issue):D262-D267.
MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A number of newly identified modified ribonucleosides and more than one hundred functionally and structurally characterized proteins from various organisms have been added. In the RNA sequences section, snRNAs and snoRNAs with experimentally mapped modified nucleosides have been added and the current collection of rRNA and tRNA sequences has been substantially enlarged. To facilitate literature searches, each record in MODOMICS has been cross-referenced to other databases and to selected key publications. New options for database searching and querying have been implemented, including a BLAST search of protein sequences and a PARALIGN search of the collected nucleic acid sequences.
doi:10.1093/nar/gks1007
PMCID: PMC3531130  PMID: 23118484
2.  MODOMICS: a database of RNA modification pathways 
Nucleic Acids Research  2005;34(Database issue):D145-D149.
MODOMICS is the first comprehensive database resource for systems biology of RNA modification. It integrates information about the chemical structure of modified nucleosides, their localization in RNA sequences, pathways of their biosynthesis and enzymes that carry out the respective reactions. MODOMICS also provides literature information, and links to other databases, including the available protein sequence and structure data. The current list of modifications and pathways is comprehensive, while the dataset of enzymes is limited to Escherichia coli and Saccharomyces cerevisiae and sequence alignments are presented only for tRNAs from these organisms. RNAs and enzymes from other organisms will be included in the near future. MODOMICS can be queried by the type of nucleoside (e.g. A, G, C, U, I, m1A, nm5s2U, etc.), type of RNA, position of a particular nucleoside, type of reaction (e.g. methylation, thiolation, deamination, etc.) and name or sequence of an enzyme of interest. Options for data presentation include graphs of pathways involving the query nucleoside, multiple sequence alignments of RNA sequences and tabular forms with enzyme and literature data. The contents of MODOMICS can be accessed through the World Wide Web at .
doi:10.1093/nar/gkj084
PMCID: PMC1347447  PMID: 16381833
3.  Prediction of uridine modifications in tRNA sequences 
BMC Bioinformatics  2014;15(1):326.
Background
In past number of methods have been developed for predicting post-translational modifications in proteins. In contrast, limited attempt has been made to understand post-transcriptional modifications. Recently it has been shown that tRNA modifications play direct role in the genome structure and codon usage. This study is an attempt to understand kingdom-wise tRNA modifications particularly uridine modifications (UMs), as majority of modifications are uridine-derived.
Results
A three-steps strategy has been applied to develop an efficient method for the prediction of UMs. In the first step, we developed a common prediction model for all the kingdoms using a dataset from MODOMICS-2008. Support Vector Machine (SVM) based prediction models were developed and evaluated by five-fold cross-validation technique. Different approaches were applied and found that a hybrid approach of binary and structural information achieved highest Area under the curve (AUC) of 0.936. In the second step, we used newly added tRNA sequences (as independent dataset) of MODOMICS-2012 for the kingdom-wise prediction performance evaluation of previously developed (in the first step) common model and achieved performances between the AUC of 0.910 to 0.949. In the third and last step, we used different datasets from MODOMICS-2012 for the kingdom-wise individual prediction models development and achieved performances between the AUC of 0.915 to 0.987.
Conclusions
The hybrid approach is efficient not only to predict kingdom-wise modifications but also to classify them into two most prominent UMs: Pseudouridine (Y) and Dihydrouridine (D). A webserver called tRNAmod (http://crdd.osdd.net/raghava/trnamod/) has been developed, which predicts UMs from both tRNA sequences and whole genome.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2105-15-326) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2105-15-326
PMCID: PMC4287530  PMID: 25272949
Uridine modifications; Pseudouridine; Dihydrouridine; 5-methyl-uridine; tRNAmod
4.  The YqfN protein of Bacillus subtilis is the tRNA: m1A22 methyltransferase (TrmK) 
Nucleic Acids Research  2008;36(10):3252-3262.
