PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1763072)

Clipboard (0)
None

Related Articles

1.  Nonspecific Adherence by Actinobacillus actinomycetemcomitans Requires Genes Widespread in Bacteria and Archaea 
Journal of Bacteriology  2000;182(21):6169-6176.
The gram-negative coccobacillus, Actinobacillus actinomycetemcomitans, is the putative agent for localized juvenile periodontitis, a particularly destructive form of periodontal disease in adolescents. This bacterium has also been isolated from a variety of other infections, notably endocarditis. Fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms, a property likely to be critical for colonization of teeth and other surfaces. Here we report the identification of a locus of seven genes required for nonspecific adherence of A. actinomycetemcomitans to surfaces. The recently developed transposon IS903φkan was used to isolate mutants of the rough clinical isolate CU1000 that are defective in tight adherence to surfaces (Tad−). Unlike wild-type cells, Tad− mutant cells adhere poorly to surfaces, fail to form large autoaggregates, and lack long, bundled fibrils. Nucleotide sequencing and genetic complementation analysis revealed a 6.7-kb region of the genome with seven adjacent genes (tadABCDEFG) required for tight adherence. The predicted TadA polypeptide is similar to VirB11, an ATPase involved in macromolecular transport. The predicted amino acid sequences of the other Tad polypeptides indicate membrane localization but no obvious functions. We suggest that the tad genes are involved in secretion of factors required for tight adherence of A. actinomycetemcomitans. Remarkably, complete and highly conserved tad gene clusters are present in the genomes of the bubonic plague bacillus Yersinia pestis and the human and animal pathogen Pasteurella multocida. Partial tad loci also occur in strikingly diverse Bacteria and Archaea. Our results show that the tad genes are required for tight adherence of A. actinomycetemcomitans to surfaces and are therefore likely to be essential for colonization and pathogenesis. The occurrence of similar genes in a wide array of microorganisms indicates that they have important functions. We propose that tad-like genes have a significant role in microbial colonization.
PMCID: PMC94753  PMID: 11029439
2.  Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015) 
Shay, Jerry W. | Homma, Noriko | Zhou, Ruyun | Naseer, Muhammad Imran | Chaudhary, Adeel G. | Al-Qahtani, Mohammed | Hirokawa, Nobutaka | Goudarzi, Maryam | Fornace, Albert J. | Baeesa, Saleh | Hussain, Deema | Bangash, Mohammed | Alghamdi, Fahad | Schulten, Hans-Juergen | Carracedo, Angel | Khan, Ishaq | Qashqari, Hanadi | Madkhali, Nawal | Saka, Mohamad | Saini, Kulvinder S. | Jamal, Awatif | Al-Maghrabi, Jaudah | Abuzenadah, Adel | Chaudhary, Adeel | Al Qahtani, Mohammed | Damanhouri, Ghazi | Alkhatabi, Heba | Goodeve, Anne | Crookes, Laura | Niksic, Nikolas | Beauchamp, Nicholas | Abuzenadah, Adel M. | Vaught, Jim | Budowle, Bruce | Assidi, Mourad | Buhmeida, Abdelbaset | Al-Maghrabi, Jaudah | Buhmeida, Abdelbaset | Assidi, Mourad | Merdad, Leena | Kumar, Sudhir | Miura, Sayaka | Gomez, Karen | Carracedo, Angel | Rasool, Mahmood | Rebai, Ahmed | Karim, Sajjad | Eldin, Hend F. Nour | Abusamra, Heba | Alhathli, Elham M. | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Faheem, Hossam | Agarwa, Ashok | Nieschlag, Eberhard | Wistuba, Joachim | Damm, Oliver S. | Beg, Mohd A. | Abdel-Meguid, Taha A. | Mosli, Hisham A. | Bajouh, Osama S. | Abuzenadah, Adel M. | Al-Qahtani, Mohammed H. | Coskun, Serdar | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Dallol, Ashraf | Al-Maghrabi, Jaudah | Hakamy, Sahar | Al-Qahtani, Wejdan | Al-Harbi, Asia | Hussain, Shireen | Assidi, Mourad | Al-Qahtani, Mohammed | Abuzenadah, Adel | Ozkosem, Burak | DuBois, Rick | Messaoudi, Safia S. | Dandana, Maryam T. | Mahjoub, Touhami | Almawi, Wassim Y. | Abdalla, S. | Al-Aama, M. Nabil | Elzawahry, Asmaa | Takahashi, Tsuyoshi | Mimaki, Sachiyo | Furukawa, Eisaku | Nakatsuka, Rie | Kurosaka, Isao | Nishigaki, Takahiko | Nakamura, Hiromi | Serada, Satoshi | Naka, Tetsuji | Hirota, Seiichi | Shibata, Tatsuhiro | Tsuchihara, Katsuya | Nishida, Toshirou | Kato, Mamoru | Mehmood, Sajid | Ashraf, Naeem Mahmood | Asif, Awais | Bilal, Muhammad | Mehmood, Malik Siddique | Hussain, Aadil | Jamal, Qazi Mohammad Sajid | Siddiqui, Mughees Uddin | Alzohairy, Mohammad A. | Al Karaawi, Mohammad A. | Nedjadi, Taoufik | Al-Maghrabi, Jaudah | Assidi, Mourad | Al-Khattabi, Heba | Al-Ammari, Adel | Al-Sayyad, Ahmed | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Zitouni, Hédia | Raguema, Nozha | Ali, Marwa Ben | Malah, Wided | Lfalah, Raja | Almawi, Wassim | Mahjoub, Touhami | Elanbari, Mohammed | Ptitsyn, Andrey | Mahjoub, Sana | El Ghali, Rabeb | Achour, Bechir | Amor, Nidhal Ben | Assidi, Mourad | N’siri, Brahim | Morjani, Hamid | Nedjadi, Taoufik | Al-Ammari, Adel | Al-Sayyad, Ahmed | Salem, Nada | Azhar, Esam | Al-Maghrabi, Jaudah | Chayeb, Vera | Dendena, Maryam | Zitouni, Hedia | Zouari-Limayem, Khedija | Mahjoub, Touhami | Refaat, Bassem | Ashshi, Ahmed M. | Batwa, Sarah A. | Ramadan, Hazem | Awad, Amal | Ateya, Ahmed | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal | Refaat, Bassem | Kensara, Osama | Abdelfattah, Amr | Dheeb, Batol Imran | Al-Halbosiy, Mohammed M. F. | Al lihabi, Rghad Kadhim | Khashman, Basim Mohammed | Laiche, Djouhri | Adeel, Chaudhary | Taoufik, Nedjadi | Al-Afghani, Hani | Łastowska, Maria | Al-Balool, Haya H. | Sheth, Harsh | Mercer, Emma | Coxhead, Jonathan M. | Redfern, Chris P. F. | Peters, Heiko | Burt, Alastair D. | Santibanez-Koref, Mauro | Bacon, Chris M. | Chesler, Louis | Rust, Alistair G. | Adams, David J. | Williamson, Daniel | Clifford, Steven C. | Jackson, Michael S. | Singh, Mala | Mansuri, Mohmmad Shoab | Jadeja, Shahnawaz D. | Patel, Hima | Marfatia, Yogesh S. | Begum, Rasheedunnisa | Mohamed, Amal M. | Kamel, Alaa K. | Helmy, Nivin A. | Hammad, Sayda A. | Kayed, Hesham F. | Shehab, Marwa I. | El Gerzawy, Assad | Ead, Maha M. | Ead, Ola M. | Mekkawy, Mona | Mazen, Innas | El-Ruby, Mona | Shahid, S. M. A. | Jamal, Qazi Mohammad Sajid | Arif, J. M. | Lohani, Mohtashim | Imen, Moumni | Leila, Chaouch | Houyem, Ouragini | Kais, Douzi | Fethi, Chaouachi Dorra Mellouli | Mohamed, Bejaoui | Salem, Abbes | Faggad, Areeg | Gebreslasie, Amanuel T. | Zaki, Hani Y. | Abdalla, Badreldin E. | AlShammari, Maha S. | Al-Ali, Rhaya | Al-Balawi, Nader | Al-Enazi, Mansour | Al-Muraikhi, Ali | Busaleh, Fadi | Al-Sahwan, Ali | Borgio, Francis | Sayyed, Abdulazeez | Al-Ali, Amein | Acharya, Sadananda | Zaki, Maha S. | El-Bassyouni, Hala T. | Shehab, Marwa I. | Elshal, Mohammed F. | M., Kaleemuddin | Aldahlawi, Alia M. | Saadah, Omar | McCoy, J. Philip | El-Tarras, Adel E. | Awad, Nabil S. | Alharthi, Abdulla A. | Ibrahim, Mohamed M. M. | Alsehli, Haneen S. | Dallol, Ashraf | Gari, Abdullah M. | Abbas, Mohammed M. | Kadam, Roaa A. | Gari, Mazen M. | Alkaff, Mohmmed H. | Abuzenadah, Adel M. | Gari, Mamdooh A. | Abusamra, Heba | Karim, Sajjad | eldin, Hend F. Nour | Alhathli, Elham M. | Salem, Nada | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Moradi, Fatima A. | Rashidi, Omran M. | Awan, Zuhier A. | Kaya, Ibrahim Hamza | Al-Harazi, Olfat | Colak, Dilek | Alkousi, Nabila A. | Athanasopoulos, Takis | Bahmaid, Afnan O. | Alhwait, Etimad A. | Gari, Mamdooh A. | Alsehli, Haneen S. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Kadam, Roaa | Dallol, Ashraf | Kalamegam, Gauthaman | Eldin, Hend F. Nour | Karim, Sajjad | Abusamra, Heba | Alhathli, Elham | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Alsayed, Salma N. | Aljohani, Fawziah H. | Habeeb, Samaher M. | Almashali, Rawan A. | Basit, Sulman | Ahmed, Samia M. | Sharma, Rakesh | Agarwal, Ashok | Durairajanayagam, Damayanthi | Samanta, Luna | Abu-Elmagd, Muhammad | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Assidi, Mourad | Al-Qahtani, Mohammed | Agarwal, Ashok | Sharma, Rakesh | Samanta, Luna | Durairajanayagam, Damayanthi | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Samanta, Luna | Agarwal, Ashok | Sharma, Rakesh | Cui, Zhihong | Assidi, Mourad | Abuzenadah, Adel M. | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Alboogmi, Alaa A. | Alansari, Nuha A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Jamal, Hasan S. | Rozi, Abdullraheem | Mirza, Zeenat | Abuzenadah, Adel M. | Karim, Sajjad | Al-Qahtani, Mohammed H. | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Ebiya, Rasha A. | Darwish, Samia M. | Montaser, Metwally M. | Abusamra, Heba | Bajic, Vladimir B. | Al-Maghrabi, Jaudah | Gomaa, Wafaey | Hanbazazh, Mehenaz | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Saher | Baba, Ghali | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-Maghrabi, Jaudah | Al-Harbi, Abdullah | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Sahar | Baba, Ghalia | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Alhathli, Elham M. | Karim, Sajjad | Salem, Nada | Eldin, Hend Nour | Abusamra, Heba | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Alyamani, Aisha A. | Kalamegam, Gauthaman | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa A. | Al-Qahtani, Mohammed | Gadi, Rawan | Buhmeida, Abdelbaset | Assidi, Mourad | Chaudhary, Adeel | Merdad, Leena | Alfakeeh, Saadiah M. | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa | Kalamegam, Gauthaman | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Mathew, Shilu | Mira, Lobna | Shaabad, Manal | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Mathew, Shilu | Shaabad, Manal | Mira, Lobna | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Rebai, Ahmed | Assidi, Mourad | Buhmeida, Abdelbaset | Abu-Elmagd, Muhammad | Dallol, Ashraf | Shay, Jerry W. | Almutairi, Mikhlid H. | Ambers, Angie | Churchill, Jennifer | King, Jonathan | Stoljarova, Monika | Gill-King, Harrell | Assidi, Mourad | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Al-Qatani, Muhammad | Budowle, Bruce | Abu-Elmagd, Muhammad | Ahmed, Farid | Dallol, Ashraf | Assidi, Mourad | Almagd, Taha Abo | Hakamy, Sahar | Agarwal, Ashok | Al-Qahtani, Muhammad | Abuzenadah, Adel | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Buhmaida, Abdelbaset | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Satar, Rukhsana | Rasool, Mahmood | Ahmad, Waseem | Nazam, Nazia | Lone, Mohamad I. | Naseer, Muhammad I. | Jamal, Mohammad S. | Zaidi, Syed K. | Pushparaj, Peter N. | Jafri, Mohammad A. | Ansari, Shakeel A. | Alqahtani, Mohammed H. | Bashier, Hanan | Al Qahtani, Abrar | Mathew, Shilu | Nour, Amal M. | Alkhatabi, Heba | Zenadah, Adel M. Abu | Buhmeida, Abdelbaset | Assidi, Mourad | Al Qahtani, Muhammed | Faheem, Muhammad | Mathew, Shilu | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Alhadrami, Hani A. | Dallol, Ashraf | Abuzenadah, Adel | Hussein, Ibtessam R. | Chaudhary, Adeel G. | Bader, Rima S. | Bassiouni, Randa | Alquaiti, Maha | Ashgan, Fai | Schulten, Hans | Alama, Mohamed Nabil | Al Qahtani, Mohammad H. | Lone, Mohammad I. | Nizam, Nazia | Ahmad, Waseem | Jafri, Mohammad A. | Rasool, Mahmood | Ansari, Shakeel A. | Al-Qahtani, Muhammed H. | Alshihri, Eradah | Abu-Elmagd, Muhammad | Alharbi, Lina | Assidi, Mourad | Al-Qahtani, Mohammed | Mathew, Shilu | Natesan, Peter Pushparaj | Al Qahtani, Muhammed | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Khan, Fazal | Kadam, Roaa | Ahmed, Farid | Assidi, Mourad | Sait, Khalid Hussain Wali | Anfinan, Nisreen | Al Qahtani, Mohammed | Naseer, Muhammad I. | Chaudhary, Adeel G. | Jamal, Mohammad S. | Mathew, Shilu | Mira, Lobna S. | Pushparaj, Peter N. | Ansari, Shakeel A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Chaudhary, Adeel G. | Mathew, Shilu | Mira, Lobna S. | Jamal, Mohammad S. | Sogaty, Sameera | Bassiouni, Randa I. | Rasool, Mahmood | AlQahtani, Mohammed H. | Rasool, Mahmood | Ansari, Shakeel A. | Jamal, Mohammad S. | Pushparaj, Peter N. | Sibiani, Abdulrahman M. S. | Ahmad, Waseem | Buhmeida, Abdelbaset | Jafri, Mohammad A. | Warsi, Mohiuddin K. | Naseer, Muhammad I. | Al-Qahtani, Mohammed H. | Rubi | Kumar, Kundan | Naqvi, Ahmad A. T. | Ahmad, Faizan | Hassan, Md I. | Jamal, Mohammad S. | Rasool, Mahmood | AlQahtani, Mohammed H. | Ali, Ashraf | Jarullah, Jummanah | Rasool, Mahmood | Buhmeida, Abdelbasit | Khan, Shahida | Abdussami, Ghufrana | Mahfooz, Maryam | Kamal, Mohammad A. | Damanhouri, Ghazi A. | Jamal, Mohammad S. | Jarullah, Bushra | Jarullah, Jummanah | Jarullah, Mohammad S. S. | Ali, Ashraf | Rasool, Mahmood | Jamal, Mohammad S. | Assidi, Mourad | Abu-Elmagd, Muhammad | Bajouh, Osama | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abuzenadah, Adel | Jamal, Mohammad S. | Jarullah, Jummanah | Mathkoor, Abdulah E. A. | Alsalmi, Hashim M. A. | Oun, Anas M. M. | Damanhauri, Ghazi A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Rasool, Mahmood | Sogaty, Sameera | Chudhary, Adeel G. | Abutalib, Yousif A. | Merico, Daniele | Walker, Susan | Marshall, Christian R. | Zarrei, Mehdi | Scherer, Stephen W. | Al-Qahtani, Mohammad H. | Naseer, Muhammad I. | Faheem, Muhammad | Chaudhary, Adeel G. | Rasool, Mahmood | Kalamegam, Gauthaman | Ashgan, Fai Talal | Assidi, Mourad | Ahmed, Farid | Zaidi, Syed Kashif | Jan, Mohammed M. | Al-Qahtani, Mohammad H. | Al-Zahrani, Maryam | Lary, Sahira | Hakamy, Sahar | Dallol, Ashraf | Al-Ahwal, Mahmoud | Al-Maghrabi, Jaudah | Dermitzakis, Emmanuel | Abuzenadah, Adel | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-refai, Abeer A. | Saleh, Mona | Yassien, Rehab I. | Kamel, Mahmmoud | Habeb, Rabab M. | Filimban, Najlaa | Dallol, Ashraf | Ghannam, Nadia | Al-Qahtani, Mohammed | Abuzenadah, Adel Mohammed | Bibi, Fehmida | Akhtar, Sana | Azhar, Esam I. | Yasir, Muhammad | Nasser, Muhammad I. | Jiman-Fatani, Asif A. | Sawan, Ali | Lahzah, Ruaa A. | Ali, Asho | Hassan, Syed A. | Hasnain, Seyed E. | Tayubi, Iftikhar A. | Abujabal, Hamza A. | Magrabi, Alaa O. | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | Al-Qahtani, Mohammed | Shabaad, Manal | Mathew, Shilu | Dallol, Ashraf | Merdad, Adnan | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Assidi, Mourad | Abu-Elmagd, Muhammad | Gauthaman, Kalamegam | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Hassan, Syed A. | Tayubi, Iftikhar A. | Aljahdali, Hani M. A. | Al Nono, Reham | Gari, Mamdooh | Alsehli, Haneen | Ahmed, Farid | Abbas, Mohammed | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Mathew, Shilu | Khan, Fazal | Rasool, Mahmood | Jamal, Mohammed Sarwar | Naseer, Muhammad Imran | Mirza, Zeenat | Karim, Sajjad | Ansari, Shakeel | Assidi, Mourad | Kalamegam, Gauthaman | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abu-Elmagd, Muhammad | Kalamegam, Gauthaman | Kadam, Roaa | Alghamdi, Mansour A. | Shamy, Magdy | Costa, Max | Khoder, Mamdouh I. | Assidi, Mourad | Pushparaj, Peter Natesan | Gari, Mamdooh | Al-Qahtani, Mohammed | Kharrat, Najla | Belmabrouk, Sabrine | Abdelhedi, Rania | Benmarzoug, Riadh | Assidi, Mourad | Al Qahtani, Mohammed H. | Rebai, Ahmed | Dhamanhouri, Ghazi | Pushparaj, Peter Natesan | Noorwali, Abdelwahab | Alwasiyah, Mohammad Khalid | Bahamaid, Afnan | Alfakeeh, Saadiah | Alyamani, Aisha | Alsehli, Haneen | Abbas, Mohammed | Gari, Mamdooh | Mobasheri, Ali | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Faheem, Muhammad | Mathew, Shilu | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Mathew, Shilu | Faheem, Muhammad | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Jamal, Mohammad Sarwar | Zaidi, Syed Kashif | Khan, Raziuddin | Bhatia, Kanchan | Al-Qahtani, Mohammed H. | Ahmad, Saif | AslamTayubi, Iftikhar | Tripathi, Manish | Hassan, Syed Asif | Shrivastava, Rahul | Tayubi, Iftikhar A. | Hassan, Syed | Abujabal, Hamza A. S. | Shah, Ishani | Jarullah, Bushra | Jamal, Mohammad S. | Jarullah, Jummanah | Sheikh, Ishfaq A. | Ahmad, Ejaz | Jamal, Mohammad S. | Rehan, Mohd | Abu-Elmagd, Muhammad | Tayubi, Iftikhar A. | AlBasri, Samera F. | Bajouh, Osama S. | Turki, Rola F. | Abuzenadah, Adel M. | Damanhouri, Ghazi A. | Beg, Mohd A. | Al-Qahtani, Mohammed | Hammoudah, Sahar A. F. | AlHarbi, Khalid M. | El-Attar, Lama M. | Darwish, Ahmed M. Z. | Ibrahim, Sara M. | Dallol, Ashraf | Choudhry, Hani | Abuzenadah, Adel | Awlia, Jalaludden | Chaudhary, Adeel | Ahmed, Farid | Al-Qahtani, Mohammed | Jafri, Mohammad A. | Abu-Elmagd, Muhammad | Assidi, Mourad | Al-Qahtani, Mohammed | khan, Imran | Yasir, Muhammad | Azhar, Esam I. | Al-basri, Sameera | Barbour, Elie | Kumosani, Taha | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | EL Sayed, Heba M. | Hafez, Eman A. | Schulten, Hans-Juergen | Elaimi, Aisha Hassan | Hussein, Ibtessam R. | Bassiouni, Randa Ibrahim | Alwasiyah, Mohammad Khalid | Wintle, Richard F. | Chaudhary, Adeel | Scherer, Stephen W. | Al-Qahtani, Mohammed | Mirza, Zeenat | Pillai, Vikram Gopalakrishna | Karim, Sajjad | Sharma, Sujata | Kaur, Punit | Srinivasan, Alagiri | Singh, Tej P. | Al-Qahtani, Mohammed | Alotibi, Reem | Al-Ahmadi, Alaa | Al-Adwani, Fatima | Hussein, Deema | Karim, Sajjad | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Faheem, Muhammad | Pushparaj, Peter Natesan | Mathew, Shilu | Kumosani, Taha Abdullah | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Al-Allaf, Faisal A. | Abduljaleel, Zainularifeen | Alashwal, Abdullah | Taher, Mohiuddin M. | Bouazzaoui, Abdellatif | Abalkhail, Halah | Ba-Hammam, Faisal A. | Athar, Mohammad | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abu-Elmagd, Muhammad | Ahmed, Farid | Sait, Khalid HussainWali | Anfinan, Nisreen | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Assidi, Mourad | Al-Qahtani, Mohammed | Mami, Naira Ben | Haffani, Yosr Z. | Medhioub, Mouna | Hamzaoui, Lamine | Cherif, Ameur | Azouz, Msadok | Kalamegam, Gauthaman | Khan, Fazal | Mathew, Shilu | Nasser, Mohammed Imran | Rasool, Mahmood | Ahmed, Farid | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Turkistany, Shereen A. | Al-harbi, Lina M. | Dallol, Ashraf | Sabir, Jamal | Chaudhary, Adeel | Abuzenadah, Adel | Al-Madoudi, Basmah | Al-Aslani, Bayan | Al-Harbi, Khulud | Al-Jahdali, Rwan | Qudaih, Hanadi | Al Hamzy, Emad | Assidi, Mourad | Al Qahtani, Mohammed | Ilyas, Asad M. | Ahmed, Youssri | Gari, Mamdooh | Ahmed, Farid | Alqahtani, Mohammed | Salem, Nada | Karim, Sajjad | Alhathli, Elham M. | Abusamra, Heba | Eldin, Hend F. Nour | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Al-Adwani, Fatima | Hussein, Deema | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Al-Qahtani, Mohammed | Schulten, Hans-Juergen | Alamandi, Alaa | Alotibi, Reem | Hussein, Deema | Karim, Sajjad | Al-Maghrabi, Jaudah | Al-Ghamdi, Fahad | Jamal, Awatif | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Subhi, Ohoud | Bagatian, Nadia | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Aradati, Hosam | Al-Mutawa, Abdulmonem | Al-Mashat, Faisal | Al-Maghrabi, Jaudah | Schulten, Hans-Juergen | Al-Qahtani, Mohammad | Bagatian, Nadia | Subhi, Ohoud | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Mutawa, Abdulmonem | Al-Aradati, Hosam | Al-Mashat, Faisal | Al-Qahtani, Mohammad | Schulten, Hans-Juergen | Al-Maghrabi, Jaudah | shah, Muhammad W. | Yasir, Muhammad | Azhar, Esam I | Al-Masoodi, Saad | Haffani, Yosr Z. | Azouz, Msadok | Khamla, Emna | Jlassi, Chaima | Masmoudi, Ahmed S. | Cherif, Ameur | Belbahri, Lassaad | Al-Khayyat, Shadi | Attas, Roba | Abu-Sanad, Atlal | Abuzinadah, Mohammed | Merdad, Adnan | Dallol, Ashraf | Chaudhary, Adeel | Al-Qahtani, Mohammed | Abuzenadah, Adel | Bouazzi, Habib | Trujillo, Carlos | Alwasiyah, Mohammad Khalid | Al-Qahtani, Mohammed | Alotaibi, Maha | Nassir, Rami | Sheikh, Ishfaq A. | Kamal, Mohammad A. | Jiffri, Essam H. | Ashraf, Ghulam M. | Beg, Mohd A. | Aziz, Mohammad A. | Ali, Rizwan | Rasool, Mahmood | Jamal, Mohammad S. | Samman, Nusaibah | Abdussami, Ghufrana | Periyasamy, Sathish | Warsi, Mohiuddin K. | Aldress, Mohammed | Al Otaibi, Majed | Al Yousef, Zeyad | Boudjelal, Mohamed | Buhmeida, Abdelbasit | Al-Qahtani, Mohammed H. | AlAbdulkarim, Ibrahim | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Sheikh, Ishfaq A. | Abu-Elmagd, Muhammad | Turki, Rola F. | Damanhouri, Ghazi A. | Beg, Mohd A. | Suhail, Mohd | Qureshi, Abid | Jamal, Adil | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad | Qadri, Ishtiaq | El-Readi, Mahmoud Z. | Eid, Safaa Y. | Wink, Michael | Isa, Ahmed M. | Alnuaim, Lulu | Almutawa, Johara | Abu-Rafae, Basim | Alasiri, Saleh | Binsaleh, Saleh | Nazam, Nazia | Lone, Mohamad I. | Ahmad, Waseem | Ansari, Shakeel A. | Alqahtani, Mohamed H.
BMC Genomics  2016;17(Suppl 6):487.
Table of contents
O1 Regulation of genes by telomere length over long distances
Jerry W. Shay
O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy
Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa
O3 Integration of metagenomics and metabolomics in gut microbiome research
Maryam Goudarzi, Albert J. Fornace Jr.
O4 A unique integrated system to discern pathogenesis of central nervous system tumors
Saleh Baeesa, Deema Hussain, Mohammed Bangash, Fahad Alghamdi, Hans-Juergen Schulten, Angel Carracedo, Ishaq Khan, Hanadi Qashqari, Nawal Madkhali, Mohamad Saka, Kulvinder S. Saini, Awatif Jamal, Jaudah Al-Maghrabi, Adel Abuzenadah, Adeel Chaudhary, Mohammed Al Qahtani, Ghazi Damanhouri
O5 RPL27A is a target of miR-595 and deficiency contributes to ribosomal dysgenesis
Heba Alkhatabi
O6 Next generation DNA sequencing panels for haemostatic and platelet disorders and for Fanconi anaemia in routine diagnostic service
Anne Goodeve, Laura Crookes, Nikolas Niksic, Nicholas Beauchamp
O7 Targeted sequencing panels and their utilization in personalized medicine
Adel M. Abuzenadah
O8 International biobanking in the era of precision medicine
Jim Vaught
O9 Biobank and biodata for clinical and forensic applications
Bruce Budowle, Mourad Assidi, Abdelbaset Buhmeida
O10 Tissue microarray technique: a powerful adjunct tool for molecular profiling of solid tumors
Jaudah Al-Maghrabi
O11 The CEGMR biobanking unit: achievements, challenges and future plans
Abdelbaset Buhmeida, Mourad Assidi, Leena Merdad
O12 Phylomedicine of tumors
Sudhir Kumar, Sayaka Miura, Karen Gomez
O13 Clinical implementation of pharmacogenomics for colorectal cancer treatment
Angel Carracedo, Mahmood Rasool
O14 From association to causality: translation of GWAS findings for genomic medicine
Ahmed Rebai
O15 E-GRASP: an interactive database and web application for efficient analysis of disease-associated genetic information
Sajjad Karim, Hend F Nour Eldin, Heba Abusamra, Elham M Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
O16 The supercomputer facility “AZIZ” at KAU: utility and future prospects
Hossam Faheem
O17 New research into the causes of male infertility
Ashok Agarwa
O18 The Klinefelter syndrome: recent progress in pathophysiology and management
Eberhard Nieschlag, Joachim Wistuba, Oliver S. Damm, Mohd A. Beg, Taha A. Abdel-Meguid, Hisham A. Mosli, Osama S. Bajouh, Adel M. Abuzenadah, Mohammed H. Al-Qahtani
O19 A new look to reproductive medicine in the era of genomics
Serdar Coskun
P1 Wnt signalling receptors expression in Saudi breast cancer patients
Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Ashraf Dallol, Jaudah Al-Maghrabi, Sahar Hakamy, Wejdan Al-Qahtani, Asia Al-Harbi, Shireen Hussain, Mourad Assidi, Mohammed Al-Qahtani, Adel Abuzenadah
P2 Analysis of oxidative stress interactome during spermatogenesis: a systems biology approach to reproduction
Burak Ozkosem, Rick DuBois
P3 Interleukin-18 gene variants are strongly associated with idiopathic recurrent pregnancy loss.
