PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (362256)

Clipboard (0)
None

Related Articles

1.  Isolation of Leptospira noguchii from sheep 
Veterinary microbiology  2006;121(1-2):144-149.
The main goal of this study was to obtain new isolates of Leptospira spp. from sheep. A total of ten kidney samples and 44 blood samples were collected from sheep slaughtered in Pelotas, Southern Brazil. One isolate was obtained which was identified by 16S rRNA gene sequencing and serogrouping to be Leptospira noguchii serogroup Autumnalis. Microscopic agglutination test (MAT) evaluation revealed that 4.5% of the sheep sera reacted against the Autumnalis serogroup. This is the first report of isolation of L. noguchii from sheep. Together these findings indicate that L. noguchii infections may be a potentially important veterinary problem in this domestic animal species.
doi:10.1016/j.vetmic.2006.11.010
PMCID: PMC1868676  PMID: 17222993
leptospirosis; Leptospira noguchii; isolation; serogrouping; sheep; Brazil
2.  Determining Risk for Severe Leptospirosis by Molecular Analysis of Environmental Surface Waters for Pathogenic Leptospira 
PLoS Medicine  2006;3(8):e308.
Background
Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters.
Methods and Findings
A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (~103 leptospires/ml versus 0.5 × 102 leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources.
Conclusions
Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This combined quantitative and molecular taxonomical risk assessment of environmental surface waters is globally applicable for assessing risk for leptospiral infection and severe disease in leptospirosis-endemic regions.
Vinetz and colleagues used a quantitative real time PCR assay combined with molecular taxonomic analysis to quantify Leptospira in environmental surface waters in the Peruvian Amazon region of Iquitos.
Editors' Summary
Background.
Humans catch many diseases from animals—so-called zoonotic infections. Often, these occur in limited regions of the world. However, one—leptospirosis—occurs in temperate and tropical climates, and in urban and rural settings, making it the most widespread zoonotic disease. Leptospirosis is caused by Leptospira, a large group of closely related spiral-shaped bacteria that live in both domestic animals (for example, cattle) and wild animals (particularly rats). Millions of humans become infected each year with leptospires through close contact with water, food, or soil contaminated with the urine of infected animals—swimming or wading in contaminated water is particularly hazardous. Some infected people have no symptoms; others develop a flu-like disease that clears up within a few days. However, in 5%–10% of infected people, the disease progresses to a second, sometimes fatal phase. This is usually characterized by jaundice, kidney problems, and an enlarged spleen (it's then called Weil disease) but can also involve the lungs (pulmonary leptospirosis). Leptospirosis can be successfully treated with antibiotics if treatment is started soon after infection.
Why Was This Study Done?
In a recent study in the Peruvian Amazon, half of the people visiting urban hospitals and rural health posts with acute fever had antibodies in their blood to Leptospira, suggesting that they had acute leptospirosis. However, only patients living in urban areas developed pulmonary leptospirosis. In this study, the researchers tested the hypothesis that this pattern arose because more virulent types of Leptospira were present at higher levels in urban environmental surface water than in rural water sources.
What Did the Researchers Do and Find?
Between June 2003 and March 2004, the researchers isolated strains of Leptospira from patients with acute fever who visited a hospital in the town of Iquitos or clinics in nearby villages. Early in 2004, they also collected a large number of different water samples from an urban slum in Iquitos and from a nearby rural community. They measured the concentrations of Leptospira in these samples by using a molecular technique called real-time PCR (polymerase chain reaction) to detect and quantify a type of RNA found only in disease-causing Leptospira. They also identified which specific Leptospira were present in the water samples and the patient samples by sequencing this RNA. The researchers found that leptospires were present in both urban and rural water samples (particularly in samples from gutters and puddles in the urban slum's market area) but that their concentration in the positive water samples from the urban sites was 20 times that in the positive samples from the rural sites. Furthermore, the distribution of different Leptospira types isolated from the patients mirrored that of the bacteria in the local environment. So, one particular type of Leptospira interrogans known as icterohaemorrhagiae—the leptospire most commonly associated with severe leptospirosis in the patients—was found more often in the urban water samples than in the rural ones. Finally, the researchers discovered a new group of Leptospira in the rural environment. This group may contain one or several new species of Leptospira but whether any of them causes human disease is unknown.
What Do These Findings Mean?
These results support the researchers' hypothesis that pulmonary leptospirosis in urban areas of the Peruvian Amazon is associated with high environmental levels of specific disease-causing leptospires. The researchers were able to discover this link only by using molecular techniques—this sort of study is impossible with traditional bacteriological techniques because Leptospira are hard to grow in the laboratory and cannot be isolated efficiently from environmental water sources. Different types can't be identified using a microscope. The researchers' findings need to be validated in other settings, but they suggest that environmental interventions such as reducing sources of standing water and clearing away garbage in urban areas might reduce the number of cases of severe leptospirosis. The distribution of different Leptospira types also suggests that whereas rats may be the main disease reservoir in towns, cattle, pigs, and bats may be more important in rural settings in Peru and presumably elsewhere. Overall, this new information, together with the availability of molecular methods for rapid clinical diagnosis and environmental risk assessment, should aid attempts to control leptospirosis around the world.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030308.