N1-methylation of adenosine to m1A occurs in several different positions in tRNAs from various organisms. A methyl group at position N1 prevents Watson–Crick-type base pairing by adenosine and is therefore important for regulation of structure and stability of tRNA molecules. Thus far, only one family of genes encoding enzymes responsible for m1A methylation at position 58 has been identified, while other m1A methyltransferases (MTases) remain elusive. Here, we show that Bacillus subtilis open reading frame yqfN is necessary and sufficient for N1-adenosine methylation at position 22 of bacterial tRNA. Thus, we propose to rename YqfN as TrmK, according to the traditional nomenclature for bacterial tRNA MTases, or TrMet(m1A22) according to the nomenclature from the MODOMICS database of RNA modification enzymes. tRNAs purified from a ΔtrmK strain are a good substrate in vitro for the recombinant TrmK protein, which is sufficient for m1A methylation at position 22 as are tRNAs from Escherichia coli, which natively lacks m1A22. TrmK is conserved in Gram-positive bacteria and present in some Gram-negative bacteria, but its orthologs are apparently absent from archaea and eukaryota. Protein structure prediction indicates that the active site of TrmK does not resemble the active site of the m1A58 MTase TrmI, suggesting that these two enzymatic activities evolved independently.
doi:10.1093/nar/gkn169
PMCID: PMC2425500  PMID: 18420655
5.  RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes 
BMC Genomics  2008;9:470.
Background
Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes.
Results
By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions.
Conclusion
The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
doi:10.1186/1471-2164-9-470
PMCID: PMC2584109  PMID: 18844986
6.  RNApathwaysDB—a database of RNA maturation and decay pathways 
Nucleic Acids Research  2012;41(Database issue):D268-D272.
Many RNA molecules undergo complex maturation, involving e.g. excision from primary transcripts, removal of introns, post-transcriptional modification and polyadenylation. The level of mature, functional RNAs in the cell is controlled not only by the synthesis and maturation but also by degradation, which proceeds via many different routes. The systematization of data about RNA metabolic pathways and enzymes taking part in RNA maturation and degradation is essential for the full understanding of these processes. RNApathwaysDB, available online at http://iimcb.genesilico.pl/rnapathwaysdb, is an online resource about maturation and decay pathways involving RNA as the substrate. The current release presents information about reactions and enzymes that take part in the maturation and degradation of tRNA, rRNA and mRNA, and describes pathways in three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. RNApathwaysDB can be queried with keywords, and sequences of protein enzymes involved in RNA processing can be searched with BLAST. Options for data presentation include pathway graphs and tables with enzymes and literature data. Structures of macromolecular complexes involving RNA and proteins that act on it are presented as ‘potato models’ using DrawBioPath—a new javascript tool.
doi:10.1093/nar/gks1052
PMCID: PMC3531052  PMID: 23155061
7.  The 3D rRNA modification maps database: with interactive tools for ribosome analysis 
Nucleic Acids Research  2007;36(Database issue):D178-D183.
The 3D rRNA modification maps database is the first general resource of information about the locations of modified nucleotides within the 3D structure of the full ribosome, with mRNA and tRNAs in the A-, P- and E-sites. The database supports analyses for several model organisms, including higher eukaryotes, and enables users to construct 3D maps for other organisms. Data are provided for human and plant (Arabidopsis) ribosomes, and for other representative organisms from eubacteria, archaea and eukarya. Additionally, the database integrates information about positions of modifications within rRNA sequences and secondary structures, as well as links to other databases and resources about modifications and their biosynthesis. Displaying positions of modified nucleotides is fully manageable. Views of each modified nucleotide are controlled by individual buttons and buttons also control the visibility of different ribosomal molecular components. A section called ‘Paint Your Own’ enables the user to create a 3D modification map for rRNA from any organism where sites of modification are known. This section also provides capabilities for visualizing nucleotides of interest in rRNA or tRNA, as well as particular amino acids in ribosomal proteins. The database can be accessed at http://people.biochem.umass.edu/fournierlab/3dmodmap/
doi:10.1093/nar/gkm855
PMCID: PMC2238946  PMID: 17947322
8.  PlantRNA, a database for tRNAs of photosynthetic eukaryotes 
Nucleic Acids Research  2012;41(Database issue):D273-D279.