Safia S Messaoudi, Maryam T Dandana, Touhami Mahjoub, Wassim Y Almawi
P4 Effect of environmental factors on gene-gene and gene-environment reactions: model and theoretical study applied to environmental interventions using genotype
S. Abdalla, M. Nabil Al-Aama
P5 Genomics and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumor
Asmaa Elzawahry, Tsuyoshi Takahashi, Sachiyo Mimaki, Eisaku Furukawa, Rie Nakatsuka, Isao Kurosaka, Takahiko Nishigaki, Hiromi Nakamura, Satoshi Serada, Tetsuji Naka, Seiichi Hirota, Tatsuhiro Shibata, Katsuya Tsuchihara, Toshirou Nishida, Mamoru Kato
P6 In-Silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: an approach towards development of future vaccines for Pakistani population
Sajid Mehmood, Naeem Mahmood Ashraf, Awais Asif, Muhammad Bilal, Malik Siddique Mehmood, Aadil Hussain
P7 Inhibition of AChE and BuChE with the natural compounds of Bacopa monerri for the treatment of Alzheimer’s disease: a bioinformatics approach
Qazi Mohammad Sajid Jamal, Mughees Uddin Siddiqui, Mohammad A. Alzohairy, Mohammad A. Al Karaawi
P8 Her2 expression in urothelial cell carcinoma of the bladder in Saudi Arabia
Taoufik Nedjadi, Jaudah Al-Maghrabi, Mourad Assidi, Heba Al-Khattabi, Adel Al-Ammari, Ahmed Al-Sayyad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P9 Association of angiotensinogen single nucleotide polymorphisms with Preeclampsia in patients from North Africa
Hédia Zitouni, Nozha Raguema, Marwa Ben Ali, Wided Malah, Raja Lfalah, Wassim Almawi, Touhami Mahjoub
P10 Systems biology analysis reveals relations between normal skin, benign nevi and malignant melanoma
Mohammed Elanbari, Andrey Ptitsyn
P11 The apoptotic effect of thymoquinone in Jurkat cells
Sana Mahjoub, Rabeb El Ghali, Bechir Achour, Nidhal Ben Amor, Mourad Assidi, Brahim N'siri, Hamid Morjani
P12 Sonic hedgehog contributes in bladder cancer invasion in Saudi Arabia
Taoufik Nedjadi, Adel Al-Ammari, Ahmed Al-Sayyad, Nada Salem, Esam Azhar, Jaudah Al-Maghrabi
P13 Association of Interleukin 18 gene promoter polymorphisms - 607A/C and -137 G/C with colorectal cancer onset in a sample of Tunisian population
Vera Chayeb, Maryam Dendena, Hedia Zitouni, Khedija Zouari-Limayem, Touhami Mahjoub
P14 Pathological expression of interleukin-6, -11, leukemia inhibitory factor and their receptors in tubal gestation with and without tubal cytomegalovirus infection
Bassem Refaat, Ahmed M Ashshi, Sarah A Batwa
P15 Phenotypic and genetic profiling of avian pathogenic and human diarrhegenic Escherichia coli in Egypt
Hazem Ramadan, Amal Awad, Ahmed Ateya
P16 Cancer-targeting dual gene virotherapy as a promising therapeutic strategy for treatment of hepatocellular carcinoma
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok YUN
P17 Cancer dual gene therapy with oncolytic adenoviruses expressing TRAIL and IL-12 transgenes markedly eradicated human hepatocellular carcinoma both in vitro and in vivo
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok Yun
P18 Therapy with paricalcitol attenuates tumor growth and augments tumoricidal and anti-oncogenic effects of 5-fluorouracil on animal model of colon cancer
Adel Galal El-Shemi, Bassem Refaat, Osama Kensara, Amr Abdelfattah
P19 The effects of Rubus idaeus extract on normal human lymphocytes and cancer cell line
Batol Imran Dheeb, Mohammed M. F. Al-Halbosiy, Rghad Kadhim Al lihabi, Basim Mohammed Khashman
P20 Etanercept, a TNF-alpha inhibitor, alleviates mechanical hypersensitivity and spontaneous pain in a rat model of chemotherapy-induced neuropathic pain
Djouhri, Laiche, Chaudhary Adeel, Nedjadi, Taoufik
P21 Sleeping beauty mutagenesis system identified genes and neuronal transcription factor network involved in pediatric solid tumour (medulloblastoma)
Hani Al-Afghani, Maria Łastowska, Haya H Al-Balool, Harsh Sheth, Emma Mercer, Jonathan M Coxhead, Chris PF Redfern, Heiko Peters, Alastair D Burt, Mauro Santibanez-Koref, Chris M Bacon, Louis Chesler, Alistair G Rust, David J Adams, Daniel Williamson, Steven C Clifford, Michael S Jackson
P22 Involvement of interleukin-1 in vitiligo pathogenesis
Mala Singh, Mohmmad Shoab Mansuri, Shahnawaz D. Jadeja, Hima Patel, Yogesh S. Marfatia, Rasheedunnisa Begum
P23 Cytogenetics abnormalities in 12,884 referred population for chromosomal analysis and the role of FISH in refining the diagnosis (cytogenetic experience 2004-2013)
Amal M Mohamed, Alaa K Kamel, Nivin A Helmy, Sayda A Hammad, Hesham F Kayed, Marwa I Shehab, Assad El Gerzawy, Maha M. Ead, Ola M Ead, Mona Mekkawy, Innas Mazen, Mona El-Ruby
P24 Analysis of binding properties of angiotensin-converting enzyme 2 through in silico method
S. M. A. Shahid, Qazi Mohammad Sajid Jamal, J. M. Arif, Mohtashim Lohani
P25 Relationship of genetics markers cis and trans to the β-S globin gene with fetal hemoglobin expression in Tunisian sickle cell patients
Moumni Imen, Chaouch Leila, Ouragini Houyem, Douzi Kais, Chaouachi Dorra Mellouli Fethi, Bejaoui Mohamed, Abbes Salem
P26 Analysis of estrogen receptor alpha gene polymorphisms in breast cancer: link to genetic predisposition in Sudanese women
Areeg Faggad, Amanuel T Gebreslasie, Hani Y Zaki, Badreldin E Abdalla
P27 KCNQI gene polymorphism and its association with CVD and T2DM in the Saudi population
Maha S AlShammari, Rhaya Al-Ali, Nader Al-Balawi , Mansour Al-Enazi, Ali Al-Muraikhi, Fadi Busaleh, Ali Al-Sahwan, Francis Borgio, Abdulazeez Sayyed, Amein Al-Ali, Sadananda Acharya
P28 Clinical, neuroimaging and cytogenetic study of a patient with microcephaly capillary malformation syndrome
Maha S. Zaki, Hala T. El-Bassyouni, Marwa I. Shehab
P29 Altered expression of CD200R1 on dendritic cells of patients with inflammatory bowel diseases: in silico investigations and clinical evaluations
Mohammed F. Elshal, Kaleemuddin M., Alia M. Aldahlawi, Omar Saadah,
J. Philip McCoy
P30 Development of real time PCR diagnostic protocol specific for the Saudi Arabian H1N1 viral strains
Adel E El-Tarras, Nabil S Awad, Abdulla A Alharthi, Mohamed M M Ibrahim
P31 Identification of novel genetic variations affecting Osteoarthritis patients
Haneen S Alsehli, Ashraf Dallol, Abdullah M Gari, Mohammed M Abbas, Roaa A Kadam, Mazen M. Gari, Mohmmed H Alkaff, Adel M Abuzenadah, Mamdooh A Gari
P32 An integrated database of GWAS SNVs and their evolutionary properties
Heba Abusamra, Sajjad Karim, Hend F Nour eldin, Elham M Alhathli, Nada Salem, Sudhir Kumar, Mohammed H Al-Qahtani
P33 Familial hypercholesterolemia in Saudi Arabia: prime time for a national registry and genetic analysis
Fatima A. Moradi, Omran M. Rashidi, Zuhier A. Awan
P34 Comparative genomics and network-based analyses of early hepatocellular carcinoma
Ibrahim Hamza Kaya, Olfat Al-Harazi, Dilek Colak
P35 A TALEN-based oncolytic viral vector approach to knock out ABCB1 gene mediated chemoresistance in cancer stem cells
Nabila A Alkousi, Takis Athanasopoulos
P36 Cartilage differentiation and gene expression of synovial fluid mesenchymal stem cells derived from osteoarthritis patients
Afnan O Bahmaid, Etimad A Alhwait, Mamdooh A Gari, Haneen S Alsehli, Mohammed M Abbas, Mohammed H Alkaf, Roaa Kadam, Ashraf Dallol, Gauthaman Kalamegam
P37 E-GRASP: Adding an evolutionary component to the genome-wide repository of associations (GRASP) resource
Hend F Nour Eldin, Sajjad Karim, Heba Abusamra, Elham Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
P38 Screening of AGL gene mutation in Saudi family with glycogen storage disease Type III
Salma N Alsayed, Fawziah H Aljohani, Samaher M Habeeb, Rawan A Almashali, Sulman Basit, Samia M Ahmed
P39 High throughput proteomic data suggest modulation of cAMP dependent protein kinase A and mitochondrial function in infertile patients with varicocele
Rakesh Sharma, Ashok Agarwal, Damayanthi Durairajanayagam, Luna Samanta, Muhammad Abu-Elmagd, Adel M. Abuzenadah, Edmund S. Sabanegh, Mourad Assidi, Mohammed Al-Qahtani
P40 Significant protein profile alterations in men with primary and secondary infertility
Ashok Agarwal, Rakesh Sharma, Luna Samanta, Damayanthi Durairajanayagam, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani, Adel M. Abuzenadah, Edmund S. Sabanegh
P41 Spermatozoa maturation in infertile patients involves compromised expression of heat shock proteins
Luna Samanta, Ashok Agarwal, Rakesh Sharma, Zhihong Cui, Mourad Assidi, Adel M. Abuzenadah, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P42 Array comparative genomic hybridization approach to search genomic answers for spontaneous recurrent abortion in Saudi Arabia
Alaa A Alboogmi, Nuha A Alansari, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Hasan S Jamal, Abdullraheem Rozi, Zeenat Mirza, Adel M Abuzenadah, Sajjad Karim, Mohammed H Al-Qahtani
P43 Global gene expression profiling of Saudi kidney cancer patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P44 Downregulated StAR gene and male reproductive dysfunction caused by nifedipine and ethosuximide
Rasha A Ebiya, Samia M Darwish, Metwally M. Montaser
P45 Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes
Heba Abusamra, Vladimir B. Bajic
P46 Prognostic significance of Osteopontin expression profile in colorectal carcinoma
Jaudah Al-Maghrabi, Wafaey Gomaa, Mehenaz Hanbazazh, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Saher Hakamy, Ghali Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P47 High Glypican-3 expression pattern predicts longer disease-specific survival in colorectal carcinoma
Jaudah Al-Maghrabi, Abdullah Al-Harbi, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Sahar Hakamy, Ghalia Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P48 An evolutionary re-assessment of GWAS single nucleotide variants implicated in the Cholesterol traits
Elham M Alhathli, Sajjad Karim, Nada Salem, Hend Nour Eldin, Heba Abusamra, Sudhir Kumar, Mohammed H Al-Qahtani
P49 Derivation and characterization of human Wharton’s jelly stem cells (hWJSCs) in vitro for future therapeutic applications
Aisha A Alyamani, Gauthaman Kalamegam, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa A Kadam, Mohammed Al-Qahtani
P50 Attitudes of healthcare students toward biomedical research in the post-genomic era
Rawan Gadi, Abdelbaset Buhmeida, Mourad Assidi , Adeel Chaudhary, Leena Merdad
P51 Evaluation of the immunomodulatory effects of thymoquinone on human bone marrow mesenchymal stem cells (BM-MSCs) from osteoarthritic patients
Saadiah M Alfakeeh, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa Kadam, Gauthaman Kalamegam
P52 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M.Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P53 Selection of flavonoids against obesity protein (FTO) using in silico and in vitro approaches
Shilu Mathew, Lobna Mira, Manal Shaabad, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P54 Computational selection and in vitro validation of flavonoids as new antidepressant agents
Shilu Mathew, Manal Shaabad, Lobna Mira, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P55 In Silico prediction and prioritization of aging candidate genes associated with
progressive telomere shortening
Ahmed Rebai, Mourad Assidi, Abdelbaset Buhmeida, Muhammad Abu-Elmagd, Ashraf Dallol, Jerry W Shay
P56 Identification of new cancer testis antigen genes in diverse types of malignant human tumour cells
Mikhlid H Almutairi
P57 More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel sequencing (MPS)
Angie Ambers, Jennifer Churchill, Jonathan King, Monika Stoljarova, Harrell Gill-King, Mourad Assidi, Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Muhammad Al-Qatani, Bruce Budowle
P58 Flow cytometry approach towards treatment men infertility in Saudi Arabia
Muhammad Abu-Elmagd, Farid Ahmed, Ashraf Dallol, Mourad Assidi, Taha Abo Almagd, Sahar Hakamy, Ashok Agarwal, Muhammad Al-Qahtani, Adel Abuzenadah
P59 Tissue microarray based validation of CyclinD1 expression in renal cell carcinoma of Saudi kidney patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Abdelbaset Buhmaida, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P60 Assessment of gold nanoparticles in molecular diagnostics and DNA damage studies
Rukhsana Satar, Mahmood Rasool, Waseem Ahmad, Nazia Nazam, Mohamad I Lone, Muhammad I Naseer, Mohammad S Jamal, Syed K Zaidi, Peter N Pushparaj, Mohammad A Jafri, Shakeel A Ansari, Mohammed H Alqahtani
P61 Surfing the biospecimen management and processing workflow at CEGMR Biobank
Hanan Bashier, Abrar Al Qahtani, Shilu Mathew, Amal M. Nour, Heba Alkhatabi, Adel M. Abu Zenadah, Abdelbaset Buhmeida, Mourad Assidi, Muhammed Al Qahtani
P62 Autism Spectrum Disorder: knowledge, attitude and awareness in Jeddah, Kingdom of Saudi Arabia
Muhammad Faheem, Shilu Mathew, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P63 Simultaneous genetic screening of the coagulation pathway genes using the Thromboscan targeted sequencing panel
Hani A. Alhadrami, Ashraf Dallol, Adel Abuzenadah
P64 Genome wide array comparative genomic hybridization analysis in patients with syndromic congenital heart defects
Ibtessam R. Hussein, Adeel G. Chaudhary, Rima S Bader, Randa Bassiouni, Maha Alquaiti, Fai Ashgan, Hans Schulten, Mohamed Nabil Alama, Mohammad H. Al Qahtani
P65 Toxocogenetic evaluation of 1, 2-Dichloroethane in bone marrow, blood and cells of immune system using conventional, molecular and flowcytometric approaches
Mohammad I Lone, Nazia Nizam, Waseem Ahmad, Mohammad A Jafri, Mahmood Rasool, Shakeel A Ansari, Muhammed H Al-Qahtani
P66 Molecular cytogenetic diagnosis of sexual development disorders in newborn: A case of ambiguous genitalia
Eradah Alshihri, Muhammad Abu-Elmagd, Lina Alharbi, Mourad Assidi, Mohammed Al-Qahtani
P67 Identification of disease specific gene expression clusters and pathways in hepatocellular carcinoma using In Silico methodologies
Shilu Mathew, Peter Pushparaj Natesan, Muhammed Al Qahtani
P68 Human Wharton’s Jelly stem cell conditioned medium inhibits primary ovarian cancer cells in vitro: Identification of probable targets and mechanisms using systems biology
Gauthaman Kalamegam, Peter Natesan Pushparaj, Fazal Khan, Roaa Kadam, Farid Ahmed, Mourad Assidi, Khalid Hussain Wali Sait, Nisreen Anfinan, Mohammed Al Qahtani
P69 Mutation spectrum of ASPM (Abnormal Spindle-like, Microcephaly-associated) gene in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Mohammad S Jamal, Shilu Mathew, Lobna S Mira, Peter N Pushparaj, Shakeel A Ansari, Mahmood Rasool, Mohammed H AlQahtani
P70 Identification and characterization of novel genes and mutations of primary microcephaly in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Shilu Mathew, Lobna S Mira, Mohammad S Jamal, Sameera Sogaty, Randa I Bassiouni, Mahmood Rasool, Mohammed H AlQahtani
P71 Molecular genetic analysis of hereditary nonpolyposis colorectal cancer (Lynch Syndrome) in Saudi Arabian population
Mahmood Rasool, Shakeel A Ansari, Mohammad S Jamal, Peter N Pushparaj, Abdulrahman MS Sibiani, Waseem Ahmad, Abdelbaset Buhmeida, Mohammad A Jafri, Mohiuddin K Warsi, Muhammad I Naseer, Mohammed H Al-Qahtani
P72 Function predication of hypothetical proteins from genome database of chlamydia trachomatis
Rubi, Kundan Kumar, Ahmad AT Naqvi, Faizan Ahmad, Md I Hassan, Mohammad S Jamal, Mahmood Rasool, Mohammed H AlQahtani
P73 Transcription factors as novel molecular targets for skin cancer
Ashraf Ali, Jummanah Jarullah, Mahmood Rasool, Abdelbasit Buhmeida, Shahida Khan, Ghufrana Abdussami, Maryam Mahfooz, Mohammad A Kamal, Ghazi A Damanhouri, Mohammad S Jamal
P74 An In Silico analysis of Plumbagin binding to apoptosis executioner: Caspase-3 and Caspase-7
Bushra Jarullah, Jummanah Jarullah, Mohammad SS Jarullah, Ashraf Ali, Mahmood Rasool, Mohammad S Jamal
P75 Single cell genomics applications for preimplantation genetic screening optimization: Comparative analysis of whole genome amplification technologies
Mourad Assidi, Muhammad Abu-Elmagd, Osama Bajouh, Peter Natesan Pushparaj, Mohammed Al-Qahtani, Adel Abuzenadah
P76 ZFP36 regulates miRs-34a in anti-IgM triggered immature B cells
Mohammad S Jamal, Jummanah Jarullah, Abdulah EA Mathkoor, Hashim MA Alsalmi, Anas MM Oun, Ghazi A Damanhauri, Mahmood Rasool, Mohammed H AlQahtani
P77 Identification of a novel mutation in the STAMBP gene in a family with microcephaly-capillary malformation syndrome
Muhammad I. Naseer, Mahmood Rasool, Sameera Sogaty, Adeel G. Chudhary, Yousif A. Abutalib, Daniele Merico, Susan Walker, Christian R. Marshall, Mehdi Zarrei, Stephen W. Scherer, Mohammad H. Al-Qahtani
P78 Copy number variations in Saudi patients with intellectual disability and epilepsy
Muhammad I. Naseer, Muhammad Faheem, Adeel G. Chaudhary, Mahmood Rasool, Gauthaman Kalamegam, Fai Talal Ashgan, Mourad Assidi, Farid Ahmed, Syed Kashif Zaidi, Mohammed M. Jan, Mohammad H. Al-Qahtani
P79 Prognostic significance of CD44 expression profile in colorectal carcinoma
Maryam Al-Zahrani, Sahira Lary, Sahar Hakamy, Ashraf Dallol, Mahmoud Al-Ahwal, Jaudah Al-Maghrabi, Emmanuel Dermitzakis, Adel Abuzenadah, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P80 Association of the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications
Abeer A Al-refai, Mona Saleh, Rehab I Yassien, Mahmmoud Kamel, Rabab M Habeb