US Centers for Disease Control and Prevention, information for patients and professionals on leptospirosis
The Leptospirosis Information Center, information and advice on human leptospirosis for the public and medical professionals
MedlinePlus encyclopedia entry on leptospirosis
NHS Direct Online, patient information on leptospirosis from the UK National Health Service online encyclopedia
Wikipedia pages on leptospirosis (note: Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030308
PMCID: PMC1551915  PMID: 16933963
3.  Human Leptospirosis Caused by a New, Antigenically Unique Leptospira Associated with a Rattus Species Reservoir in the Peruvian Amazon 
As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species “Leptospira licerasiae” serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010T, which has been deposited into internationally accessible culture collections. By microscopic agglutination test, “Leptospira licerasiae” serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti–L. fainei serovar Hurstbridge at a titer of 1∶100. LipL32, although not detectable by PCR, was detectable in “Leptospira licerasiae” serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against “Leptospira licerasiae” serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon.
Author Summary
Leptospirosis has emerged as a globally important infectious disease. Its impact on public health is often difficult to determine, sometimes because of low clinical suspicion, or, as is more common, difficulty in laboratory diagnosis. Gold-standard serology-based diagnosis has a number of important limitations, including the need to use live leptospires that have a sufficient diversity of antigens to be able to detect specific anti-leptospiral antibodies; such antigens vary greatly from region to region. In this paper, we report the discovery of a new species of Leptospira in the highly biodiverse region of the Peruvian Amazon, and demonstrate that the animal source of infection for humans is the domestic rat. Detailed biological characterization of this new species shows that it is antigenically unique and represents a new serogroup and serovar, proposed as Leptospira licerasiae serogroup Iquitos serovar Varillal. Incorporation of this new isolate into serological testing of patients presenting with acute febrile illness in Iquitos, Peru, showed a far higher incidence of leptospirosis than previously suspected, showing the important of using region-specific Leptospira in diagnosis. The field-to-laboratory approach presented here has general application to the discovery of other emerging pathogens and their impact on human health.
doi:10.1371/journal.pntd.0000213
PMCID: PMC2271056  PMID: 18382606
4.  A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species 
Background
The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species.
Methodology and Findings
We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated.
Conclusion
The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis.
Author Summary
Leptospirosis is a common zoonotic disease worldwide. Genotyping of the causative organisms provides important insights into disease transmission and informs preventive strategies and vaccine development. Multilocus sequence typing (MLST) is the most widespread genotyping methodology for bacterial pathogens, but the Leptospira scheme supported by a public MLST database is currently only applicable to L. interrogans and L. kirschneri. The purpose of this study was to extend the scheme to a total of seven pathogenic Leptospira species. This was achieved through the development of a modified scheme in which one of the seven MLST loci was replaced, together with newly designed primers for the remaining 6 loci. Comparison of the original and modified scheme demonstrated that they were very similar, hence sequence type (ST) assignments were largely carried over to the modified scheme. Phylogenetic trees reconstructed from concatenated sequences of the seven loci of the modified scheme demonstrated perfect classification of isolates into seven pathogenic species, which resided in clearly distinct phylogenetic clusters. Congruence was low between STs and serovars. The MLST scheme was used to gain new insights into the population genetic structure of Leptospira species associated with clinical disease and maintenance hosts in Asia.
doi:10.1371/journal.pntd.0001954
PMCID: PMC3554523  PMID: 23359622
5.  Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach 
PLoS ONE  2014;9(11):e112312.
Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.
doi:10.1371/journal.pone.0112312
PMCID: PMC4232388  PMID: 25398140
6.  Prospective Study of Leptospirosis Transmission in an Urban Slum Community: Role of Poor Environment in Repeated Exposures to the Leptospira Agent 
Background
Leptospirosis has emerged as an urban health problem as slum settlements have rapidly spread worldwide and created conditions for rat-borne transmission. Prospective studies have not been performed to determine the disease burden, identify risk factors for infection and provide information needed to guide interventions in these marginalized communities.
Methodology/Principal Findings
We enrolled and followed a cohort of 2,003 residents from a slum community in the city of Salvador, Brazil. Baseline and one-year serosurveys were performed to identify primary and secondary Leptospira infections, defined as respectively, seroconversion and four-fold rise in microscopic agglutination titers. We used multinomial logistic regression models to evaluate risk exposures for acquiring primary and secondary infection. A total of 51 Leptospira infections were identified among 1,585 (79%) participants who completed the one-year follow-up protocol. The crude infection rate was 37.8 per 1,000 person-years. The secondary infection rate was 2.3 times higher than that of primary infection rate (71.7 and 31.1 infections per 1,000 person-years, respectively). Male gender (OR 2.88; 95% CI 1.40–5.91) and lower per capita household income (OR 0.54; 95% CI, 0.30–0.98 for an increase of $1 per person per day) were independent risk factors for primary infection. In contrast, the 15–34 year age group (OR 10.82, 95% CI 1.38–85.08), and proximity of residence to an open sewer (OR 0.95; 0.91–0.99 for an increase of 1 m distance) were significant risk factors for secondary infection.
Conclusions/Significance
This study found that slum residents had high risk (>3% per year) for acquiring a Leptospira infection. Re-infection is a frequent event and occurs in regions of slum settlements that are in proximity to open sewers. Effective prevention of leptospirosis will therefore require interventions that address the infrastructure deficiencies that contribute to repeated exposures among slum inhabitants.