PlantRNA database (http://plantrna.ibmp.cnrs.fr/) compiles transfer RNA (tRNA) gene sequences retrieved from fully annotated plant nuclear, plastidial and mitochondrial genomes. The set of annotated tRNA gene sequences has been manually curated for maximum quality and confidence. The novelty of this database resides in the inclusion of biological information relevant to the function of all the tRNAs entered in the library. This includes 5′- and 3′-flanking sequences, A and B box sequences, region of transcription initiation and poly(T) transcription termination stretches, tRNA intron sequences, aminoacyl-tRNA synthetases and enzymes responsible for tRNA maturation and modification. Finally, data on mitochondrial import of nuclear-encoded tRNAs as well as the bibliome for the respective tRNAs and tRNA-binding proteins are also included. The current annotation concerns complete genomes from 11 organisms: five flowering plants (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Medicago truncatula and Brachypodium distachyon), a moss (Physcomitrella patens), two green algae (Chlamydomonas reinhardtii and Ostreococcus tauri), one glaucophyte (Cyanophora paradoxa), one brown alga (Ectocarpus siliculosus) and a pennate diatom (Phaeodactylum tricornutum). The database will be regularly updated and implemented with new plant genome annotations so as to provide extensive information on tRNA biology to the research community.
doi:10.1093/nar/gks935
PMCID: PMC3531208  PMID: 23066098
9.  Methylated nucleosides in tRNA and tRNA methyltransferases 
Frontiers in Genetics  2014;5:144.
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
doi:10.3389/fgene.2014.00144
PMCID: PMC4033218  PMID: 24904644
RNA modification; RNA methylation; RNA maturation
10.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering 
PLoS Computational Biology  2007;3(4):e65.
The RFAM database defines families of ncRNAs by means of sequence similarities that are sufficient to establish homology. In some cases, such as microRNAs and box H/ACA snoRNAs, functional commonalities define classes of RNAs that are characterized by structural similarities, and typically consist of multiple RNA families. Recent advances in high-throughput transcriptomics and comparative genomics have produced very large sets of putative noncoding RNAs and regulatory RNA signals. For many of them, evidence for stabilizing selection acting on their secondary structures has been derived, and at least approximate models of their structures have been computed. The overwhelming majority of these hypothetical RNAs cannot be assigned to established families or classes. We present here a structure-based clustering approach that is capable of extracting putative RNA classes from genome-wide surveys for structured RNAs. The LocARNA (local alignment of RNA) tool implements a novel variant of the Sankoff algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method is also robust against false positive predictions, i.e., a contamination of the input data with unstructured or nonconserved sequences. We have successfully tested the LocARNA-based clustering approach on the sequences of the RFAM-seed alignments. Furthermore, we have applied it to a previously published set of 3,332 predicted structured elements in the Ciona intestinalis genome (Missal K, Rose D, Stadler PF (2005) Noncoding RNAs in Ciona intestinalis. Bioinformatics 21 (Supplement 2): i77–i78). In addition to recovering, e.g., tRNAs as a structure-based class, the method identifies several RNA families, including microRNA and snoRNA candidates, and suggests several novel classes of ncRNAs for which to date no representative has been experimentally characterized.
Author Summary
For a long time, it was believed that the control of processes in living organisms is almost only performed by proteins. Only recently, scientists learned that a further class of molecules, namely special RNAs, plays an important role in cell control. In consequence, research on such RNAs enjoys increasing attention over the last few years. These RNAs were called noncoding RNAs (ncRNA), because, unlike most other RNAs, these molecules do not code for proteins. Due to recent research successes, one can predict a lot of potential new ncRNAs by comparing the genomes of related organisms. Technically, comparing such RNAs is challenging and computationally expensive, since related ncRNAs often show only weak similarity on the sequence level, but share similar structures. In the paper, we present the new method LocARNA for fast and accurate comparison of RNAs with respect to their sequence and structure. Using this method, we define a distance measure between pairs of ncRNAs based on sequence and structure. This is then used for combining RNAs into a cluster for identifying groups of similar RNAs in large unorganized sets of RNA. The final aim of such a comparison is to identify new classes of ncRNAs. We applied our clustering procedure to a previously published set of 3,332 predicted ncRNAs in the C. intestinalis genomes. In addition to rediscovering known classes of RNAs, e.g., tRNAs, the method predicts microRNA candidates, and suggests several novel, experimentally uncharacterized classes of ncRNAs. For verification, we clustered about 4,000 RNAs of RFAM, which is a large database that contains RNAs with an already known classification into families. Our results show good performance of the presented structure-based clustering approach.
doi:10.1371/journal.pcbi.0030065
PMCID: PMC1851984  PMID: 17432929
11.  Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana 
BMC Plant Biology  2010;10:201.
Background
In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.