P81 SNPs array to screen genetic variation among diabetic patients
Najlaa Filimban, Ashraf Dallol, Nadia Ghannam, Mohammed Al-Qahtani, Adel Mohammed Abuzenadah
P82 Detection and genotyping of Helicobacter pylori among gastric cancer patients from Saudi Arabian population
Fehmida Bibi, Sana Akhtar, Esam I. Azhar, Muhammad Yasir, Muhammad I. Nasser, Asif A. Jiman-Fatani, Ali Sawan
P83 Antimicrobial drug resistance and molecular detection of susceptibility to Fluoroquinolones among clinical isolates of Salmonella species from Jeddah-Saudi Arabia
Ruaa A Lahzah, Asho Ali
P84 Identification of the toxic and virulence nature of MAP1138c protein of Mycobacterium avium subsp. paratuberculosis
Syed A Hassan, Seyed E Hasnain, Iftikhar A Tayubi, Hamza A Abujabal, Alaa O Magrabi
P85 In vitro and in silico evaluation of miR137 in human breast cancer
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour, Mohammed Al-Qahtani
P86 Auruka gene is over-expressed in Saudi breast cancer
Manal Shabaad, Shilu Mathew, Ashraf Dallol, Adnan Merdad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P87 The potential of immunogenomics in personalized healthcare
Mourad Assidi, Muhammad Abu-Elmagd, Kalamegam Gauthaman, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P88 In Silico physiochemical and structural characterization of a putative ORF MAP0591 and its implication in the pathogenesis of Mycobacterium paratuberculosis in ruminants and humans
Syed A Hassan, Iftikhar A Tayubi, Hani MA Aljahdali
P89 Effects of heat shock on human bone marrow mesenchymal stem cells (BM-MSCs): Implications in regenerative medicine
Reham Al Nono, Mamdooh Gari, Haneen Alsehli, Farid Ahmed, Mohammed Abbas, Gauthaman Kalamegam, Mohammed Al-Qahtani
P90 In Silico analyses of the molecular targets of Resveratrol unravels its importance in mast cell mediated allergic responses
Shilu Mathew, Fazal Khan, Mahmood Rasool, Mohammed Sarwar Jamal, Muhammad Imran Naseer, Zeenat Mirza, Sajjad Karim, Shakeel Ansari, Mourad Assidi, Gauthaman Kalamegam, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P91 Effects of environmental particulate matter on bone-marrow mesenchymal stem cells
Muhammad Abu-Elmagd, Gauthaman Kalamegam, Roaa Kadam, Mansour A Alghamdi, Magdy Shamy, Max Costa, Mamdouh I Khoder, Mourad Assidi, Peter Natesan Pushparaj, Mamdooh Gari, Mohammed Al-Qahtani
P92 Distinctive charge clusters in human virus proteomes
Najla Kharrat, Sabrine Belmabrouk, Rania Abdelhedi, Riadh Benmarzoug, Mourad Assidi, Mohammed H. Al Qahtani, Ahmed Rebai
P93 In vitro experimental model and approach in identification of new biomarkers of inflammatory forms of arthritis
Ghazi Dhamanhouri, Peter Natesan Pushparaj, Abdelwahab Noorwali, Mohammad Khalid Alwasiyah, Afnan Bahamaid, Saadiah Alfakeeh, Aisha Alyamani, Haneen Alsehli, Mohammed Abbas, Mamdooh Gari, Ali Mobasheri, Gauthaman Kalamegam, Mohammed Al-Qahtani
P94 Molecular docking of GABAA receptor subunit γ-2 with novel anti-epileptic compounds
Muhammad Faheem, Shilu Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P95 Breast cancer knowledge, awareness, and practices among Saudi females residing in Jeddah
Shilu Mathew, Muhammad Faheem, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P96 Anti-inflammatory role of Sesamin by Attenuation of Iba1/TNF-α/ICAM-1/iNOS signaling in Diabetic Retinopathy
Mohammad Sarwar Jamal, Syed Kashif Zaidi, Raziuddin Khan, Kanchan Bhatia, Mohammed H. Al-Qahtani, Saif Ahmad
P97 Identification of drug lead molecule against vp35 protein of Ebola virus: An In-Silico approach
Iftikhar AslamTayubi, Manish Tripathi, Syed Asif Hassan, Rahul Shrivastava
P98 An approach to personalized medicine from SNP-calling through disease analysis using whole exome-sequencing of three sub-continental populations
Iftikhar A Tayubi, Syed Hassan, Hamza A.S Abujabal
P99 Low versus high frequency of Glucose –6 – Phosphate Dehydrogenase (G6PD) deficiency in urban against tribal population of Gujarat – A signal to natural selection
Ishani Shah, Bushra Jarullah, Mohammad S Jamal, Jummanah Jarullah
P100 Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update
Ishfaq A Sheikh, Ejaz Ahmad, Mohammad S Jamal, Mohd Rehan, Muhammad Abu-Elmagd, Iftikhar A Tayubi, Samera F AlBasri, Osama S Bajouh, Rola F Turki, Adel M Abuzenadah, Ghazi A Damanhouri, Mohd A Beg, Mohammed Al-Qahtani
P101 Prevalence of congenital heart diseases among Down syndrome cases in Saudi Arabia: role of molecular genetics in the pathogenesis
Sahar AF Hammoudah, Khalid M AlHarbi, Lama M El-Attar, Ahmed MZ Darwish
P102 Combinatorial efficacy of specific pathway inhibitors in breast cancer cells
Sara M Ibrahim, Ashraf Dallol, Hani Choudhry, Adel Abuzenadah, Jalaludden Awlia, Adeel Chaudhary, Farid Ahmed, Mohammed Al-Qahtani
P103 MiR-143 and miR-145 cluster as potential replacement medicine for the treatment of cancer
Mohammad A Jafri, Muhammad Abu-Elmagd, Mourad Assidi, Mohammed Al-Qahtani
P104 Metagenomic profile of gut microbiota during pregnancy in Saudi population
Imran khan, Muhammad Yasir, Esam I. Azhar, Sameera Al-basri, Elie Barbour, Taha Kumosani
P105 Exploration of anticancer targets of selected metabolites of Phoenix dactylifera L. using systems biological approaches
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour
P106 CD226 and CD40 gene polymorphism in susceptibility to Juvenile rheumatoid arthritis in Egyptian patients
Heba M. EL Sayed, Eman A. Hafez
P107 Paediatric exome sequencing in autism spectrum disorder ascertained in Saudi families
Hans-Juergen Schulten, Aisha Hassan Elaimi, Ibtessam R Hussein, Randa Ibrahim Bassiouni, Mohammad Khalid Alwasiyah, Richard F Wintle, Adeel Chaudhary, Stephen W Scherer, Mohammed Al-Qahtani
P108 Crystal structure of the complex formed between Phospholipase A2 and the central core hydrophobic fragment of Alzheimer’s β- amyloid peptide: a reductionist approach
Zeenat Mirza, Vikram Gopalakrishna Pillai, Sajjad Karim, Sujata Sharma, Punit Kaur, Alagiri Srinivasan, Tej P Singh, Mohammed Al-Qahtani
P109 Differential expression profiling between meningiomas from female and male patients
Reem Alotibi, Alaa Al-Ahmadi, Fatima Al-Adwani, Deema Hussein, Sajjad Karim, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P110 Neurospheres as models of early brain development and therapeutics
Muhammad Faheem, Peter Natesan Pushparaj, Shilu Mathew, Taha Abdullah Kumosani, Gauthaman Kalamegam, Mohammed Al-Qahtani
P111 Identification of a recurrent causative missense mutation p.(W577C) at the LDLR exon 12 in familial hypercholesterolemia affected Saudi families
Faisal A Al-Allaf, Zainularifeen Abduljaleel, Abdullah Alashwal, Mohiuddin M. Taher, Abdellatif Bouazzaoui, Halah Abalkhail, Faisal A. Ba-Hammam, Mohammad Athar
P112 Epithelial ovarian carcinoma (EOC): Systems oncological approach to identify diagnostic, prognostic and therapeutic biomarkers
Gauthaman Kalamegam, Peter Natesan Pushparaj, Muhammad Abu-Elmagd, Farid Ahmed Khalid HussainWali Sait, Nisreen Anfinan, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Mourad Assidi, Mohammed Al-Qahtani
P113 Crohn’s disease phenotype in northern Tunisian population
Naira Ben Mami, Yosr Z Haffani, Mouna Medhioub, Lamine Hamzaoui, Ameur Cherif, Msadok Azouz
P114 Establishment of In Silico approaches to decipher the potential toxicity and mechanism of action of drug candidates and environmental agents
Gauthaman Kalamegam, Fazal Khan, Shilu Mathew, Mohammed Imran Nasser, Mahmood Rasool, Farid Ahmed, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P115 1q Gain predicts poor prognosis marker for young breast cancer patients
Shereen A Turkistany, Lina M Al-harbi, Ashraf Dallol, Jamal Sabir, Adeel Chaudhary, Adel Abuzenadah
P116 Disorders of sex chromosomes in a diagnostic genomic medicine unit in Saudi Arabia: Prevalence, diagnosis and future guidelines
Basmah Al-Madoudi, Bayan Al-Aslani, Khulud Al-Harbi, Rwan Al-Jahdali, Hanadi Qudaih, Emad Al Hamzy, Mourad Assidi, Mohammed Al Qahtani
P117 Combination of WYE354 and Sunitinib demonstrate synergistic inhibition of acute myeloid leukemia in vitro
Asad M Ilyas, Youssri Ahmed, Mamdooh Gari, Farid Ahmed, Mohammed Alqahtani
P118 Integrated use of evolutionary information in GWAS reveals important SNPs in Asthma
Nada Salem, Sajjad Karim, Elham M Alhathli, Heba Abusamra, Hend F Nour Eldin, Mohammed H Al-Qahtani, Sudhir Kumar
P119 Assessment of BRAF, IDH1, IDH2, and EGFR mutations in a series of primary brain tumors
Fatima Al-Adwani, Deema Hussein, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Mohammed Al-Qahtani, Hans-Juergen Schulten
P120 Expression profiles distinguish oligodendrogliomas from glioblastoma multiformes with or without oligodendroglioma component
Alaa Alamandi, Reem Alotibi, Deema Hussein, Sajjad Karim, Jaudah Al-Maghrabi, Fahad Al-Ghamdi, Awatif Jamal, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P121 Hierarchical clustering in thyroid goiters and hyperplastic lesions
Ohoud Subhi, Nadia Bagatian, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Hosam Al-Aradati, Abdulmonem Al-Mutawa, Faisal Al-Mashat, Jaudah Al-Maghrabi, Hans-Juergen Schulten, Mohammad Al-Qahtani
P122 Differential expression analysis in thyroiditis and papillary thyroid carcinomas with or without coexisting thyroiditis
Nadia Bagatian, Ohoud Subhi, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Abdulmonem Al-Mutawa, Hosam Al-Aradati, Faisal Al-Mashat, Mohammad Al-Qahtani, Hans-Juergen Schulten, Jaudah Al-Maghrabi
P123 Metagenomic analysis of waste water microbiome in Sausdi Arabia
Muhammad W shah, Muhammad Yasir, Esam I Azhar, Saad Al-Masoodi
P124 Molecular characterization of Helicobacter pylori from faecal samples of Tunisian patients with gastric cancer
Yosr Z Haffani, Msadok Azouz, Emna Khamla, Chaima Jlassi, Ahmed S. Masmoudi, Ameur Cherif, Lassaad Belbahri
P125 Diagnostic application of the oncoscan© panel for the identification of hereditary cancer syndrome
Shadi Al-Khayyat, Roba Attas, Atlal Abu-Sanad, Mohammed Abuzinadah, Adnan MerdadAshraf Dallol, Adeel Chaudhary, Mohammed Al-Qahtani, Adel Abuzenadah
P126 Characterization of clinical and neurocognitive features in a family with a novel OGT gene missense mutation c. 1193G > A/ (p. Ala319Thr)
Habib Bouazzi, Carlos Trujillo, Mohammad Khalid Alwasiyah, Mohammed Al-Qahtani
P127 Case report: a rare homozygous deletion mutation of TMEM70 gene associated with 3-Methylglutaconic Aciduria and cataract in a Saudi patient
Maha Alotaibi, Rami Nassir
P128 Isolation and purification of antimicrobial milk proteins
Ishfaq A Sheikh, Mohammad A Kamal, Essam H Jiffri, Ghulam M Ashraf, Mohd A Beg
P129 Integrated analysis reveals association of ATP8B1 gene with colorectal cancer
Mohammad A Aziz, Rizwan Ali, Mahmood Rasool, Mohammad S Jamal, Nusaibah samman, Ghufrana Abdussami, Sathish Periyasamy, Mohiuddin K Warsi, Mohammed Aldress, Majed Al Otaibi, Zeyad Al Yousef, Mohamed Boudjelal, Abdelbasit Buhmeida, Mohammed H Al-Qahtani, Ibrahim AlAbdulkarim
P130 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M. Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P131 Interactions of endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-2-ethylhexyl phthalate (MEHP) with progesterone receptor
Ishfaq A Sheikh, Muhammad Abu-Elmagd, Rola F Turki, Ghazi A Damanhouri, Mohd A. Beg
P132 Association of HCV nucleotide polymorphism in the development of hepatocellular carcinoma
Mohd Suhail, Abid Qureshi, Adil Jamal, Peter Natesan Pushparaj, Mohammad Al-Qahtani, Ishtiaq Qadri
P133 Gene expression profiling by DNA microarrays in colon cancer treated with chelidonine alkaloid
Mahmoud Z El-Readi, Safaa Y Eid, Michael Wink
P134 Successful in vitro fertilization after eight failed trials
Ahmed M. Isa, Lulu Alnuaim, Johara Almutawa, Basim Abu-Rafae, Saleh Alasiri, Saleh Binsaleh
P135 Genetic sensitivity analysis using SCGE, cell cycle and mitochondrial membrane potential in OPs stressed leukocytes in Rattus norvegicus through flow cytometric input
Nazia Nazam, Mohamad I Lone, Waseem Ahmad, Shakeel A Ansari, Mohamed H Alqahtani
doi:10.1186/s12864-016-2858-0
PMCID: PMC4959372  PMID: 27454254
3.  Anaerobic culture to detect periodontal and caries pathogens 
Background
Anaerobic culture has been critical in our understanding of the oral microbiotas.
Highlight
Studies in advanced periodontitis in the 1970’s revealed microbial complexes that associated with different clinical presentations. Taxonomy studies identified species newly-observed in periodontitis as Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter (Wolinella) rectus and other Campylobacter species, and Tannerella (Bacteroides) forsythia. Anaerobic culture of initial periodontitis showed overlap in the microbiota with gingivitis, and added Selenomonas noxia and Filifactor alocis as putative periodontal pathogens. Porphyromonas gingivalis and T. forsythia were found to be associated with initial periodontitis in adults. The dominant microbiota of dental caries differs from that of periodontitis. The major cariogenic species are acidogenic and acid tolerant species particularly Streptococcus mutans, and Lactobacillus and Bifidobacterium species. Anaerobic culture of severe early childhood caries revealed a widely diverse microbiota, comparable to that observed using cloning and sequencing. The PCR-based cloning approach, however, underestimated Actinobacteria compared with culture. Only a subset of the caries-associated microbiota was acid tolerant, with different segments of the microbiota cultured on blood agar compared to a low pH acid agar. While the major caries-associated species was S. mutans, a new species, Scardovia wiggsiae, was significantly associated with early childhood caries. Higher counts of S. wiggsiae were also observed in initial white spot carious lesions in adolescents.
Conclusion
In periodontitis and dental caries, anaerobic culture studies of advanced disease provided a comprehensive analysis of the microbiota of these infections. Anaerobic culture highlighted the limitation of PCR with standard primers that underestimate detection of Actinobacteria.
doi:10.1016/j.job.2014.08.001
PMCID: PMC4321760  PMID: 25678835
Anaerobic culture; 16S rRNA; Microbiome; Caries; Periodontitis
4.  RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42 
A genome wide RNAi screen identifies 72 host cell genes affecting S. Typhimurium entry, including actin regulators and COPI. This study implicates COPI-dependent cholesterol and sphingolipid localization as a common mechanism of infection by bacterial and viral pathogens.
Genome-scale RNAi screen identifies 72 host genes affecting S. Typhimurium host cell invasion.Step-specific follow-up assays assign the phenotypes to specific steps of the invasion process.COPI effects on host cell binding, ruffling and invasion were traced to a key role of COPI in membrane targeting of cholesterol, sphingolipids, Rac1 and Cdc42.This new role of COPI explains why COPI is required for host cell infection by numerous bacterial and viral pathogens.
Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; reviewed in Schlumberger and Hardt, 2006) and vesicular traffic (e.g., Rab7) as well as unexpected hits, such as the COPI complex. COPI is a known organizer of Golgi-to-ER vesicle transport (Bethune et al, 2006; Beck et al, 2009). Here, we show that COPI is also involved in plasma membrane targeting of cholesterol, sphingolipids and the Rho GTPases Cdc42 and Rac1, essential host cell factors required for Salmonella invasion. This explains why COPI depletion inhibits infection by S. Typhimurium and illustrates how combining bacterial pathogenesis and systems approaches can promote cell biology.
Salmonella Typhimurium is a common food-borne pathogen and worldwide a major public health problem causing severe diarrhea. The pathogen uses the host's gut mucosa as a portal of entry and gut tissue invasion is a key event leading to the disease. This explains the intense interest from medicine and basic biology in the mechanism of Salmonella host cell invasion.
Tissue culture infection models have delineated a sequence of events leading host cell invasion (Figure 1; Schlumberger and Hardt, 2006): (i) pathogen binding to the host cell surface; (ii) activation of a syringe-like apparatus (‘Type III secretion system 1', T1) of the bacterium and injection of a bacterial toxin cocktail into the host cell. These toxins include SopE, a key virulence factor triggering invasion (Hardt et al, 1998), which was analyzed in our study; (iii) toxin-triggered membrane ruffling. To a significant extent, this is facilitated by SopE-triggered activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection; (iv) engulfment of the pathogen within a vesicular compartment (SCV) and (v) maturation of the SCV, a process driven by a second Type III secretion system (T2), which is expressed by the pathogen upon bacterial entry (Figure 1). This sequence of events mediates Salmonella invasion into the gut epithelium and illustrates that this pathogen can be used for probing mechanisms of host cell actin control, membrane biogenesis, vesicle formation and vesicular trafficking.