Author Summary
Leptospirosis is a disease that is transmitted by human contact with an environment contaminated with urine from animals, such as rodents, infected by the Leptospira bacteria. Human illness due to these bacteria can be mild, or can have very severe complications. Residents of urban slum settlements are at high risk for this disease, but the specific risk factors for transmission in these settlements are not understood because of the lack of prospective studies in this epidemiological setting. We performed a prospective study in a Brazilian slum community to measure the risk of infection, identify the environmental and social factors that place slum residents at risk for infection, and determine whether some individuals are at risk of repeated infections. We identified a burden of infection with leptospirosis among slum residents, and found that male gender and low income both increase the risk for infection. In addition, a significant proportion of slum residents had a second exposure to leptospirosis and re-infection occurred most frequently among young adults and the poorest members of the slum community who reside in proximity of open sewers. These risk factors are amenable to interventions aimed to reduce the burden that leptospirosis imparts in this high-risk setting.
doi:10.1371/journal.pntd.0002927
PMCID: PMC4038618  PMID: 24875389
7.  Influence of Household Rat Infestation on Leptospira Transmission in the Urban Slum Environment 
Background
The Norway rat (Rattus norvegicus) is the principal reservoir for leptospirosis in many urban settings. Few studies have identified markers for rat infestation in slum environments while none have evaluated the association between household rat infestation and Leptospira infection in humans or the use of infestation markers as a predictive model to stratify risk for leptospirosis.
Methodology/Principal Findings
We enrolled a cohort of 2,003 urban slum residents from Salvador, Brazil in 2004, and followed the cohort during four annual serosurveys to identify serologic evidence for Leptospira infection. In 2007, we performed rodent infestation and environmental surveys of 80 case households, in which resided at least one individual with Leptospira infection, and 109 control households. In the case-control study, signs of rodent infestation were identified in 78% and 42% of the households, respectively. Regression modeling identified the presence of R. norvegicus feces (OR, 4.95; 95% CI, 2.13–11.47), rodent burrows (2.80; 1.06–7.36), access to water (2.79; 1.28–6.09), and un-plastered walls (2.71; 1.21–6.04) as independent risk factors associated with Leptospira infection in a household. We developed a predictive model for infection, based on assigning scores to each of the rodent infestation risk factors. Receiver operating characteristic curve analysis found that the prediction score produced a good/excellent fit based on an area under the curve of 0.78 (0.71–0.84).
Conclusions/Significance
Our study found that a high proportion of slum households were infested with R. norvegicus and that rat infestation was significantly associated with the risk of Leptospira infection, indicating that high level transmission occurs among slum households. We developed an easily applicable prediction score based on rat infestation markers, which identified households with highest infection risk. The use of the prediction score in community-based screening may therefore be an effective risk stratification strategy for targeting control measures in slum settings of high leptospirosis transmission.
Author Summary
The Norway rat is an important reservoir for urban leptospirosis, a life-threatening zoonotic disease. In urban settings, leptospirosis transmission occurs primarily in the peri-domiciliary environment of the slums. Rodent control is one of the most frequent strategies to prevent leptospirosis, but the identification of domiciles at higher risk of transmission is challenging. We compared households where an individual with evidence of recent leptospirosis infection resided and households where none of the residents had evidence for infection. Houses with evidence of leptospirosis transmission had higher levels of rodent infestation and environmental conditions related to rodents. We propose a new methodology to easily characterize slum households, based on environmental characteristics, at different levels of risk for leptospirosis transmission. The findings of this study indicate that evaluation for rodent infestation intensity and environmental features may be a feasible strategy for targeting augmented control measures for leptospirosis.
doi:10.1371/journal.pntd.0003338
PMCID: PMC4256176  PMID: 25474580
8.  Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation 
BMC Research Notes  2014;7:330.
Background
Leptospirosis, a spirochaetal zoonotic disease of worldwide distribution, endemic in Europe, has been recognized as an important emerging infectious disease, though yet it is mostly a neglected disease which imparts its greatest burden on impoverished populations from developing countries. Leptospirosis is caused by the infection with any of the more than 230 serovars of pathogenic Leptospira sp. In this study we aimed to implement the MALDI-TOF mass spectrometry (MS) database currently available in our laboratory with Leptospira reference pathogenic (L. interrogans, L. borgpetersenii, L. kirschneri, L. noguchii), intermediate (L. fainei) and saprophytic (L. biflexa) strains of our collection in order to evaluate its possible application to the diagnosis of leptospirosis and to the typing of strains. This was done with the goal of understanding whether this methodology could be used as a tool for the identification of Leptospira strains, not only at species level for diagnostic purposes, but also at serovar level for epidemiological purposes, overcoming the limits of serological and molecular conventional methods. Twenty Leptospira reference strains were analysed by MALDI-TOF MS. Statistical analysis of the protein spectra was performed by ClinProTools software.
Results
The spectra obtained by the analysis of the reference strains tested were grouped into 6 main classes corresponding to the species analysed, highlighting species-specific protein profiles. Moreover, the statistical analysis of the spectra identified discriminatory peaks to recognize Leptospira strains also at serovar level extending previously published data.
Conclusions
In conclusion, we confirmed that MALDI-TOF MS could be a powerful tool for research and diagnostic in the field of leptospirosis with broad applications ranging from the detection and identification of pathogenic leptospires for diagnostic purposes to the typing of pathogenic and non-pathogenic leptospires for epidemiological purposes in order to enrich our knowledge about the epidemiology of the infection in different areas and generate control strategies.
doi:10.1186/1756-0500-7-330
PMCID: PMC4048046  PMID: 24890024
Leptospira sp.; MALDI-TOF MS; Identification; Database implementation
9.  A Dominant Clone of Leptospira interrogans Associated with an Outbreak of Human Leptospirosis in Thailand 
Background
A sustained outbreak of leptospirosis occurred in northeast Thailand between 1999 and 2003, the basis for which was unknown.