Results
In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.
Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots.
Conclusions
Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.
doi:10.1186/1471-2229-10-201
PMCID: PMC2956550  PMID: 20836892
12.  A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs 
Nucleic Acids Research  2014;42(11):7346-7357.
In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.
doi:10.1093/nar/gku390
PMCID: PMC4066797  PMID: 24831542
13.  The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase 
Background
Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified. Interestingly, it was found that tRNA methylation, one of the most common modifications, can be introduced by S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases) that belong to two structurally and phylogenetically unrelated protein superfamilies: RFM and SPOUT.
Results
As a part of a large-scale project aiming at characterization of a complete set of RNA modification enzymes of model organisms, we have studied the Escherichia coli proteins YibK, LasT, YfhQ, and YbeA for their ability to introduce the last unassigned methylations of ribose at positions 32 and 34 of the tRNA anticodon loop. We found that YfhQ catalyzes the AdoMet-dependent formation of Cm32 or Um32 in tRNASer1 and tRNAGln2 and that an E. coli strain with a disrupted yfhQ gene lacks the tRNA:Cm32/Um32 methyltransferase activity. Thus, we propose to rename YfhQ as TrMet(Xm32) according to the recently proposed, uniform nomenclature for all RNA modification enzymes, or TrmJ, according to the traditional nomenclature for bacterial tRNA MTases.
Conclusion
Our results reveal that methylation at position 32 is carried out by completely unrelated TrMet(Xm32) enzymes in eukaryota and prokaryota (RFM superfamily member Trm7 and SPOUT superfamily member TrmJ, respectively), mirroring the scenario observed in the case of the m1G37 modification (introduced by the RFM member Trm5 in eukaryota and archaea, and by the SPOUT member TrmD in bacteria).
doi:10.1186/1471-2199-7-23
PMCID: PMC1569432  PMID: 16848900
14.  Sno/scaRNAbase: a curated database for small nucleolar RNAs and cajal body-specific RNAs 
Nucleic Acids Research  2006;35(Database issue):D183-D187.
Small nucleolar RNAs (snoRNAs) and Cajal body-specific RNAs (scaRNAs) are named for their subcellular localization within nucleoli and Cajal bodies (conserved subnuclear organelles present in the nucleoplasm), respectively. They have been found to play important roles in rRNA, tRNA, snRNAs, and even mRNA modification and processing. All snoRNAs fall in two categories, box C/D snoRNAs and box H/ACA snoRNAs, according to their distinct sequence and secondary structure features. Box C/D snoRNAs and box H/ACA snoRNAs mainly function in guiding 2′-O-ribose methylation and pseudouridilation, respectively. ScaRNAs possess both box C/D snoRNA and box H/ACA snoRNA sequence motif features, but guide snRNA modifications that are transcribed by RNA polymerase II. Here we present a Web-based sno/scaRNA database, called sno/scaRNAbase, to facilitate the sno/scaRNA research in terms of providing a more comprehensive knowledge base. Covering 1979 records derived from 85 organisms for the first time, sno/scaRNAbase is not only dedicated to filling gaps between existing organism-specific sno/scaRNA databases that are focused on different sno/scaRNA aspects, but also provides sno/scaRNA scientists with an opportunity to adopt a unified nomenclature for sno/scaRNAs. Derived from a systematic literature curation and annotation effort, the sno/scaRNAbase provides an easy-to-use gateway to important sno/scaRNA features such as sequence motifs, possible functions, homologues, secondary structures, genomics organization, sno/scaRNA gene's chromosome location, and more. Approximate searches, in addition to accurate and straightforward searches, make the database search more flexible. A BLAST search engine is implemented to enable blast of query sequences against all sno/scaRNAbase sequences. Thus our sno/scaRNAbase serves as a more uniform and friendly platform for sno/scaRNA research. The database is free available at .
doi:10.1093/nar/gkl873
PMCID: PMC1669756  PMID: 17099227
15.  Native Tertiary Structure and Nucleoside Modifications Suppress tRNA’s Intrinsic Ability to Activate the Innate Immune Sensor PKR 
PLoS ONE  2013;8(3):e57905.