SopE is a key virulence factor of invasion and triggers the activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection. We have employed a SopE-expressing S. Typhimurium strain and RNAi screening technology to identify host cell factors affecting invasion. First, we developed an automated fluorescence microscopy assay to quantify S. Typhimurium entry in a high-throughput format (Figure 1C). This assay was based on a GFP reporter expressed by the pathogen after invasion and maturation of the SCV. Using this assay, we screened a ‘druggable genome' siRNA library (6978 genes, 3 oligos each, 1 oligo per well) and identified 72 invasion hits. These included established regulators of the actin cytoskeleton (Cdc42, Arp2/3, Nap1; Schlumberger and Hardt, 2006), some of which have not been implicated so far in Salmonella entry (Pfn1, Cap1), as well as proteins not previously thought to influence infection (Atp1a1, Rbx1, COPI complex). Potentially, these hits could affect any step of the invasion process (Figure 1A).
In the second stage of the study, we have assigned each ‘invasion hit' to particular steps of the invasion process. For this purpose, we developed step-specific assays for Salmonella binding, injection, ruffling and membrane engulfment and re-screened the genes found as hits in the first screen (four siRNAs per gene). As expected, a significant number of ‘hits' affected binding to the host cell, others affected binding and ruffling (e.g., Pfn1, Itgβ5, Cap1), a few were specific for the ruffling step (e.g., Cdc42) and some affected SCV maturation, namely Rab7a, the trafficking protein Vps39 and the vacuolar proton pump Atp6ap2. Thus, our experimental strategy allowed mechanistic interpretation and linked novel hits to particular phenotypes, thus providing a basis for further studies (Figure 1).
COPI depletion impaired effector injection and ruffling. This was surprising, as the COPI complex was known to regulate retrogade Golgi-to-ER transport, but was not expected to affect pathogen interactions at the plasma membrane. Therefore, we have investigated the underlying mechanism. We have observed that COPI depletion entailed dramatic changes in the plasma membrane composition (Figure 6). Cholesterol and sphingolipids, which form domains (‘lipid rafts') in the plasma membrane, were depleted from the cell surface and redirected into a large vesicular compartment. The same was true for the Rho GTPases Rac1 and Cdc42. This strong decrease in the amount of cholesterol-enriched microdomains and Rho GTPases in the plasma membrane explained the observed defects in S. Typhimurium host cell invasion and assigned a novel role for COPI in controlling mammalian plasma membrane composition. It should be noted that other viral and bacterial pathogens do show a similar dependency on host cellular COPI and plasma membrane lipids. This includes notorious pathogens such as Staphylococcus aureus (Ramet et al, 2002; Potrich et al, 2009), Listeria monocytogenes (Seveau et al, 2004; Agaisse et al, 2005; Cheng et al, 2005; Gekara et al, 2005), Mycobacterium tuberculosis (Munoz et al, 2009), Chlamydia trachomatis (Elwell et al, 2008), influenza virus (Hao et al, 2008; Konig et al, 2010), hepatitis C virus (Tai et al, 2009; Popescu and Dubuisson, 2010) and the vesicular stomatitis virus (presented study) and suggests that COPI-mediated control of host cell plasma membrane composition might be of broad importance for pathogenesis. Future work will have to address whether this might offer starting points for developing anti-infective therapeutics with a very broad spectrum of activity.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.
doi:10.1038/msb.2011.7
PMCID: PMC3094068  PMID: 21407211
coatomer; HeLa; Salmonella; siRNA; systems biology
5.  Dissecting Inflammatory Complications in Critically Injured Patients by Within-Patient Gene Expression Changes: A Longitudinal Clinical Genomics Study 
PLoS Medicine  2011;8(9):e1001093.
By studying gene expression changes over time in a cohort of trauma patients, Keyur Desai and colleagues identify genes and pathways strongly associated with longer-term complications, which could lead to improved outcome prediction in the first 80 hours after injury.
Background
Trauma is the number one killer of individuals 1–44 y of age in the United States. The prognosis and treatment of inflammatory complications in critically injured patients continue to be challenging, with a history of failed clinical trials and poorly understood biology. New approaches are therefore needed to improve our ability to diagnose and treat this clinical condition.
Methods and Findings
We conducted a large-scale study on 168 blunt-force trauma patients over 28 d, measuring ∼400 clinical variables and longitudinally profiling leukocyte gene expression with ∼800 microarrays. Marshall MOF (multiple organ failure) clinical score trajectories were first utilized to organize the patients into five categories of increasingly poor outcomes. We then developed an analysis framework modeling early within-patient expression changes to produce a robust characterization of the genomic response to trauma. A quarter of the genome shows early expression changes associated with longer-term post-injury complications, captured by at least five dynamic co-expression modules of functionally related genes. In particular, early down-regulation of MHC-class II genes and up-regulation of p38 MAPK signaling pathway were found to strongly associate with longer-term post-injury complications, providing discrimination among patient outcomes from expression changes during the 40–80 h window post-injury.
Conclusions
The genomic characterization provided here substantially expands the scope by which the molecular response to trauma may be characterized and understood. These results may be instrumental in furthering our understanding of the disease process and identifying potential targets for therapeutic intervention. Additionally, the quantitative approach we have introduced is potentially applicable to future genomics studies of rapidly progressing clinical conditions.
Trial Registration
ClinicalTrials.gov NCT00257231
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Trauma—a serious injury to the body caused by violence or by an accident—is a major global health problem. Every year, events that include traffic collisions, falls, blows, and fires cause injuries that kill more than 5 million people (9% of annual global deaths). Road traffic accidents alone are responsible for 1.3 million deaths a year and, if current trends continue, will be the fifth leading cause of death worldwide by 2030. Moreover, in many countries, including the US, trauma is the number one killer of individuals aged 1–44 y. Trauma can kill people rapidly through loss of blood or serious physical damage to internal organs, but it can also lead to localized infections and to sepsis, an infection of the bloodstream that is characterized by an amplified, body-wide (systemic) inflammatory response. Inflammation—redness, pain, and swelling—is an immune system response that normally provides protection against infections, but systemic inflammation can result in multiple organ failure (MOF) and death.
Why Was This Study Done?
Inflammatory complications of trauma are responsible for more than half of late trauma deaths, but at present it is impossible to predict which patients with major injuries will recover and which will spiral down into MOF and death, because the biological processes that underlie post-injury inflammatory complications are poorly understood. If the changes in gene expression (the process that converts the information encoded in genes into functional proteins) that accompany systemic inflammation could be elucidated, it might be possible to improve the diagnosis of MOF and to develop better treatments for post-trauma inflammatory complications. In this prospective, longitudinal clinical genomics study (part of the Inflammation and Host Response to Injury multi-disciplinary research program [IHRI]), the researchers developed an approach to associate early within-patient gene expression changes with later clinical outcomes. A prospective study is one in which patients with a specific condition are enrolled and then followed to see how various factors affect their outcomes; a longitudinal study analyzes multiple samples taken at different times from individual patients; a clinical genomics study investigates how genes and gene expression affect clinical outcomes.
What Did the Researchers Do and Find?
The researchers followed 168 patients for up to 28 d after they experienced blunt-force trauma (injuries caused when the human body hits or is hit by a large object such as a car). Using a molecular biology tool called a DNA microarray, they determined gene expression patterns in leukocytes (a type of immune system cell) isolated from multiple blood samples collected from each patient during the first few days after injury. Using clinical information collected by trained nurses, they organized the patients into five outcome categories based on a measure of MOF known as the Marshall score. Finally, they developed a statistical method (an analysis framework) to associate the early changes in gene expression with clinical outcomes.
A quarter of the patients' genes showed early expression changes that were associated with longer-term post-injury inflammatory complications. Among the associations revealed by this analysis, down-regulation (reduced expression) of MHC-class II genes (which encode proteins involved in antigen presentation, the process by which molecules from foreign invaders are presented to immune cells to initiate an immune response) and up-regulation of genes encoding components of the p38 MAPK signaling pathway (which helps to drive inflammatory responses) between 40 and 80 h post-injury were particularly strongly associated with longer-term post-injury complications and provided the strongest discrimination between patient outcomes.
What Do These Findings Mean?
The statistical approach used in this study to link the early changes in gene expression that occur after trauma to clinical outcomes provides a detailed picture of genome-wide gene expression responses to trauma. These findings could help scientists understand why some patients develop inflammatory complications of trauma while others do not, and they could help to identify those patients most at risk of developing complications. They could also help to identify targets for therapy, although further studies are needed to confirm and extend these findings. Importantly, the quantitative approach developed by the researchers for analyzing associations between within-patient gene changes over time and clinical outcomes should provide more robust predictions of outcomes than single measurements of gene expression and could be applicable to genomic studies of other rapidly progressing clinical conditions.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001093.
More details about the Inflammation and Host Response to Injury research program are available; the program's website includes a link to an article that explains how genomics can be used to understand the inflammatory complications of trauma
The World Health Organization provides information on injuries and on violence and injury prevention (in several languages)
The US National Institutes of Health has a factsheet on burns and traumatic injury in the USA
The US Centers for Disease Control and Prevention has information on injury and violence prevention and control
MedlinePlus provides links to further resources on injuries
doi:10.1371/journal.pmed.1001093
PMCID: PMC3172280  PMID: 21931541
6.  Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach 
PLoS Pathogens  2009;5(7):e1000508.
A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF) was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine learning algorithms for the identification and characterization of bacterial pathogenesis determinants.
Author Summary
Many pathogenic bacteria exert their function by translocating a set of proteins, termed effectors, into the cytoplasm of their host cell. These effectors subvert various host cell processes for the benefit of the bacteria. Our goal in this study was to identify novel effectors in a genomic scale, towards a better understanding of the molecular mechanisms of bacterial pathogenesis. We developed a computational approach for the detection of new effectors in the intracellular pathogen Legionella pneumophila, the causative agent of the Legionnaires' disease, a severe pneumonia-like disease. The novelty of our approach for detecting effectors is the combination of state-of-the-art machine learning classification algorithms with broad biological knowledge on effector biology in a genomic scale. Applying this method, we detected and experimentally validated dozens of new effectors. Notably, our computational predictions had an exceedingly high accuracy of over 90%. In analyzing these effectors we were able to obtain new insights into the molecular mechanism of the pathogenesis system. Our results suggest, for the first time, that over 10% of the Legionella genome is dedicated to pathogenesis. Finally, our approach is general and can be utilized to study effectors in many other human pathogens.
doi:10.1371/journal.ppat.1000508
PMCID: PMC2701608  PMID: 19593377
7.  Multiserotype Enzyme-Linked Immunosorbent Assay as a Diagnostic Aid for Periodontitis in Large-Scale Studies 
Journal of Clinical Microbiology  2002;40(2):512-518.
Periodontitis is a common chronic oral infection caused by gram-negative bacteria, including Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontitis evokes inflammatory host response locally in the periodontium but also systemically. The systemic humoral antibody response against oral pathogens can conveniently be measured by an immunoassay. The aim of the study was to measure serum immunoglobulin G class antibodies against A. actinomycetemcomitans and P. gingivalis by an enzyme-linked immunosorbent assay (ELISA) in which mixtures of several serotypes of the pathogens were used as antigens to avoid biasing of the results in favor of a particular strain. For A. actinomycetemcomitans the antigen consisted of six strains representing serotypes a, b, c, d, and e and one nonserotypeable strain. In the P. gingivalis ELISA, antigens representing serotypes a, b, and c were used. Serum samples from 90 subjects, including 35 samples from patients with diagnosed periodontitis, 10 samples from periodontally healthy controls, and 45 samples from randomly selected apparently healthy volunteers (referred to as “healthy subjects”), were tested. For both pathogens the antibody levels (means ± standard deviations) of the patients—expressed as area under the dilution curve—were significantly higher than those for healthy controls or healthy subjects, with values for A. actinomycetemcomitans and P. gingivalis, respectively, as follows: patients, 22.60 ± 9.94 mm2 and 26.72 ± 11.13 mm2; healthy controls, 9.99 ± 3.92 mm2 and 6.90 ± 3.38 mm2; and healthy subjects, 16.85 ± 6.67 mm2 and 8.51 ± 4.23 mm2. The serotype mixture ELISA is suitable for measuring antibodies against periodontal pathogens in large epidemiological studies in order to evaluate the role of periodontitis as a risk factor for other diseases.
doi:10.1128/JCM.40.2.512-518.2002
PMCID: PMC153358  PMID: 11825965
8.  Metabolite Cross-Feeding Enhances Virulence in a Model Polymicrobial Infection 
PLoS Pathogens  2011;7(3):e1002012.
Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis; however, the molecular mechanisms governing these interactions are not well understood. Development of model systems that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A. actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly, inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial communities.
Author Summary
Many bacterial infections are not the result of colonization and persistence of a single pathogenic microbe in an infection site but instead the result of colonization by several. Although the importance of polymicrobial interactions and pathogenesis has been noted by many prominent microbiologists including Louis Pasteur, most studies of pathogenic microbes have focused on single organism infections. One of the primary reasons for this oversight is the lack of robust model systems for studying bacterial interactions in an infection site. Here, we use a model co-culture system composed of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans and the common oral commensal Streptococcus gordonii to assess the impact of polymicrobial growth on pathogenesis. We found that the abilities of A. actinomycetemcomitans to persist and cause disease are enhanced during co-culture with S. gordonii. Remarkably, this enhanced persistence requires A. actinomycetemcomitans catabolism of L-lactate, the primary metabolite produced by S. gordonii. These data demonstrate that during co-culture growth, S. gordonii provides a carbon source for A. actinomycetemcomitans that is necessary for establishing a robust polymicrobial infection. This study also demonstrates that virulence of an opportunistic pathogen is impacted by members of the commensal flora.
doi:10.1371/journal.ppat.1002012
PMCID: PMC3069116  PMID: 21483753
9.  Phylodynamic Inference for Structured Epidemiological Models 
PLoS Computational Biology  2014;10(4):e1003570.
Coalescent theory is routinely used to estimate past population dynamics and demographic parameters from genealogies. While early work in coalescent theory only considered simple demographic models, advances in theory have allowed for increasingly complex demographic scenarios to be considered. The success of this approach has lead to coalescent-based inference methods being applied to populations with rapidly changing population dynamics, including pathogens like RNA viruses. However, fitting epidemiological models to genealogies via coalescent models remains a challenging task, because pathogen populations often exhibit complex, nonlinear dynamics and are structured by multiple factors. Moreover, it often becomes necessary to consider stochastic variation in population dynamics when fitting such complex models to real data. Using recently developed structured coalescent models that accommodate complex population dynamics and population structure, we develop a statistical framework for fitting stochastic epidemiological models to genealogies. By combining particle filtering methods with Bayesian Markov chain Monte Carlo methods, we are able to fit a wide class of stochastic, nonlinear epidemiological models with different forms of population structure to genealogies. We demonstrate our framework using two structured epidemiological models: a model with disease progression between multiple stages of infection and a two-population model reflecting spatial structure. We apply the multi-stage model to HIV genealogies and show that the proposed method can be used to estimate the stage-specific transmission rates and prevalence of HIV. Finally, using the two-population model we explore how much information about population structure is contained in genealogies and what sample sizes are necessary to reliably infer parameters like migration rates.
Author Summary
Mathematical models play an important role in our understanding of what processes drive the complex population dynamics of infectious pathogens. Yet developing statistical methods for fitting models to epidemiological data is difficult. Epidemiological data is often noisy, incomplete, aggregated across different scales and generally provides only a partial picture of the underlying disease dynamics. Using nontraditional sources of data, like molecular sequences of pathogens, can provide additional information about epidemiological dynamics. But current “phylodynamic” inference methods for fitting models to genealogies reconstructed from sequence data have a number of major limitations. We present a statistical framework that builds upon earlier work to address two of these limitations: population structure and stochasticity. By incorporating population structure, our framework can be applied in cases where the host population is divided into different subpopulations, such as by spatial isolation. Our framework also takes into consideration stochastic noise and can therefore capture the inherent variability of epidemiological dynamics. These advances allow for a much wider class of epidemiological models to be fit to genealogies in order to estimate key epidemiological parameters and to reconstruct past disease dynamics.
doi:10.1371/journal.pcbi.1003570
PMCID: PMC3990497  PMID: 24743590
10.  Association between Selected Oral Pathogens and Gastric Precancerous Lesions 
PLoS ONE  2013;8(1):e51604.