Methods and Findings
A prospective study was conducted between 2000 and 2005 to identify patients with leptospirosis presenting to Udon Thani Hospital in northeast Thailand, and to isolate the causative organisms from blood. A multilocus sequence typing scheme was developed to genotype these pathogenic Leptospira. Additional typing was performed for Leptospira isolated from human cases in other Thai provinces over the same period, and from rodents captured in the northeast during 2004. Sequence types (STs) were compared with those of Leptospira drawn from a reference collection. Twelve STs were identified among 101 isolates from patients in Udon Thani. One of these (ST34) accounted for 77 (76%) of isolates. ST34 was Leptospira interrogans, serovar Autumnalis. 86% of human Leptospira isolates from Udon Thani corresponded to ST34 in 2000/2001, but this figure fell to 56% by 2005 as the outbreak waned (p = 0.01). ST34 represented 17/24 (71%) of human isolates from other Thai provinces, and 7/8 (88%) rodent isolates. By contrast, 59 STs were found among 76 reference strains, indicating a much more diverse population genetic structure; ST34 was not identified in this collection.
Conclusions
Development of an MLST scheme for Leptospira interrogans revealed that a single ecologically successful pathogenic clone of L. interrogans predominated in the rodent population, and was associated with a sustained outbreak of human leptospirosis in Thailand.
Author Summary
A sustained outbreak of human leptospirosis occurred in northeast Thailand between 1999 and 2003, the basis for which was unknown. Leptospirosis is a potentially serious infection cause by bacteria known as Leptospira; infection usually occurs following environmental exposure to pathogenic Leptospira shed in the urine of an infected animal. The purpose of this study was to obtain bacterial isolates from humans with leptospirosis around the time of the Thai outbreak for genotyping, and to relate these to the maintenance host animal. To achieve this, a bacterial typing scheme (multilocus sequence typing, MLST) was developed for L. interrogans, the major cause of human disease. This approach has the advantage over existing typing schemes in that the data generated are amenable to detailed evolutionary analysis, and are readily comparable via the internet. Our results demonstrated the emergence of a dominant clone of L. interrogans serovar Autumnalis; this was the major cause of human disease during the outbreak, and was found in a maintenance host which was defined as the bandicoot rat.
doi:10.1371/journal.pntd.0000056
PMCID: PMC2041815  PMID: 17989782
10.  Household Transmission of Leptospira Infection in Urban Slum Communities 
Background
Leptospirosis, a spirochaetal zoonotic disease, is the cause of epidemics associated with high mortality in urban slum communities. Infection with pathogenic Leptospira occurs during environmental exposures and is traditionally associated with occupational risk activities. However, slum inhabitants reside in close proximity to environmental sources of contamination, suggesting that transmission during urban epidemics occurs in the household environment.
Methods and Findings
A survey was performed to determine whether Leptospira infection clustered within households located in slum communities in the city of Salvador, Brazil. Hospital-based surveillance identified 89 confirmed cases of leptospirosis during an outbreak. Serum samples were obtained from members of 22 households with index cases of leptospirosis and 52 control households located in the same slum communities. The presence of anti-Leptospira agglutinating antibodies was used as a marker for previous infection. In households with index cases, 22 (30%) of 74 members had anti-Leptospira antibodies, whereas 16 (8%) of 195 members from control households had anti-Leptospira antibodies. Highest titres were directed against L. interrogans serovars of the Icterohaemorrhagiae serogroup in 95% and 100% of the subjects with agglutinating antibodies from case and control households, respectively. Residence in a household with an index case of leptospirosis was associated with increased risk (OR 5.29, 95% CI 2.13–13.12) of having had a Leptospira infection. Increased infection risk was found for all age groups who resided in a household with an index case, including children <15 years of age (P = 0.008).
Conclusions
This study identified significant household clustering of Leptospira infection in slum communities where recurrent epidemics of leptospirosis occur. The findings support the hypothesis that the household environment is an important transmission determinant in the urban slum setting. Prevention therefore needs to target sources of contamination and risk activities which occur in the places where slum inhabitants reside.
Author Summary
Leptospirosis has emerged to become an urban slum health problem. Epidemics of severe leptospirosis, characterized by jaundice, acute renal failure and haemorrhage, are now reported in cities throughout the developing world due to rapid expansion of slum settlements, which in turn has produced the ecological conditions for rodent-borne transmission of the spirochete pathogen. A survey was performed in the city of Salvador, Brazil, to determine whether the risk of Leptospira infection clustered in households within slum communities in which a member had developed severe leptospirosis. We found that members of households with an index case of leptospirosis had more than five times the risk of having serologic evidence for a prior infection than members of neighbourhood households in the same communities. Increased risk of infection was found among all age groups who resided in these households. The finding that Leptospira infection clusters in specific slum households indicates that the factors associated with this environment are important determinants for transmission. Further research is needed to identify the sources of contamination and risk exposures which occur in the places where slum inhabitants reside such that effective community-based prevention of urban leptospirosis can be implemented.