Interferon inducible protein kinase PKR is an essential component of innate immunity. It is activated by long stretches of dsRNA and provides the first line of host defense against pathogens by inhibiting translation initiation in the infected cell. Many cellular and viral transcripts contain nucleoside modifications and/or tertiary structure that could affect PKR activation. We have previously demonstrated that a 5′-end triphosphate–a signature of certain viral and bacterial transcripts–confers the ability of relatively unstructured model RNA transcripts to activate PKR to inhibit translation, and that this activation is abrogated by certain modifications present in cellular RNAs. In order to understand the biological implications of native RNA tertiary structure and nucleoside modifications on PKR activation, we study here the heavily modified cellular tRNAs and the unmodified or the lightly modified mitochondrial tRNAs (mt-tRNA). We find that both a T7 transcript of yeast tRNAPhe and natively extracted total bovine liver mt-tRNA activate PKR in vitro, whereas native E. coli, bovine liver, yeast, and wheat tRNAPhe do not, nor do a variety of base- or sugar-modified T7 transcripts. These results are further supported by activation of PKR by a natively folded T7 transcript of tRNAPhe in vivo supporting the importance of tRNA modification in suppressing PKR activation in cells. We also examine PKR activation by a T7 transcript of the A14G pathogenic mutant of mt-tRNALeu, which is known to dimerize, and find that the misfolded dimeric form activates PKR in vitro while the monomeric form does not. Overall, the in vitro and in vivo findings herein indicate that tRNAs have an intrinsic ability to activate PKR and that nucleoside modifications and native RNA tertiary folding may function, at least in part, to suppress such activation, thus serving to distinguish self and non-self tRNA in innate immunity.
doi:10.1371/journal.pone.0057905
PMCID: PMC3587421  PMID: 23483938
16.  Transcriptome-Wide Mapping of 5-methylcytidine RNA Modifications in Bacteria, Archaea, and Yeast Reveals m5C within Archaeal mRNAs 
PLoS Genetics  2013;9(6):e1003602.
The presence of 5-methylcytidine (m5C) in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis) and gram negative (E. coli) bacteria, an archaeon (S. solfataricus) and a eukaryote (S. cerevisiae), followed by massively parallel sequencing. We were able to recover most previously documented m5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m5C was absent were also discovered. Intriguingly, we detected m5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.
Author Summary
Ribonucleic acids are universally used to express genetic information in the form of gene transcripts. Although we envision RNA as a mere copy of the DNA four-base code, modification of specific RNA bases can expand the information code. Such modifications are abundant in transfer RNA (tRNA) and ribosomal RNA (rRNA), where they contribute to translation fidelity and ribosome assembly. Recent studies in eukaryotes have shown that mRNA modifications such as RNA-editing (conversion of an adenosine base to inosine), N6-adenine methylation (m6A), and 5-methylcytidine (m5C) can change the coding sequence, alter splicing patterns, or change RNA stability. However, no mRNA modifications in bacteria or archaea have been documented to date. We have used an approach that enables mapping of the m5C modifications across all expressed genes in a given organism. Applying this approach on model bacterial, archaeal, and fungal microorganisms enabled us to reveal the modified RNA bases in these organisms, and to provide an accurate and sensitive map of these modifications. In archaea, we documented multiple genes whose mRNAs are subject to RNA modification, suggesting that similar to eukaryotes, these organisms may utilize mRNA modifications as a mechanism for gene regulation.
doi:10.1371/journal.pgen.1003602
PMCID: PMC3694839  PMID: 23825970
17.  Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. 
Nucleic Acids Research  1992;20(18):4741-4746.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).
PMCID: PMC334226  PMID: 1408786
18.  Dynamics of Recognition between tRNA and Elongation Factor Tu 
Journal of molecular biology  2008;377(5):1382-1405.