We examined whether colonization of selected oral pathogens is associated with gastric precancerous lesions in a cross-sectional study. A total of 119 participants were included, of which 37 were cases of chronic atrophic gastritis, intestinal metaplasia, or dysplasia. An oral examination was performed to measure periodontal indices. Plaque and saliva samples were tested with real-time quantitative PCR for DNA levels of pathogens related to periodontal disease (Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola, Actinobacillus actinomycetemcomitans) and dental caries (Streptococcus mutans and S. sobrinus). There were no consistent associations between DNA levels of selected bacterial species and gastric precancerous lesions, although an elevated but non-significant odds ratio (OR) for gastric precancerous lesions was observed in relation to increasing colonization of A. actinomycetemcomitans (OR = 1.36 for one standard deviation increase, 95% Confidence Interval = 0.87–2.12), P. gingivalis (OR = 1.12, 0.67–1.88) and T. denticola (OR = 1.34, 0.83–2.12) measured in plaque. To assess the influence of specific long-term infection, stratified analyses by levels of periodontal indices were conducted. A. actinomycetemcomitans was significantly associated with gastric precancerous lesions (OR = 2.51, 1.13–5.56) among those with ≥ median of percent tooth sites with PD≥3 mm, compared with no association among those below the median (OR = 0.86, 0.43–1.72). A significantly stronger relationship was observed between the cumulative bacterial burden score of periodontal disease-related pathogens and gastric precancerous lesions among those with higher versus lower levels of periodontal disease indices (p-values for interactions: 0.03–0.06). Among individuals with periodontal disease, high levels of colonization of periodontal pathogens are associated with an increased risk of gastric precancerous lesions.
doi:10.1371/journal.pone.0051604
PMCID: PMC3538744  PMID: 23308100
11.  Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing 
We developed analytical models of DNA replication that include probabilistic initiation of origins, fork progression, passive replication, and asynchrony.We fit the model to budding yeast genome-wide microarray data probing the replication fraction and found that initiation times correlate with the precision of timing.We extracted intrinsic origin properties, such as potential origin efficiency and firing-time distribution, which cannot be done using phenomenological approaches.We propose that origin timing is controlled by stochastically activated initiators bound to origin sites rather than explicit time-measuring mechanisms.
The kinetics of DNA replication must be controlled for cells to develop properly. Although the biochemical mechanisms of origin initiations are increasingly well understood, the organization of initiation timing as a genome-wide program is still a mystery. With the advance of technology, researchers have been able to generate large amounts of data revealing aspects of replication kinetics. In particular, the use of microarrays to probe the replication fraction of budding yeast genome wide has been a successful first step towards unraveling the details of the replication program (Raghuraman et al, 2001; Alvino et al, 2007; McCune et al, 2008). On the surface, the microarray data shows apparent patterns of early and late replicating regions and seems to support the prevailing picture of eukaryotic replication—origins are positioned at defined sites and initiated at defined, preprogrammed times (Donaldson, 2005). Molecular combing, a single-molecule technique, however, showed that the initiation of origins is stochastic (Czajkowsky et al, 2008). Motivated by these conflicting viewpoints, we developed a model that is flexible enough to describe both deterministic and stochastic initiation.
We modeled origin initiation as probabilistic events. We first propose a model where each origin is allowed to have its distinct ‘firing-time distribution.' Origins that have well-determined initiation times have narrow distributions, whereas more stochastic origins have wider distributions. Similar models based on simulations have previously been proposed (Lygeros et al, 2008; Blow and Ge, 2009; de Moura et al, 2010); however, our model is novel in that it is analytic. It is much faster than simulations and allowed us, for the first time, to fit genome-wide microarray data and extract parameters that describe the replication program in unprecedented detail (Figure 2).
Our main result is this: origins that fire early, on average, have precisely defined initiation times, whereas origins that fire late, on average, do not have a well-defined initiation time and initiate throughout S phase. What kind of global controlling mechanism can account for this trend? We propose a second model where an origin is composed of multiple initiators, each of which fires independently and identically. A good candidate for the initiator is the minichromosome maintenance (MCM) complex, as it is found to be associated with origin firing and loaded in abundance (Hyrien et al, 2003). We show that the aforementioned relationship can be explained quantitatively if the earlier-firing origins have more MCM complexes. This model offers a new view of replication: controlled origin timing can emerge from stochastic firing and does not need an explicit time-measuring mechanism, a ‘clock.' This model provides a new, detailed, plausible, and testable mechanism for replication timing control.
Our models also capture the effects of passive replication, which is often neglected in phenomenological approaches (Eshaghi et al, 2007). There are two ways an origin site can be replicated. The site can be replicated by the origin binding to it but can also be passively replicated by neighboring origins. This complication makes it difficult to extract the intrinsic properties of origins. By modeling passive replication, we can separate the contribution from each origin and extract the potential efficiency of origins, i.e., the efficiency of the origin given that there is no passive replication. We found that while most origins are potentially highly efficient, their observed efficiency varies greatly. This implies that many origins, though capable of initiating, are often passively replicated and appear dormant. Such a design makes the replication process robust against replication stress such as fork stalling (Blow and Ge, 2009). If two approaching forks stall, normally dormant origins in the region, not being passively replicated, will initiate to replicate the gap.
With the advance of the microarray and molecular-combing technology, experiments have been done to probe many different types of cells, and large amounts of replication fraction data have been generated. Our model can be applied to spatiotemporally resolved replication fraction data for any organism, as the model is flexible enough to capture a wide range of replication kinetics. The analytical model is also much faster than simulation-based models. For these reasons, we believe that the model is a powerful tool for analyzing these large datasets. This work opens the possibility for understanding the replication program across species in more rigor and detail (Goldar et al, 2009).
Microarrays are powerful tools to probe genome-wide replication kinetics. The rich data sets that result contain more information than has been extracted by current methods of analysis. In this paper, we present an analytical model that incorporates probabilistic initiation of origins and passive replication. Using the model, we performed least-squares fits to a set of recently published time course microarray data on Saccharomyces cerevisiae. We extracted the distribution of firing times for each origin and found that the later an origin fires on average, the greater the variation in firing times. To explain this trend, we propose a model where earlier-firing origins have more initiator complexes loaded and a more accessible chromatin environment. The model demonstrates how initiation can be stochastic and yet occur at defined times during S phase, without an explicit timing program. Furthermore, we hypothesize that the initiators in this model correspond to loaded minichromosome maintenance complexes. This model is the first to suggest a detailed, testable, biochemically plausible mechanism for the regulation of replication timing in eukaryotes.
doi:10.1038/msb.2010.61
PMCID: PMC2950085  PMID: 20739926
DNA replication program; genome-wide analysis; microarray data; replication-origin efficiency; stochastic modeling
12.  Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae 
BMC Genomics  2015;16(1):417.
Background
Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample.
Results
Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen.
Conclusions
Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1557-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-015-1557-6
PMCID: PMC4446954  PMID: 26018580
High-throughput RT-qPCR; Transcriptional analysis; Host-pathogen interactions; Innate immunity; Actinobacillus pleuropneumoniae; Respiratory infection; Laser capture microdissection
13.  Oral Chlamydia trachomatis in Patients with Established Periodontitis 
Clinical oral investigations  2000;4(4):226-232.
Periodontitis is considered a consequence of a pathogenic microbial infection at the periodontal site and host susceptibility factors. Periodontal research supports the association of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, and Bacteroides forsythus, and periodontitis; however causality has not been demonstrated. In pursuit of the etiology of periodontitis, we hypothesized that the intracellular bacteria, Chlamydia trachomatis, may play a role. As a first step, a cross-sectional study of dental school clinic patients with established periodontitis were assessed for the presence of C. trachomatis in the oral cavity, and in particular from the lining epithelium of periodontal sites. C. trachomatis was detected using a direct fluorescent monoclonal antibody (DFA) in oral specimens from 7% (6/87) of the patients. Four patients tested positive in specimens from the lining epithelium of diseased periodontal sites, one patient tested positive in healthy periodontal sites, and one patient tested positive in the general mucosal specimen. In conclusion, this study provides preliminary evidence of C. trachomatis in the periodontal sites. Planned studies include the use of a more precise periodontal epithelial cell collection device, the newer nucleic acid amplification techniques to detect C. trachomatis, and additional populations to determine the association of C. trachomatis and periodontitis.
PMCID: PMC2760468  PMID: 11218493
Chlamydia; Chlamydia trachomatis; Fluorescent antibody technique; Periodontal diseases; Periodontitis
14.  Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium atrosepticum 
PLoS Pathogens  2008;4(6):e1000093.
Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba–potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype.
Author Summary
Many Gram-negative bacteria use a population density-dependent regulatory mechanism called quorum sensing (QS) to control the production of virulence factors during infection. In the bacterial plant pathogen Pectobacterium atrosepticum (formerly Erwinia carotovora subsp. atroseptica), an important model for QS, this mechanism regulates production of enzymes that physically attack the host plant cell wall. This study used a whole genome microarray-based approach to investigate the entire QS regulon during plant infection. Results demonstrate that QS regulates a much wider set of essential virulence factors than was previously appreciated. These include virulence factors similar to those in other plant and animal pathogens that have not previously been associated with QS, e.g., a Type VI secretion system (and its potential substrates), shown for the first time to be required for virulence in a plant pathogen; and the plant toxin coronafacic acid, known in other pathogens to play a role in manipulating plant defences. This study provides the first evidence that Pectobacterium may target host defences simultaneously with a physical attack on the plant cell wall. Moreover, the study demonstrates that a wide range of previously known and unknown virulence regulators lie within the QS regulon, revealing it to be the master regulator of virulence.
doi:10.1371/journal.ppat.1000093
PMCID: PMC2413422  PMID: 18566662
15.  A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1) 
PLoS Genetics  2013;9(1):e1003147.
Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10−15 for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen.
Author Summary
Many factors influence individual differences in susceptibility to infectious disease, including genetic factors of the host. Here we use several genome-wide investigative tools (linkage, association, joint linkage and association, and the analysis of gene expression data) to search for host genetic factors influencing Epstein-Barr virus (EBV) infection. EBV is a human herpes virus that infects up to 90% of adults worldwide, infection with which has been associated with severe complications including malignancies and autoimmune disorders. In a sample of >1,300 Mexican American family members, we found significant evidence of association of anti–EBV antibody levels with loci on chromosome 6 in the human leukocyte antigen region, which contains genes related to immune function. The top two independent loci in this region were HLA-DRB1 and HLA-DQB1, both of which are involved in the presentation of foreign antigens to T cells. This finding was specific to EBV and not to 12 other pathogens we examined. We also report an overlap of genetic factors influencing both EBV antibody level and EBV–related cancers and autoimmune disorders. This work demonstrates the presence of EBV susceptibility loci and provides impetus for further investigation to better understand the underlying mechanisms related to differences in disease progression among individuals infected with this pathogen.
doi:10.1371/journal.pgen.1003147
PMCID: PMC3542101  PMID: 23326239
16.  A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins  
PLoS Pathogens  2008;4(1):e9.
Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture.
Author Summary
Many bacterial pathogens promote infection and ultimately cause disease, in part, through the actions of proteins that the bacteria directly inject into host cells. These proteins subvert host cell processes to favor survival of the pathogen. The identification of such proteins can be limited since many of the injected proteins lack homology with other virulence proteins and pathogens that no longer express the proteins are often unimpaired in conventional assays of pathogenesis. Many of these proteins target cellular processes conserved from mammals to yeast, and overexpression of these proteins in yeast results in growth inhibition. We have established a high throughput growth assay amenable to systematically screening open reading frames from bacterial pathogens for those that inhibit yeast growth. We observe that yeast growth inhibition is a sensitive and specific indicator of proteins that are injected into host cells. Expression of about half of the injected bacterial proteins but almost none of the bacteria-confined proteins results in yeast growth inhibition. Since this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to grow in the laboratory.
doi:10.1371/journal.ppat.0040009
PMCID: PMC2211553  PMID: 18208325
17.  High Content Screening in Neurodegenerative Diseases 
The functional annotation of genomes, construction of molecular networks and novel drug target identification, are important challenges that need to be addressed as a matter of great urgency1-4. Multiple complementary 'omics' approaches have provided clues as to the genetic risk factors and pathogenic mechanisms underlying numerous neurodegenerative diseases, but most findings still require functional validation5. For example, a recent genome wide association study for Parkinson's Disease (PD), identified many new loci as risk factors for the disease, but the underlying causative variant(s) or pathogenic mechanism is not known6, 7. As each associated region can contain several genes, the functional evaluation of each of the genes on phenotypes associated with the disease, using traditional cell biology techniques would take too long.
There is also a need to understand the molecular networks that link genetic mutations to the phenotypes they cause. It is expected that disease phenotypes are the result of multiple interactions that have been disrupted. Reconstruction of these networks using traditional molecular methods would be time consuming. Moreover, network predictions from independent studies of individual components, the reductionism approach, will probably underestimate the network complexity8. This underestimation could, in part, explain the low success rate of drug approval due to undesirable or toxic side effects. Gaining a network perspective of disease related pathways using HT/HC cellular screening approaches, and identifying key nodes within these pathways, could lead to the identification of targets that are more suited for therapeutic intervention.
High-throughput screening (HTS) is an ideal methodology to address these issues9-12. but traditional methods were one dimensional whole-well cell assays, that used simplistic readouts for complex biological processes. They were unable to simultaneously quantify the many phenotypes observed in neurodegenerative diseases such as axonal transport deficits or alterations in morphology properties13, 14. This approach could not be used to investigate the dynamic nature of cellular processes or pathogenic events that occur in a subset of cells. To quantify such features one has to move to multi-dimensional phenotypes termed high-content screening (HCS)4, 15-17. HCS is the cell-based quantification of several processes simultaneously, which provides a more detailed representation of the cellular response to various perturbations compared to HTS.
HCS has many advantages over HTS18, 19, but conducting a high-throughput (HT)-high-content (HC) screen in neuronal models is problematic due to high cost, environmental variation and human error. In order to detect cellular responses on a 'phenomics' scale using HC imaging one has to reduce variation and error, while increasing sensitivity and reproducibility.
Herein we describe a method to accurately and reliably conduct shRNA screens using automated cell culturing20 and HC imaging in neuronal cellular models. We describe how we have used this methodology to identify modulators for one particular protein, DJ1, which when mutated causes autosomal recessive parkinsonism21.
Combining the versatility of HC imaging with HT methods, it is possible to accurately quantify a plethora of phenotypes. This could subsequently be utilized to advance our understanding of the genome, the pathways involved in disease pathogenesis as well as identify potential therapeutic targets.
doi:10.3791/3452
PMCID: PMC3369774  PMID: 22257990
Medicine;  Issue 59;  High-throughput screening;  high-content screening;  neurodegeneration;  automated cell culturing;  Parkinson’s disease
18.  Yeast Functional Genomic Screens Lead to Identification of a Role for a Bacterial Effector in Innate Immunity Regulation 
PLoS Pathogens  2007;3(2):e21.
Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.
Author Summary
Many bacterial pathogens use specialized secretion systems to deliver effector proteins directly into host cells. The effector proteins mediate the subversion or inhibition of host cell processes to promote survival of the pathogens. Although these proteins are critical elements of pathogenesis, relatively few are well characterized. They often lack significant homology to proteins of known function, and they present special challenges, biological and practical, to study in vivo. For example, their functions often appear to be redundant or synergistic, and the organisms that produce them can be dangerous or difficult to culture, requiring special facilities. The yeast Saccharomyces cerevisiae has recently emerged as a model system to both identify and functionally characterize effector proteins. This work describes how genome-wide phenotypic screens and mRNA profiling of yeast expressing the Shigella effector OspF led to the discovery that OspF inhibits mitogen-activated protein kinase signaling in both yeast and mammalian cells. This inhibition of mitogen-activated protein kinase signaling is associated with attenuation of the host innate immune response. This study demonstrates how yeast functional genomic studies can contribute to the understanding of pathogenic effector proteins.
doi:10.1371/journal.ppat.0030021
PMCID: PMC1797620  PMID: 17305427
19.  Strain-Specific Differences in the Genetic Control of Two Closely Related Mycobacteria 
PLoS Pathogens  2010;6(10):e1001169.