doi:10.1371/journal.pntd.0000154
PMCID: PMC2270796  PMID: 18357340
11.  Responses of Murine and Human Macrophages to Leptospiral Infection: A Study Using Comparative Array Analysis 
Leptospirosis is a re-emerging tropical infectious disease caused by pathogenic Leptospira spp. The different host innate immune responses are partially related to the different severities of leptospirosis. In this study, we employed transcriptomics and cytokine arrays to comparatively calculate the responses of murine peritoneal macrophages (MPMs) and human peripheral blood monocytes (HBMs) to leptospiral infection. We uncovered a series of different expression profiles of these two immune cells. The percentages of regulated genes in several biological processes of MPMs, such as antigen processing and presentation, membrane potential regulation, and the innate immune response, etc., were much greater than those of HBMs (>2-fold). In MPMs and HBMs, the caspase-8 and Fas-associated protein with death domain (FADD)-like apoptosis regulator genes were significantly up-regulated, which supported previous results that the caspase-8 and caspase-3 pathways play an important role in macrophage apoptosis during leptospiral infection. In addition, the key component of the complement pathway, C3, was only up-regulated in MPMs. Furthermore, several cytokines, e.g. interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-alpha), were differentially expressed at both mRNA and protein levels in MPMs and HBMs. Some of the differential expressions were proved to be pathogenic Leptospira-specific regulations at mRNA level or protein level. Though it is still unclear why some animals are resistant and others are susceptible to leptospiral infection, this comparative study based on transcriptomics and cytokine arrays partially uncovered the differences of murine resistance and human susceptibility to leptospirosis. Taken together, these findings will facilitate further molecular studies on the innate immune response to leptospiral infection.
Author Summary
Although pathogenic Leptospira is not an obligate intracellular pathogen, recent studies have shown that phagocytosis and innate immunity play important roles in leptospirosis. The Leptospira-macrophage interaction is a common model used to elucidate the initial response in leptospiral infection. Our previous research has shown that there is little difference in the transcriptomics of pathogenic Leptospira infecting murine or human macrophage cell lines. Contrarily, in this study, we observed significant differences of murine and human primary macrophages infected by L. interrogans as shown in several processes, such as antigen processing and presentation, Toll-like receptor signaling pathway and innate immune response, complement and coagulation cascades, expression of major cytokines and chemokines, etc. These results suggested that different immune responses explain the major disparities in the murine and human Leptospira-macrophage infection models. This study added to the former leptospiral transcriptomics research on the Leptospira-macrophage interaction model and laid a foundation for further investigation in the pathogenesis of leptospirosis.
doi:10.1371/journal.pntd.0002477
PMCID: PMC3794915  PMID: 24130911
12.  Identification of Cell-Binding Adhesins of Leptospira interrogans 
Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1–130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines.
Author Summary
Leptospirosis, caused by pathogenic species of the genus Leptospira, is an infectious disease that has emerged as a globally important health problem. Infection can either lead to mild illness or can progress to a severe disease form manifested by jaundice, kidney and liver dysfunction, and widespread blood vessel damage. It is thought that the ability of the bacteria to recognize and bind to human and animal cells is important for Leptospira spp. to cause the disease. Using phage display, we were able to identify bacterial proteins that mediate the binding of the bacteria to host cells. One of the identified proteins, LIC11574, attaches to different types of host cells, and to VE-cadherin, a cell surface protein previously identified as receptor for disease-causing L. interrogans. All bacterial proteins identified were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals. Our findings may be of value in leptospirosis control and prevention, with these bacterial surface proteins as new targets for serodiagnosis and vaccine development.
doi:10.1371/journal.pntd.0003215
PMCID: PMC4183468  PMID: 25275630
13.  Isolation and Characterization of Two Novel Plasmids from Pathogenic Leptospira interrogans Serogroup Canicola Serovar Canicola Strain Gui44 
Background
Previous genomic analysis of pathogenic Leptospira has identified two circular chromosomes but no plasmid. This study aims to investigate potential extrachromosomal elements of L.interrogans serovar Canicola strain Gui44.
Methodology
Two novel plasmids, pGui1 and pGui2, were isolated from the pathogenic strain Gui44, using a modified alkaline lysis method. Southern blotting was performed to determine the presence and size of them. Then, 454 and Hiseq sequencing were applied to obtain and analyze the complete sequences of the two plasmids. Furthermore, real-time quantitative PCR and next-generation sequencing were used to compare relative copy numbers of the two plasmids with that of the chromosomes. Finally, after serial passages in vitro for more than 2 years, the strain Gui44 was subsequently re-sequenced to estimate stability of the two plasmids.
Principal Findings
The larger plasmid, pGui1, 74,981 base pairs (bp) in length with GC content of 34.63%, possesses 62 open reading frames (ORFs). The smaller plasmid, pGui2, is 66,851 bp in length with GC content of 33.33%, and contains 63 ORFs. The replication initiation proteins encoded by pGui1 and pGui2 demonstrate significant sequence similarity with LA1839 (86% and 88%), a well-known replication protein in another pathogenic L.interrogans serovar Lai strain Lai, suggesting the ability for autonomous plasmid replication. Quantitative PCR and next-generation sequencing confirms a single copy of both plasmids and their stable presence in the strain Gui44 with in vitro serial passages after more than 2 years. Interestingly, the two plasmids both contain a significant number of novel genes (35 in pGui1 and 52 in pGui2).
Conclusions
This report confirms the presence of two separate circular plasmids in serovar Canicola strain Gui44 and provides a new understanding of genomic organization, adaptation, evolution and pathogenesis of Leptospira, which will aid in the development of in vivo genetic manipulation systems in pathogenic Leptospira species.
Author Summary
Leptospira species are the causative agent of leptospirosis, one of the most common animal to human transmitted diseases. Previous genomic analysis of L.interrogans serovar Lai and Copenhageni has identified the presence of large (4.33 mega base) and small (350 kilo base) circular chromosomes without evidence of any plasmids. Detailed understanding of Leptospira and its pathogenicity was delayed by the lack of available genetic tools. In this study we confirm the existence of two novel plasmids in L.interrogans serovar Canicola strain Gui44, an epidemic strain in China. Some novel genes identified in the two plasmids may play important roles in the characterization of the strain. The two plasmids will provide useful information in understanding the diversity of Leptospira genome and markedly improve our understanding of the evolution and pathogenesis of L.interrogans. In particular, it will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
doi:10.1371/journal.pntd.0003103
PMCID: PMC4140679  PMID: 25144555
14.  Identification of the Hemolysis-Associated Protein 1 as a Cross-Protective Immunogen of Leptospira interrogans by Adenovirus-Mediated Vaccination 
Infection and Immunity  2001;69(11):6831-6838.