Elongation factor Tu (EF-Tu) binds to all twenty standard aminoacyl-transfer RNAs (aa-tRNAs) and transports them to the ribosome while protecting the ester linkage between the tRNA and its cognate amino acid. We use molecular dynamics simulations to investigate the dynamics of the EF-Tu-GTP-aa-tRNACys complex and the roles played by Mg2+ ions and modified nucleosides on the free energy of protein-RNA binding. Individual modified nucleosides have pronounced effects on the structural dynamics of tRNA and the EF-Tu-Cys-tRNACys interface. Combined energetic and evolutionary analyses identify the coevolution of residues in EF-Tu and aa-tRNAs at the binding interface. Highly conserved EF-Tu residues are responsible for both attracting aa-tRNAs as well as providing nearby nonbonded repulsive energies which help fine-tune molecular attraction at the binding interface. In addition to the 3′ CCA end, highly conserved tRNA nucleotides G1, G52, G53, and U54 contribute significantly to EF-Tu binding energies. Modification of U54 to thymine affects the structure of the tRNA common loop resulting in a change in binding interface contacts. In addition, other nucleotides, conserved within certain tRNA specificities, may be responsible for tuning aa-tRNA binding to EF-Tu. The trend in EF-Tu-Cys-tRNACys binding energies observed as the result of mutating the tRNA agrees with experimental observation. We also predict variations in binding free energies upon misacylation of tRNACys with D-cysteine or O-phosphoserine and upon changing the protonation state of L-cysteine. Principal components analysis in each case reveals changes in the communication network across the protein-tRNA interface and is the basis for the entropy calculations.
doi:10.1016/j.jmb.2008.01.073
PMCID: PMC3232051  PMID: 18336835
19.  Posttranscriptional modification of tRNA in psychrophilic bacteria. 
Journal of Bacteriology  1997;179(6):1918-1923.
Posttranscriptional modification in tRNA is known to play a multiplicity of functional roles, including maintenance of tertiary structure and cellular adaptation to environmental factors such as temperature. Nucleoside modification has been studied in unfractionated tRNA from three psychrophilic bacteria (ANT-300 and Vibrio sp. strains 5710 and 29-6) and one psychrotrophic bacterium (Lactobacillus bavaricus). Based on analysis of total enzymatic hydrolysates by liquid chromatography-mass spectrometry, unprecedented low amounts of modification were found in the psychrophiles, particularly from the standpoint of structural diversity of modifications observed. Thirteen to 15 different forms of posttranscriptional modification were found in the psychrophiles, and 10 were found in L. bavaricus, compared with approximately 29 known to occur in bacterial mesophiles and 24 to 31 known to occur in the archaeal hyperthermophiles. The four most abundant modified nucleosides in tRNA from each organism were dihydrouridine, pseudouridine, 7-methylguanosine, and 5-methyluridine. The molar abundances of the latter three nucleosides were comparable to those found in tRNA from Escherichia coli. By contrast, the high levels of dihydrouridine observed in all three psychrophiles are unprecedented for any organism in any of the three phylogenetic domains. tRNA from these organisms contains 40 to 70% more dihydrouridine, on average, than that of the mesophile E. coli or the psychrotroph L. bavaricus. This finding supports the concept that a functional role for dihydrouridine is in maintenance of conformational flexibility of RNA, especially important to organisms growing under conditions where the dynamics of thermal motion are severely compromised. This is in contrast to the role of modifications contained in RNA from thermophiles, which is to reduce regional RNA flexibility and provide structural stability to RNA for adaptation to high temperature.
PMCID: PMC178914  PMID: 9068636
20.  RNA Bricks—a database of RNA 3D motifs and their interactions 
Nucleic Acids Research  2013;42(Database issue):D123-D131.
The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions.
doi:10.1093/nar/gkt1084
PMCID: PMC3965019  PMID: 24220091
21.  Transfer RNA and human disease 
Frontiers in Genetics  2014;5:158.
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
doi:10.3389/fgene.2014.00158
PMCID: PMC4042891  PMID: 24917879
tRNA; neurodegenerative disease; localized translation; mitochondrial disease; aminoacyl-tRNA synthetase; Usher syndrome Type IIIB
22.  tRNA Modifying Enzymes, NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells 
PLoS Genetics  2014;10(9):e1004639.
Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD). The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU) whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.
Author Summary
The cellular mechanisms for sensing and responding to stress on nucleic acid metabolism or to genotoxic stress are the fundamental and ancient evolutionary biological activities with conserved and diverse biological functions. In yeast, hypomodified mature tRNA species are rapidly decayed under heat stress by the RTD pathway. Yet, it has been shown that tRNA-specific methyltransferases Trm4 and Trm8 protect from tRNA decay. 5-FU, a pyrimidine analog used for cancer treatment, is generally known to act as a thymidylate synthase inhibitor although other ways for the mechanisms of action are suggested. We studied NSUN2 and METTL1, the human orthologs of Trm4 and Trm8 in yeast, and demonstrated that these RTD-related tRNA modifying enzymes are involved in 5-FU sensitivity in cervical cancer HeLa cells. We conclude that the evolutionarily conserved regulation of tRNA modifications is a potential mechanism of chemotherapy resistance in cancer cells.