The host response to mycobacterial infection depends on host and pathogen genetic factors. Recent studies in human populations suggest a strain specific genetic control of tuberculosis. To test for mycobacterial-strain specific genetic control of susceptibility to infection under highly controlled experimental conditions, we performed a comparative genetic analysis using the A/J- and C57BL/6J-derived recombinant congenic (RC) mouse panel infected with the Russia and Pasteur strains of Mycobacterium bovis Bacille Calmette Guérin (BCG). Bacillary counts in the lung and spleen at weeks 1 and 6 post infection were used as a measure of susceptibility. By performing genome-wide linkage analyses of loci that impact on tissue-specific bacillary burden, we were able to show the importance of correcting for strain background effects in the RC panel. When linkage analysis was adjusted on strain background, we detected a single locus on chromosome 11 that impacted on pulmonary counts of BCG Russia but not Pasteur. The same locus also controlled the splenic counts of BCG Russia but not Pasteur. By contrast, a locus on chromosome 1 which was indistinguishable from Nramp1 impacted on splenic bacillary counts of both BCG Russia and Pasteur. Additionally, dependent upon BCG strain, tissue and time post infection, we detected 9 distinct loci associated with bacillary counts. Hence, the ensemble of genetic loci impacting on BCG infection revealed a highly dynamic picture of genetic control that reflected both the course of infection and the infecting strain. This high degree of adaptation of host genetics to strain-specific pathogenesis is expected to provide a suitable framework for the selection of specific host-mycobacteria combinations during co-evolution of mycobacteria with humans.
Author Summary
Susceptibility to mycobacterial infection results from a complex interaction between host and bacterial genetic factors. To examine the effect of host and pathogen genetic variability on the control of mycobacterial infection, we infected a panel of genetically related recombinant congenic (RC) mouse strains with two closely related strains of Mycobacterium bovis BCG. Bacterial counts of BCG Russia and BCG Pasteur were determined in the lung and spleen at 1 and 6 weeks following infection and used for genetic analysis. A novel analytical approach was developed to perform genome-wide linkage analyses using the RC strains. Comparative linkage analysis using this model identified a strong genetic effect on chromosome 1 controlling counts of BCG Pasteur at 1 week and of BCG Russia at 1 week and 6 weeks in the spleen. A locus impacting on late BCG Russia counts in the lung and spleen was identified on chromosome 11. Nine additional loci were shown to control bacterial counts in a tissue-, time-, and BCG strain-specific manner. Our findings suggest that the host genetic control of mycobacterial infection is highly dynamic and adapted to the stage of pathogenesis and to the infecting strain. Such a high degree of genetic plasticity in the host-pathogen interplay is expected to favour evolutionary co-adaptation in mycobacterial disease.
doi:10.1371/journal.ppat.1001169
PMCID: PMC2965770  PMID: 21060820
20.  Application of a Diode Laser in the Reduction of Targeted Periodontal Pathogens 
Acta Informatica Medica  2013;21(4):237-240.
Introduction:
Periodontal disease belongs to a group of diseases with more than one cause, it is a disease of a multifactorial etiology. Although bacteria are the main cause of the disease, immunoinflammatory reaction of the host is responsible for the majority of destructive changes in periodontal tissue. The main issue in the evaluation of the success of periodontal therapy is the pluralism of the bacteria and their dynamic changes during the duration, on the one hand, and the possible inaccuracy of classical microbiological analysis in determination of the dominant role of a microorganism, or the success of its reduction or elimination, on the other. Thanks to advances of microbiology and technological development, it is possible to make an assessment of specific microorganisms in a large number of samples of sub-gingival plaque with extreme precision, using checkerboard DNA-DNA hybridization and method of polymerase chain reaction (PCR). The development of laser technology and the discovery of its significant antimicrobial effects have introduced and presented this treatment modality as a possible auxiliary method of periodontitis treatment.
Materials and Methods:
The sample for the study estimating the efficiency of application of diode lasers in the reduction of periodontal pockets consisted of 1164 periodontal pockets in 24 subjects of both sexes. For laser irradiation of periodontal pockets a diode laser was used, a low-power laser (SmilePro 980, Biolitec, Germany), working in a mode precisely tuned for treatment of periodontal pockets. All subjects underwent: general anamnesis, periodontal status, and orthopantogram radiograph analysis. Following a standard periodontal preparation, a sample of subgingival plaque was collected for molecular-biological analysis (real-time PCR method) prior to laser irradiation of periodontal pockets, immediately following the irradiation, and during the control examination 3 months after irradiation.
Results:
The results of the molecular-biological analysis of target periodontal pathogens Actinobacillus (Aggregatibacter) actinomycetemcomitans (AA) and Porphyromonas gingivalis (PG) isolated from periodontal pockets prior to laser irradiation, immediately after laser irradiation, and at the control examination after 3 months were processed statistically (using real-time PCR method). The results showed that there was a statistically significant decrease in CT values for the tested bacteria immediately after treatment and the control examination, compared with the level of CT values for the same bacteria before treatment.
Conclusions:
Based on the obtained results, we concluded that diode laser irradiation reduces the number of active periodontal pathogens. We believe that the use of diode lasers, as a supplementary method in the treatment of periodontal disease, is extremely useful and efficient, and can be recommended as part of standard clinical practice.
doi:10.5455/aim.2013.21.237-240
PMCID: PMC3916176  PMID: 24554796
periodontal disease; periopathogen; diode laser; laser therapy.
21.  Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study 
Introduction
Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque.
Aim
To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control.
Materials and Methods
A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract.
Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns.
Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers.
Results
At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control.
Conclusion
Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level.
doi:10.7860/JCDR/2016/16214.7468
PMCID: PMC4843387  PMID: 27135002
Actinobacillus actinomycetemcomitans; Anti-microbial; Chlorhexidine; Dental plaque; Tulsi extract
22.  Non-inflammatory destructive periodontal disease: a clinical, microbiological, immunological and genetic investigation 
Journal of Applied Oral Science  2012;20(1):113-121.
Periodontitis comprises a group of multifactorial diseases in which periodontopathogens accumulate in dental plaque and trigger host chronic inflammatory and immune responses against periodontal structures, which are determinant to the disease outcome. Although unusual cases of non-inflammatory destructive periodontal disease (NIDPD) are described, their pathogenesis remains unknown. A unique NIDPD case was investigated by clinical, microbiological, immunological and genetic tools. The patient, a non-smoking dental surgeon with excessive oral hygiene practice, presented a generalized bone resorption and tooth mobility, but not gingival inflammation or occlusion problems. No hematological, immunological or endocrine alterations were found. No periodontopathogens (A. actinomycetemcomitans, P. gingivalis, F. nucleatum and T. denticola) or viruses (HCMV, EBV-1 and HSV-1) were detected, along with levels of IL-1β and TNF-α in GCF compatible with healthy tissues. Conversely ALP, ACP and RANKL GCF levels were similar to diseased periodontal sites. Genetic investigation demonstrated that the patient carried some SNPs, as well HLA-DR4 (*0404) and HLA-B27 alleles, considered risk factors for bone loss. Then, a less vigorous and diminished frequency of toothbrushing was recommended to the patient, resulting in the arrest of alveolar bone loss, associated with the return of ALP, ACP and RANKL in GCF to normality levels. In conclusion, the unusual case presented here is compatible with the previous description of NIDPD, and the results that a possible combination of excessive force and frequency of mechanical stimulation with a potentially bone loss prone genotype could result in the alveolar bone loss seen in NIDPD.
doi:10.1590/S1678-77572012000100020
PMCID: PMC3928782  PMID: 22437688
Periodontal diseases; Non-inflammatory destructive periodontal
23.  The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants 
PLoS Genetics  2014;10(2):e1004007.
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.
Author Summary
Some plant trypanosomes, single-celled organisms living in phloem sap, are responsible for important palm diseases, inducing frequent expensive and toxic insecticide treatments against their insect vectors. Other trypanosomes multiply in latex tubes without detriment to their host. Despite the wide range of behaviors and impacts, these trypanosomes have been rather unceremoniously lumped into a single genus: Phytomonas. A battery of molecular probes has been used for their characterization but no clear phylogeny or classification has been established. We have sequenced the genomes of a pathogenic phloem-specific Phytomonas from a diseased South American coconut palm and a latex-specific isolate collected from an apparently healthy wild euphorb in the south of France. Upon comparison with each other and with human pathogenic trypanosomes, both Phytomonas revealed distinctive compact genomes, consisting essentially of single-copy genes, with the vast majority of genes shared by both isolates irrespective of their effect on the host. A strong cohort of enzymes in the sugar metabolism pathways was consistent with the nutritional environments found in plants. The genetic nuances may reveal the basis for the behavioral differences between these two unique plant parasites, and indicate the direction of our future studies in search of effective treatment of the crop disease parasites.
doi:10.1371/journal.pgen.1004007
PMCID: PMC3916237  PMID: 24516393
24.  Human genome meeting 2016 
Srivastava, A. K. | Wang, Y. | Huang, R. | Skinner, C. | Thompson, T. | Pollard, L. | Wood, T. | Luo, F. | Stevenson, R. | Polimanti, R. | Gelernter, J. | Lin, X. | Lim, I. Y. | Wu, Y. | Teh, A. L. | Chen, L. | Aris, I. M. | Soh, S. E. | Tint, M. T. | MacIsaac, J. L. | Yap, F. | Kwek, K. | Saw, S. M. | Kobor, M. S. | Meaney, M. J. | Godfrey, K. M. | Chong, Y. S. | Holbrook, J. D. | Lee, Y. S. | Gluckman, P. D. | Karnani, N. | Kapoor, A. | Lee, D. | Chakravarti, A. | Maercker, C. | Graf, F. | Boutros, M. | Stamoulis, G. | Santoni, F. | Makrythanasis, P. | Letourneau, A. | Guipponi, M. | Panousis, N. | Garieri, M. | Ribaux, P. | Falconnet, E. | Borel, C. | Antonarakis, S. E. | Kumar, S. | Curran, J. | Blangero, J. | Chatterjee, S. | Kapoor, A. | Akiyama, J. | Auer, D. | Berrios, C. | Pennacchio, L. | Chakravarti, A. | Donti, T. R. | Cappuccio, G. | Miller, M. | Atwal, P. | Kennedy, A. | Cardon, A. | Bacino, C. | Emrick, L. | Hertecant, J. | Baumer, F. | Porter, B. | Bainbridge, M. | Bonnen, P. | Graham, B. | Sutton, R. | Sun, Q. | Elsea, S. | Hu, Z. | Wang, P. | Zhu, Y. | Zhao, J. | Xiong, M. | Bennett, David A. | Hidalgo-Miranda, A. | Romero-Cordoba, S. | Rodriguez-Cuevas, S. | Rebollar-Vega, R. | Tagliabue, E. | Iorio, M. | D’Ippolito, E. | Baroni, S. | Kaczkowski, B. | Tanaka, Y. | Kawaji, H. | Sandelin, A. | Andersson, R. | Itoh, M. | Lassmann, T. | Hayashizaki, Y. | Carninci, P. | Forrest, A. R. R. | Semple, C. A. | Rosenthal, E. A. | Shirts, B. | Amendola, L. | Gallego, C. | Horike-Pyne, M. | Burt, A. | Robertson, P. | Beyers, P. | Nefcy, C. | Veenstra, D. | Hisama, F. | Bennett, R. | Dorschner, M. | Nickerson, D. | Smith, J. | Patterson, K. | Crosslin, D. | Nassir, R. | Zubair, N. | Harrison, T. | Peters, U. | Jarvik, G. | Menghi, F. | Inaki, K. | Woo, X. | Kumar, P. | Grzeda, K. | Malhotra, A. | Kim, H. | Ucar, D. | Shreckengast, P. | Karuturi, K. | Keck, J. | Chuang, J. | Liu, E. T. | Ji, B. | Tyler, A. | Ananda, G. | Carter, G. | Nikbakht, H. | Montagne, M. | Zeinieh, M. | Harutyunyan, A. | Mcconechy, M. | Jabado, N. | Lavigne, P. | Majewski, J. | Goldstein, J. B. | Overman, M. | Varadhachary, G. | Shroff, R. | Wolff, R. | Javle, M. | Futreal, A. | Fogelman, D. | Bravo, L. | Fajardo, W. | Gomez, H. | Castaneda, C. | Rolfo, C. | Pinto, J. A. | Akdemir, K. C. | Chin, L. | Futreal, A. | Patterson, S. | Statz, C. | Mockus, S. | Nikolaev, S. N. | Bonilla, X. I. | Parmentier, L. | King, B. | Bezrukov, F. | Kaya, G. | Zoete, V. | Seplyarskiy, V. | Sharpe, H. | McKee, T. | Letourneau, A. | Ribaux, P. | Popadin, K. | Basset-Seguin, N. | Chaabene, R. Ben | Santoni, F. | Andrianova, M. | Guipponi, M. | Garieri, M. | Verdan, C. | Grosdemange, K. | Sumara, O. | Eilers, M. | Aifantis, I. | Michielin, O. | de Sauvage, F. | Antonarakis, S. | Likhitrattanapisal, S. | Lincoln, S. | Kurian, A. | Desmond, A. | Yang, S. | Kobayashi, Y. | Ford, J. | Ellisen, L. | Peters, T. L. | Alvarez, K. R. | Hollingsworth, E. F. | Lopez-Terrada, D. H. | Hastie, A. | Dzakula, Z. | Pang, A. W. | Lam, E. T. | Anantharaman, T. | Saghbini, M. | Cao, H. | Gonzaga-Jauregui, C. | Ma, L. | King, A. | Rosenzweig, E. Berman | Krishnan, U. | Reid, J. G. | Overton, J. D. | Dewey, F. | Chung, W. K. | Small, K. | DeLuca, A. | Cremers, F. | Lewis, R. A. | Puech, V. | Bakall, B. | Silva-Garcia, R. | Rohrschneider, K. | Leys, M. | Shaya, F. S. | Stone, E. | Sobreira, N. L. | Schiettecatte, F. | Ling, H. | Pugh, E. | Witmer, D. | Hetrick, K. | Zhang, P. | Doheny, K. | Valle, D. | Hamosh, A. | Jhangiani, S. N. | Akdemir, Z. Coban | Bainbridge, M. N. | Charng, W. | Wiszniewski, W. | Gambin, T. | Karaca, E. | Bayram, Y. | Eldomery, M. K. | Posey, J. | Doddapaneni, H. | Hu, J. | Sutton, V. R. | Muzny, D. M. | Boerwinkle, E. A. | Valle, D. | Lupski, J. R. | Gibbs, R. A. | Shekar, S. | Salerno, W. | English, A. | Mangubat, A. | Bruestle, J. | Thorogood, A. | Knoppers, B. M. | Takahashi, H. | Nitta, K. R. | Kozhuharova, A. | Suzuki, A. M. | Sharma, H. | Cotella, D. | Santoro, C. | Zucchelli, S. | Gustincich, S. | Carninci, P. | Mulvihill, J. J. | Baynam, G. | Gahl, W. | Groft, S. C. | Kosaki, K. | Lasko, P. | Melegh, B. | Taruscio, D. | Ghosh, R. | Plon, S. | Scherer, S. | Qin, X. | Sanghvi, R. | Walker, K. | Chiang, T. | Muzny, D. | Wang, L. | Black, J. | Boerwinkle, E. | Weinshilboum, R. | Gibbs, R. | Karpinets, T. | Calderone, T. | Wani, K. | Yu, X. | Creasy, C. | Haymaker, C. | Forget, M. | Nanda, V. | Roszik, J. | Wargo, J. | Haydu, L. | Song, X. | Lazar, A. | Gershenwald, J. | Davies, M. | Bernatchez, C. | Zhang, J. | Futreal, A. | Woodman, S. | Chesler, E. J. | Reynolds, T. | Bubier, J. A. | Phillips, C. | Langston, M. A. | Baker, E. J. | Xiong, M. | Ma, L. | Lin, N. | Amos, C. | Lin, N. | Wang, P. | Zhu, Y. | Zhao, J. | Calhoun, V. | Xiong, M. | Dobretsberger, O. | Egger, M. | Leimgruber, F. | Sadedin, S. | Oshlack, A. | Antonio, V. A. A. | Ono, N. | Ahmed, Z. | Bolisetty, M. | Zeeshan, S. | Anguiano, E. | Ucar, D. | Sarkar, A. | Nandineni, M. R. | Zeng, C. | Shao, J. | Cao, H. | Hastie, A. | Pang, A. W. | Lam, E. T. | Liang, T. | Pham, K. | Saghbini, M. | Dzakula, Z. | Chee-Wei, Y. | Dongsheng, L. | Lai-Ping, W. | Lian, D. | Hee, R. O. Twee | Yunus, Y. | Aghakhanian, F. | Mokhtar, S. S. | Lok-Yung, C. V. | Bhak, J. | Phipps, M. | Shuhua, X. | Yik-Ying, T. | Kumar, V. | Boon-Peng, H. | Campbell, I. | Young, M. -A. | James, P. | Rain, M. | Mohammad, G. | Kukreti, R. | Pasha, Q. | Akilzhanova, A. R. | Guelly, C. | Abilova, Z. | Rakhimova, S. | Akhmetova, A. | Kairov, U. | Trajanoski, S. | Zhumadilov, Z. | Bekbossynova, M. | Schumacher, C. | Sandhu, S. | Harkins, T. | Makarov, V. | Doddapaneni, H. | Glenn, R. | Momin, Z. | Dilrukshi, B. | Chao, H. | Meng, Q. | Gudenkauf, B. | Kshitij, R. | Jayaseelan, J. | Nessner, C. | Lee, S. | Blankenberg, K. | Lewis, L. | Hu, J. | Han, Y. | Dinh, H. | Jireh, S. | Walker, K. | Boerwinkle, E. | Muzny, D. | Gibbs, R. | Hu, J. | Walker, K. | Buhay, C. | Liu, X. | Wang, Q. | Sanghvi, R. | Doddapaneni, H. | Ding, Y. | Veeraraghavan, N. | Yang, Y. | Boerwinkle, E. | Beaudet, A. L. | Eng, C. M. | Muzny, D. M. | Gibbs, R. A. | Worley, K. C. C. | Liu, Y. | Hughes, D. S. T. | Murali, S. C. | Harris, R. A. | English, A. C. | Qin, X. | Hampton, O. A. | Larsen, P. | Beck, C. | Han, Y. | Wang, M. | Doddapaneni, H. | Kovar, C. L. | Salerno, W. J. | Yoder, A. | Richards, S. | Rogers, J. | Lupski, J. R. | Muzny, D. M. | Gibbs, R. A. | Meng, Q. | Bainbridge, M. | Wang, M. | Doddapaneni, H. | Han, Y. | Muzny, D. | Gibbs, R. | Harris, R. A. | Raveenedran, M. | Xue, C. | Dahdouli, M. | Cox, L. | Fan, G. | Ferguson, B. | Hovarth, J. | Johnson, Z. | Kanthaswamy, S. | Kubisch, M. | Platt, M. | Smith, D. | Vallender, E. | Wiseman, R. | Liu, X. | Below, J. | Muzny, D. | Gibbs, R. | Yu, F. | Rogers, J. | Lin, J. | Zhang, Y. | Ouyang, Z. | Moore, A. | Wang, Z. | Hofmann, J. | Purdue, M. | Stolzenberg-Solomon, R. | Weinstein, S. | Albanes, D. | Liu, C. S. | Cheng, W. L. | Lin, T. T. | Lan, Q. | Rothman, N. | Berndt, S. | Chen, E. S. | Bahrami, H. | Khoshzaban, A. | Keshal, S. Heidari | Bahrami, H. | Khoshzaban, A. | Keshal, S. Heidari | Alharbi, K. K. R. | Zhalbinova, M. | Akilzhanova, A. | Rakhimova, S. | Bekbosynova, M. | Myrzakhmetova, S. | Matar, M. | Mili, N. | Molinari, R. | Ma, Y. | Guerrier, S. | Elhawary, N. | Tayeb, M. | Bogari, N. | Qotb, N. | McClymont, S. A. | Hook, P. W. | Goff, L. A. | McCallion, A. | Kong, Y. | Charette, J. R. | Hicks, W. L. | Naggert, J. K. | Zhao, L. | Nishina, P. M. | Edrees, B. M. | Athar, M. | Al-Allaf, F. A. | Taher, M. M. | Khan, W. | Bouazzaoui, A. | Harbi, N. A. | Safar, R. | Al-Edressi, H. | Anazi, A. | Altayeb, N. | Ahmed, M. A. | Alansary, K. | Abduljaleel, Z. | Kratz, A. | Beguin, P. | Poulain, S. | Kaneko, M. | Takahiko, C. | Matsunaga, A. | Kato, S. | Suzuki, A. M. | Bertin, N. | Lassmann, T. | Vigot, R. | Carninci, P. | Plessy, C. | Launey, T. | Graur, D. | Lee, D. | Kapoor, A. | Chakravarti, A. | Friis-Nielsen, J. | Izarzugaza, J. M. | Brunak, S. | Chakraborty, A. | Basak, J. | Mukhopadhyay, A. | Soibam, B. S. | Das, D. | Biswas, N. | Das, S. | Sarkar, S. | Maitra, A. | Panda, C. | Majumder, P. | Morsy, H. | Gaballah, A. | Samir, M. | Shamseya, M. | Mahrous, H. | Ghazal, A. | Arafat, W. | Hashish, M. | Gruber, J. J. | Jaeger, N. | Snyder, M. | Patel, K. | Bowman, S. | Davis, T. | Kraushaar, D. | Emerman, A. | Russello, S. | Henig, N. | Hendrickson, C. | Zhang, K. | Rodriguez-Dorantes, M. | Cruz-Hernandez, C. D. | Garcia-Tobilla, C. D. P. | Solorzano-Rosales, S. | Jäger, N. | Chen, J. | Haile, R. | Hitchins, M. | Brooks, J. D. | Snyder, M. | Jiménez-Morales, S. | Ramírez, M. | Nuñez, J. | Bekker, V. | Leal, Y. | Jiménez, E. | Medina, A. | Hidalgo, A. | Mejía, J. | Halytskiy, V. | Naggert, J. | Collin, G. B. | DeMauro, K. | Hanusek, R. | Nishina, P. M. | Belhassa, K. | Belhassan, K. | Bouguenouch, L. | Samri, I. | Sayel, H. | moufid, FZ. | El Bouchikhi, I. | Trhanint, S. | Hamdaoui, H. | Elotmani, I. | Khtiri, I. | Kettani, O. | Quibibo, L. | Ahagoud, M. | Abbassi, M. | Ouldim, K. | Marusin, A. V. | Kornetov, A. N. | Swarovskaya, M. | Vagaiceva, K. | Stepanov, V. | De La Paz, E. M. Cutiongco | Sy, R. | Nevado, J. | Reganit, P. | Santos, L. | Magno, J. D. | Punzalan, F. E. | Ona, D. | Llanes, E. | Santos-Cortes, R. L. | Tiongco, R. | Aherrera, J. | Abrahan, L. | Pagauitan-Alan, P. | Morelli, K. H. | Domire, J. S. | Pyne, N. | Harper, S. | Burgess, R. | Zhalbinova, M. | Akilzhanova, A. | Rakhimova, S. | Bekbosynova, M. | Myrzakhmetova, S. | Gari, M. A. | Dallol, A. | Alsehli, H. | Gari, A. | Gari, M. | Abuzenadah, A. | Thomas, M. | Sukhai, M. | Garg, S. | Misyura, M. | Zhang, T. | Schuh, A. | Stockley, T. | Kamel-Reid, S. | Sherry, S. | Xiao, C. | Slotta, D. | Rodarmer, K. | Feolo, M. | Kimelman, M. | Godynskiy, G. | O’Sullivan, C. | Yaschenko, E. | Xiao, C. | Yaschenko, E. | Sherry, S. | Rangel-Escareño, C. | Rueda-Zarate, H. | Tayubi, I. A. | Mohammed, R. | Ahmed, I. | Ahmed, T. | Seth, S. | Amin, S. | Song, X. | Mao, X. | Sun, H. | Verhaak, R. G. | Futreal, A. | Zhang, J. | Whiite, S. J. | Chiang, T. | English, A. | Farek, J. | Kahn, Z. | Salerno, W. | Veeraraghavan, N. | Boerwinkle, E. | Gibbs, R. | Kasukawa, T. | Lizio, M. | Harshbarger, J. | Hisashi, S. | Severin, J. | Imad, A. | Sahin, S. | Freeman, T. C. | Baillie, K. | Sandelin, A. | Carninci, P. | Forrest, A. R. R. | Kawaji, H. | Salerno, W. | English, A. | Shekar, S. N. | Mangubat, A. | Bruestle, J. | Boerwinkle, E. | Gibbs, R. A. | Salem, A. H. | Ali, M. | Ibrahim, A. | Ibrahim, M. | Barrera, H. A. | Garza, L. | Torres, J. A. | Barajas, V. | Ulloa-Aguirre, A. | Kershenobich, D. | Mortaji, Shahroj | Guizar, Pedro | Loera, Eliezer | Moreno, Karen | De León, Adriana | Monsiváis, Daniela | Gómez, Jackeline | Cardiel, Raquel | Fernandez-Lopez, J. C. | Bonifaz-Peña, V. | Rangel-Escareño, C. | Hidalgo-Miranda, A. | Contreras, A. V. | Polfus, L. | Wang, X. | Philip, V. | Carter, G. | Abuzenadah, A. A. | Gari, M. | Turki, R. | Dallol, A. | Uyar, A. | Kaygun, A. | Zaman, S. | Marquez, E. | George, J. | Ucar, D. | Hendrickson, C. L. | Emerman, A. | Kraushaar, D. | Bowman, S. | Henig, N. | Davis, T. | Russello, S. | Patel, K. | Starr, D. B. | Baird, M. | Kirkpatrick, B. | Sheets, K. | Nitsche, R. | Prieto-Lafuente, L. | Landrum, M. | Lee, J. | Rubinstein, W. | Maglott, D. | Thavanati, P. K. R. | de Dios, A. Escoto | Hernandez, R. E. Navarro | Aldrate, M. E. Aguilar | Mejia, M. R. Ruiz | Kanala, K. R. R. | Abduljaleel, Z. | Khan, W. | Al-Allaf, F. A. | Athar, M. | Taher, M. M. | Shahzad, N. | Bouazzaoui, A. | Huber, E. | Dan, A. | Al-Allaf, F. A. | Herr, W. | Sprotte, G. | Köstler, J. | Hiergeist, A. | Gessner, A. | Andreesen, R. | Holler, E. | Al-Allaf, F. | Alashwal, A. | Abduljaleel, Z. | Taher, M. | Bouazzaoui, A. | Abalkhail, H. | Al-Allaf, A. | Bamardadh, R. | Athar, M. | Filiptsova, O. | Kobets, M. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Filiptsova, O. | Kobets, M. N. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Filiptsova, O. | Kobets, M. N. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Al-allaf, F. A. | Mohiuddin, M. T. | Zainularifeen, A. | Mohammed, A. | Abalkhail, H. | Owaidah, T. | Bouazzaoui, A.
Human Genomics  2016;10(Suppl 1):12.
Table of contents
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder
A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson
O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents
R. Polimanti, J. Gelernter
O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort
X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group
O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus
A. Kapoor, D. Lee, A. Chakravarti
O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells
C. Maercker, F. Graf, M. Boutros
O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies
G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis
O7 Role of microRNA in LCL to IPSC reprogramming
S. Kumar, J. Curran, J. Blangero
O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease
S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti
O9 Metabolomic profiling for the diagnosis of neurometabolic disorders
T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea
O10 A novel causal methylation network approach to Alzheimer’s disease
Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett
O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway
A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni
O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types
B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest
O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types
C. A. Semple
O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer
E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project
O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer
F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu
O16 Modeling genetic interactions associated with molecular subtypes of breast cancer
B. Ji, A. Tyler, G. Ananda, G. Carter
O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors
H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski
O18 Predictive biomarkers to metastatic pancreatic cancer treatment
J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman
O19 DDIT4 gene expression as a prognostic marker in several malignant tumors
L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto
O20 Spatial organization of the genome and genomic alterations in human cancers
K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group
O21 Landscape of targeted therapies in solid tumors
S. Patterson, C. Statz, S. Mockus
O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma
S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis
O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis
S. Likhitrattanapisal
O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study
S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen
O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array
T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada
O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation
A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics
O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4
C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung
O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13
K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone
O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data
N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh
O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review
S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs
O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio
S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle
O32 Legal interoperability: a sine qua non for international data sharing
A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group
O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target
H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci
O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs
J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio
O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes
R. Ghosh, S. Plon
O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing
S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs
O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma
T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman
O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver
E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker
O40 A general statistic framework for genome-based disease risk prediction
M. Xiong, L. Ma, N. Lin, C. Amos
O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies
N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong
O42 Big data and NGS data analysis: the cloud to the rescue
O. Dobretsberger, M. Egger, F. Leimgruber
O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing
S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance
O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data
V. A. A. Antonio, N. Ono, Clark Kendrick C. Go
O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data
Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar
O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans
C. Zeng, J. Shao
O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations
H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula
O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing
Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng
O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes?
I. Campbell, M.-A. Young, P. James, Lifepool
O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS
C. Schumacher, S. Sandhu, T. Harkins, V. Makarov
O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform
H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs
O55 Rapid capture methods for clinical sequencing
J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs
O56 A diploid personal human genome model for better genomes from diverse sequence data
K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs
O57 Development of PacBio long range capture for detection of pathogenic structural variants
Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs
O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans
R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers
O59 Assessing RNA structure disruption induced by single-nucleotide variation
J. Lin, Y. Zhang, Z. Ouyang
P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number
A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt
P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility
E. S. Chen
P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients
H. Bahrami, A. Khoshzaban, S. Heidari Keshal
P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population
K. K. R. Alharbi
P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding
M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova
P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population
M. Matar
P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization
N. Mili, R. Molinari, Y. Ma, S. Guerrier
P9 Vulnerability of genetic variants to the risk of autism among Saudi children
N. Elhawary, M. Tayeb, N. Bogari, N. Qotb
P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction
S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion
P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3rd7 mice
Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina
P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients
B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel
P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments
A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey
P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome
D. Graur
P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients
J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak
P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns
B. S. Soibam
P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer
D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder
P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes
J. J. Gruber, N. Jaeger, M. Snyder
P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors
K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson
P23 RNA sequencing identifies gene mutations for neuroblastoma
K. Zhang
P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines
M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales
P25 Targeted Methylation Sequencing of Prostate Cancer
N. Jäger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder
P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from México City and Yucatán, Mexico
S. Jiménez-Morales, M. Ramírez, J. Nuñez, V. Bekker, Y. Leal, E. Jiménez, A. Medina, A. Hidalgo, J. Mejía
P28 Genetic modifiers of Alström syndrome
J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina
P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos
E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group
P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D
K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess
P34 Molecular regulation of chondrogenic human induced pluripotent stem cells
M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah
P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting
M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid
P36 Accessing genomic evidence for clinical variants at NCBI
S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko
P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA
C. Xiao, E. Yaschenko, S. Sherry
P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling
C. Rangel-Escareño, H. Rueda-Zarate
P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr
S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang
P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data
S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs
P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells
T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium
P43 Rapid and scalable typing of structural variants for disease cohorts
W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs
P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population
A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim
P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations
J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras
P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits
L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups
P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study
S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu
P49 Common variants in casr gene are associated with serum calcium levels in koreans
S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung
P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions
Y. Zhou, S. Xu
P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies
X. Wang, V. Philip, G. Carter
P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment
A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol
P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling
A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar
P54 Direct enrichment for the rapid preparation of targeted NGS libraries
C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel
P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System
R. Nitsche, L. Prieto-Lafuente
P57 ClinVar: a multi-source archive for variant interpretation
M. Landrum, J. Lee, W. Rubinstein, D. Maglott
P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome
Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad
P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation
A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler
P61 Compound heterozygous mutation in the LDLR gene in Saudi patients suffering severe hypercholesterolemia
F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Athar
doi:10.1186/s40246-016-0063-5
PMCID: PMC4896275  PMID: 27294413
25.  Identification and characterization of genetic cluster groups of Actinobacillus actinomycetemcomitans isolated from the human oral cavity. 
Actinobacillus actinomycetemcomitans is recognized as a primary pathogen in localized juvenile periodontitis (LJP). Restriction fragment length polymorphisms (RFLP) within a collection of subgingival plaque isolates of this bacterium were identified and characterized as the first step in understanding the pathogenesis of LJP. Over 800 isolates, from members of 18 families (LJP families) with at least one member with active LJP or a documented history of the disease and one or more siblings, less than 13 years of age, having no clinical evidence of LJP and 32 healthy control subjects, were assigned to one of 13 distinct RFLP groups (II to XIV) by using a previously characterized 4.7-kb DNA probe cloned from the reference strain FDC Y4. Isolates belonging to RFLP groups II, IV, V, and XIII predominated subgingival sites in the subjects. Members of RFLP groups II, IV, VII, VIII, X, and XI were recovered only from LJP family subjects, while group XIII and XIV variants were found exclusively in healthy controls. A synthetic oligonucleotide, homologous to the 5' end of the leukotoxin gene (lktA), and the A. actinomycetemcomitans plasmid, pVT745, were tested for their abilities to subdivide the 13 RFLP groups. The leukotoxin probe specifically identified all RFLP group II variants because of the absence of a HindIII site in the upstream noncoding region of the lkt gene complex. The plasmid probe was not as selective but may be useful for identifying clinical isolates belonging to RFLP group I. The use of these probes for the identification of genetic variants of A. actinomycetemcomitans that may be preferentially colonize diseased and healthy subjects will facilitate the study of the role of this important pathogen in periodontal diseases.
Images
PMCID: PMC262973  PMID: 7907346

Results 1-25 (1763072)