New vaccine strategies are needed for the prevention of leptospirosis, a widespread human and animal disease caused by pathogenic leptospires. Our previous work determined that a protein leptospiral extract conferred cross-protection in a gerbil model of leptospirosis. The 31- to 34-kDa protein fraction of Leptospira interrogans serovar autumnalis was shown sufficient for this purpose. In the present study, N-terminal sequencing of a 32-kDa fraction and Southern blotting of genomic DNA with corresponding degenerated oligonucleotide probes identified two of its constituents: hemolysis-associated protein 1 (Hap1) and the outer membrane Leptospira protein 1 (OmpL1). Adenovirus-mediated Hap1 vaccination induces significant protection against a virulent heterologous Leptospira challenge in gerbils, whereas a similar OmpL1 construct failed to protect the animals. These data indicate that Hap1 could be a good candidate for developing a new generation of vaccines able to induce broad protection against leptospirosis disease.
doi:10.1128/IAI.69.11.6831-6838.2001
PMCID: PMC100061  PMID: 11598056
15.  The panorama of animal leptospirosis in Rio de Janeiro, Brazil, regarding the seroepidemiology of the infection in tropical regions 
Background
Leptospirosis is an important disease caused by various serovars of Leptospira sp. It can affect humans as well as domestic and wild animals; therefore, it has importance for public health, animal production, and wild species. The aim of this paper is to discuss the epidemiology of animal leptospirosis in Rio de Janeiro, Brazil, as a possible model for other tropical regions. In several studies conducted in the last 20 years, a total of 47 rats, 120 dogs, 875 cows, 695 horses, 1,343 goats, 308 sheep and 351 pigs from all regions of the state, in addition to 107 wild mammals and 73 golden-lion tamarins were tested (MAT) for anti-Leptospira antibodies.
Results
Seroreactivity was frequent in all studied species, confirming that the infection is endemic in Rio de Janeiro. Serogroups Icterohaemorrhagiae and Sejroe were the most prevalent in urban and rural scenarios, respectively. This paper reviews the current knowledge on animal leptospirosis in Rio de Janeiro and describes important differences between urban versus rural cycles of the infection in various species.
Conclusion
Identification of the prevailing serogroups and their reservoirs is essential for understanding agent-host-environment interactions under tropical conditions.
doi:10.1186/1746-6148-9-237
PMCID: PMC4220826  PMID: 24289165
Animal leptospirosis; Tropical scenario; Infection; Brazil
16.  Asymptomatic Renal Colonization of Humans in the Peruvian Amazon by Leptospira 
Background
Renal carriage and shedding of leptospires is characteristic of carrier or maintenance animal hosts. Sporadic reports indicate that after infection, humans may excrete leptospires for extended periods. We hypothesized that, like mammalian reservoir hosts, humans develop asymptomatic leptospiruria in settings of high disease transmission such as the Peruvian Amazon.
Methodology/Principal Findings
Using a cross-sectional study design, we used a combination of epidemiological data, serology and molecular detection of the leptospiral 16S rRNA gene to identify asymptomatic urinary shedders of Leptospira. Approximately one-third of the 314 asymptomatic participants had circulating anti-leptospiral antibodies. Among enrolled participants, 189/314 (59%) had evidence of recent infection (microscopic agglutination test (MAT0 ≥1∶800 or ELISA IgM-positive or both). The proportion of MAT-positive and high MAT-titer (≥1∶800) persons was higher in men than women (p = 0.006). Among these people, 13/314 (4.1%) had Leptospira DNA-positive urine samples. Of these, the 16S rRNA gene from 10 samples was able to be sequenced. The urine-derived species clustered within both pathogenic (n = 6) and intermediate clades of Leptospira (n = 4). All of the thirteen participants with leptospiral DNA in urine were women. The median age of the DNA-positive group was older compared to the negative group (p≤0.05). A group of asymptomatic participants (“long-term asymptomatic individuals,” 102/341 (32.5%) of enrolled individuals) without serological evidence of recent infection was identified; within this group, 6/102 (5.9%) excreted pathogenic and intermediate-pathogenic Leptospira (75–229 bacteria/mL of urine).
Conclusions/Significance
Asymptomatic renal colonization of leptospires in a region of high disease transmission is common, including among people without serological or clinical evidence of recent infection. Both pathogenic and intermediate Leptospira can persist as renal colonization in humans. The pathogenic significance of this finding remains to be explored but is of fundamental biological significance.
Author Summary
Leptospirosis is a bacterial disease commonly transmitted from animals to humans. The more than 200 types of spiral-shaped bacteria (spirochetes) in the genus Leptospira are classified as pathogenic, intermediately pathogenic, or saprophytic (meaning not causing infection in any mammal) based on their ability to cause disease and on genetic information. Unique among the spirochetes that infect humans, Leptospira live both in the environment (in surface waters and moist soils), and in mammals, where they cause chronic infection by colonizing kidney tubules. Infected animals are the source of human infection, but humans have not been systematically studied as chronic Leptospira carriers. In our study, we found that more than 5% of people (in fact, only women) in a rural Amazonian village, without clinical evidence of infection by Leptospira, were chronically colonized by the bacteria. Chronic infection was not associated with a detectable immune response against the spirochete. Pathogenic and intermediately pathogenic Leptospira caused asymptomatic, chronic kidney infections. Future work is needed to determine whether such chronic infection can lead to human-to-human transmission of leptospirosis, and whether subtle measures of kidney disease are associated with asymptomatic, long-term leptospiral infection.
doi:10.1371/journal.pntd.0000612
PMCID: PMC2826405  PMID: 20186328
17.  Post-translational Modification of LipL32 during Leptospira interrogans Infection 
Background
Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world's most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin.