doi:10.1371/journal.pgen.1004639
PMCID: PMC4169382  PMID: 25233213
23.  Biosynthesis and functions of sulfur modifications in tRNA 
Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes” activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.
doi:10.3389/fgene.2014.00067
PMCID: PMC3980101  PMID: 24765101
post-transcriptional modification; post-translational modification; sulfur; tRNA; ubiquitin
24.  Modification of tRNALysUUU by Elongator Is Essential for Efficient Translation of Stress mRNAs 
PLoS Genetics  2013;9(7):e1003647.
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALysUUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery.
Author Summary
The success of a biological event such as cellular adaptation to environmental changes requires the complex process of protein expression to be carried out with high efficiency and fidelity. Thus, not only transcription but also mRNA homeostasis and translation have to be performed with maximum efficiency, or survival would be hampered. Our study demonstrates that the role of Elongator, a putative Pol II-associated complex, in survival to stress is to optimize translation efficiency by modifying some particular tRNAs. We show here that Sin3/Elp3, an Elongator component, participates in the modification of the anticodon of the low copy number tRNALysUUU, which probably favours codon recognition. This tRNA recognizes one of the two codons for lysine, which is down-represented in highly expressed constitutive genes. The stress mRNAs, highly-expressed upon stress conditions, have not adapted their lysine codon usage from AAA-to-AAG, and proper tRNALysUUU modification by Elongator is an alternative strategy to accomplish efficient translation of these AAA-containing, abundant stress mRNAs.
doi:10.1371/journal.pgen.1003647
PMCID: PMC3715433  PMID: 23874237
25.  Co-Evolution of Mitochondrial tRNA Import and Codon Usage Determines Translational Efficiency in the Green Alga Chlamydomonas 
PLoS Genetics  2012;8(9):e1002946.
Mitochondria from diverse phyla, including protozoa, fungi, higher plants, and humans, import tRNAs from the cytosol in order to ensure proper mitochondrial translation. Despite the broad occurrence of this process, our understanding of tRNA import mechanisms is fragmentary, and crucial questions about their regulation remain unanswered. In the unicellular green alga Chlamydomonas, a precise correlation was found between the mitochondrial codon usage and the nature and amount of imported tRNAs. This led to the hypothesis that tRNA import might be a dynamic process able to adapt to the mitochondrial genome content. By manipulating the Chlamydomonas mitochondrial genome, we introduced point mutations in order to modify its codon usage. We find that the codon usage modification results in reduced levels of mitochondrial translation as well as in subsequent decreased levels and activities of respiratory complexes. These effects are linked to the consequential limitations of the pool of tRNAs in mitochondria. This indicates that tRNA mitochondrial import cannot be rapidly regulated in response to a novel genetic context and thus does not appear to be a dynamic process. It rather suggests that the steady-state levels of imported tRNAs in mitochondria result from a co-evolutive adaptation between the tRNA import mechanism and the requirements of the mitochondrial translation machinery.
Author Summary
Mitochondria are endosymbiotic organelles involved in diverse fundamental cellular processes. They contain their own genome that encodes a few but essential proteins (e.g. proteins of the respiratory chain complexes). Their synthesis requires functional mitochondrial translational machinery that necessitates a full set of transfer RNAs (tRNAs). As mitochondrial genomes of various organisms do not code for the complete set of tRNA genes, nucleus-encoded tRNAs have to be imported into mitochondria to compensate. Mitochondrial import of tRNAs is highly specific and tailored to the mitochondrial needs. Because transformation of the mitochondrial genome is possible in Chlamydomonas, we used this green alga as model to know if a fine regulation of the tRNA import process is possible so that the tRNA population can rapidly adapt to codon usage changes in mitochondria. Here we provide evidence that the regulation of tRNA mitochondrial import process is not dynamic but is rather the result of a co-evolutive process between the import and the mitochondrial codon bias in order to optimize the mitochondrial translation efficiency.
doi:10.1371/journal.pgen.1002946
PMCID: PMC3447967  PMID: 23028354

Results 1-25 (1522902)