Methodology/Principal Findings
Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32.
Conclusions/Significance
The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira.
Author Summary
Leptospirosis, caused by pathogenic Leptospira spp., constitutes an increasing global public health threat. Humans are accidental hosts, and acquire the disease primarily from contact with water sources that have been contaminated with urine from infected animals. Rats are asymptomatic carriers of infection and are critical for disease transmission to humans, particularly in urban slum environments. In this study, investigation of Leptospira directly isolated from the urine of infected rats showed acetylation or tri-methylation of the highly abundant leptospiral lipoprotein, LipL32. In comparison, Leptospira grown in culture did not result in any LipL32 lysine modifications. A synthetic peptide derived from LipL32 that incorporated a tri-methylated lysine modification exhibited less reactivity with serum from leptospirosis patients compared to an unmodified version of the peptide, suggesting LipL32 modifications may alter protein recognition by the immune response. This study reports, for the first time, modification of a Leptospira protein during infection, and suggests these modifications may have a functional consequence that contributes to bacterial persistence during infection.
doi:10.1371/journal.pntd.0003280
PMCID: PMC4214626  PMID: 25356675
18.  Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane 
Background
Leptospira interrogans is the major causative agent of leptospirosis. Phagocytosis plays important roles in the innate immune responses to L. interrogans infection, and L. interrogans can evade the killing of phagocytes. However, little is known about the adaptation of L. interrogans during this process.
Methodology/Principal Findings
To better understand the interaction of pathogenic Leptospira and innate immunity, we employed microarray and comparative genomics analyzing the responses of L. interrogans to macrophage-derived cells. During this process, L. interrogans altered expressions of many genes involved in carbohydrate and lipid metabolism, energy production, signal transduction, transcription and translation, oxygen tolerance, and outer membrane proteins. Among them, the catalase gene expression was significantly up-regulated, suggesting it may contribute to resisting the oxidative pressure of the macrophages. The expressions of several major outer membrane protein (OMP) genes (e.g., ompL1, lipL32, lipL41, lipL48 and ompL47) were dramatically down-regulated (10–50 folds), consistent with previous observations that the major OMPs are differentially regulated in vivo. The persistent down-regulations of these major OMPs were validated by immunoblotting. Furthermore, to gain initial insight into the gene regulation mechanisms in L. interrogans, we re-defined the transcription factors (TFs) in the genome and identified the major OmpR TF gene (LB333) that is concurrently regulated with the major OMP genes, suggesting a potential role of LB333 in OMPs regulation.
Conclusions/Significance
This is the first report on global responses of pathogenic Leptospira to innate immunity, which revealed that the down-regulation of the major OMPs may be an immune evasion strategy of L. interrogans, and a putative TF may be involved in governing these down-regulations. Alterations of the leptospiral OMPs up interaction with host antigen-presenting cells (APCs) provide critical information for selection of vaccine candidates. In addition, genome-wide annotation and comparative analysis of TFs set a foundation for further studying regulatory networks in Leptospira spp.
Author Summary
Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp.
doi:10.1371/journal.pntd.0000857
PMCID: PMC2964297  PMID: 21049008
19.  Impact of Environment and Social Gradient on Leptospira Infection in Urban Slums 
Background
Leptospirosis has become an urban health problem as slum settlements have expanded worldwide. Efforts to identify interventions for urban leptospirosis have been hampered by the lack of population-based information on Leptospira transmission determinants. The aim of the study was to estimate the prevalence of Leptospira infection and identify risk factors for infection in the urban slum setting.
Methods and Findings
We performed a community-based survey of 3,171 slum residents from Salvador, Brazil. Leptospira agglutinating antibodies were measured as a marker for prior infection. Poisson regression models evaluated the association between the presence of Leptospira antibodies and environmental attributes obtained from Geographical Information System surveys and indicators of socioeconomic status and exposures for individuals. Overall prevalence of Leptospira antibodies was 15.4% (95% confidence interval [CI], 14.0–16.8). Households of subjects with Leptospira antibodies clustered in squatter areas at the bottom of valleys. The risk of acquiring Leptospira antibodies was associated with household environmental factors such as residence in flood-risk regions with open sewers (prevalence ratio [PR] 1.42, 95% CI 1.14–1.75) and proximity to accumulated refuse (1.43, 1.04–1.88), sighting rats (1.32, 1.10–1.58), and the presence of chickens (1.26, 1.05–1.51). Furthermore, low income and black race (1.25, 1.03–1.50) were independent risk factors. An increase of US$1 per day in per capita household income was associated with an 11% (95% CI 5%–18%) decrease in infection risk.
Conclusions
Deficiencies in the sanitation infrastructure where slum inhabitants reside were found to be environmental sources of Leptospira transmission. Even after controlling for environmental factors, differences in socioeconomic status contributed to the risk of Leptospira infection, indicating that effective prevention of leptospirosis may need to address the social factors that produce unequal health outcomes among slum residents, in addition to improving sanitation.
Author Summary
Leptospirosis, a life-threatening zoonotic disease, has become an important urban slum health problem. Epidemics of leptospirosis now occur in cities throughout the developing world, as the growth of slum settlements has produced conditions for rat-borne transmission of this disease. In this prevalence survey of more than 3,000 residents from a favela slum community in Brazil, Geographical Information System (GIS) and modeling approaches identified specific deficiencies in the sanitation infrastructure of slum environments—open sewers, refuse, and inadequate floodwater drainage—that serve as sources for Leptospira transmission. In addition to the environmental attributes of the slum environment, low socioeconomic status was found to independently contribute to the risk of infection. These findings indicate that effective prevention of leptospirosis will need to address the social factors that produce unequal health outcomes among slum residents, in addition to improving sanitation.
doi:10.1371/journal.pntd.0000228
PMCID: PMC2292260  PMID: 18431445
20.  Leptospira Contamination in Household and Environmental Water in Rural Communities in Southern Chile 
Leptospirosis is a zoonosis of global distribution that affects tropical and temperate areas. Under suitable conditions, Leptospira can survive in water and soil and contribute to human and animal infections. The objective of this study was to describe the presence of pathogenic Leptospira in peri-domestic water samples from rural households in southern Chile. Water samples, including puddles, containers, animal troughs, rivers, canals, and drinking water were collected from 236 households and tested for Leptospira using a PCR assay targeting the lipL32 gene. Evidence of Leptospira presence was detected in all sample types; overall, 13.5% (77/570) samples tested positive. A total of 10/22 (45.5%) open containers, 12/83 (14.5%) animal drinking sources, 9/47 (19.1%) human drinking sources, and 36/306 (19.3%) puddles tested positive. Lower income (OR = 4.35, p = 0.003), increased temperature (OR = 1.23, p < 0.001), and presence of dogs (OR = 15.9, p = 0.022) were positively associated with positive puddles. Increased number of rodent signs was associated with positive puddles in the household (OR = 3.22); however, only in the lower income households. There was no association between PCR positive rodents and puddles at the household level. Results revealed the ubiquity of Leptospira in the household environment and highlight the need to develop formal approaches for systematic monitoring.
doi:10.3390/ijerph110706666
PMCID: PMC4113836  PMID: 24972030
Leptospira; water; environment; PCR; rural
21.  The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence 
PLoS Pathogens  2007;3(7):e97.
Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species.
Author Summary
The spirochetes, which include medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, constitute an evolutionarily unique group of bacteria. Leptospirosis is a zoonotic disease that causes a high rate of mortality and morbidity in humans and animals throughout the world each year. The year 2007 marks the centenary of the discovery of the causative agent of leptospirosis, Leptospira interrogans. Until now, the genetic obstacles posed by leptospires (principally, the difficulties in generating targeted mutants) have hampered the identification of virulence genes. In this study, we describe an avirulent mutant in a pathogenic Leptospira that was obtained via disruption of loa22, a gene that encodes an outer membrane protein containing an OmpA domain. This mutation resulted in an avirulent mutant in the guinea pig model, and reintroduction of loa22 into the mutant restored Leptospira's ability to kill guinea pigs. Our results therefore indicate that loa22 is a virulence determinant that is, to our knowledge, the first identified for this pathogen.
doi:10.1371/journal.ppat.0030097
PMCID: PMC1914066  PMID: 17630832
22.  Leptospiral Pathogenomics 
Pathogens  2014;3(2):280-308.
Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
doi:10.3390/pathogens3020280
PMCID: PMC4243447  PMID: 25437801
Leptospira; pathogenomics; virulence; genomics; evolution; taxonomy; molecular epidemiology; systems biology
23.  Live Imaging of Bioluminescent Leptospira interrogans in Mice Reveals Renal Colonization as a Stealth Escape from the Blood Defenses and Antibiotics 
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.
Author Summary
Leptospirosis is a worldwide neglected disease caused by the pathogenic bacterium named Leptospira interrogans. Some rodents, such as rats, do not get sick from leptospirosis and constitute a reservoir. They carry leptospires in their kidneys and excrete the bacteria in the environment. L. interrogans are mobile and penetrate their hosts through abraded skin or mucosa. Infected humans may develop mild to severe leptospirosis, potentially leading to death. Leptospires are difficult to cultivate and to genetically manipulate, impairing the study of leptospirosis. Here, we constructed bioluminescent leptospires, and monitored infection in live mice by tracking bioluminescence. In the first days after infection, a rapid dissemination and growth of bacteria was observed in the blood circulation, followed around one week after the infection by their apparent disappearance. However, the leptospires reemerged and multiplied in the kidneys, to reach sustained levels three weeks after infection. The use of antibiotics showed that antibiotic-susceptible L. interrogans are very difficult to eradicate once they are settled in the kidneys. Mice infected with bioluminescent leptospires represent a pertinent model to study leptospirosis. These bioluminescent leptospires are novel tools that will be useful to test the efficacy of treatments or vaccines against leptospirosis.
doi:10.1371/journal.pntd.0003359
PMCID: PMC4256284  PMID: 25474719
24.  Leptospira interrogans Binds to Cadherins 
Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans.
Author Summary
Leptospirosis is a globally widespread bacterial infection caused by pathogenic species of the genus Leptospira. The disease manifestations of leptospirosis range from mild, non-specific illness to a severe disease that includes multi-organ failure, widespread damage to blood vessels, and hemorrhage. Attachment to human or animal cells is likely to be important to the ability of the bacteria to spread and to cause disease. In this study, members of the cadherin family were identified as mammalian cell receptors that bind Leptospira. Cadherins are cell surface proteins that function to maintain cell-cell integrity by anchoring neighboring cells together. Disease-causing L. interrogans, but not the non-infectious L. biflexa, binds to cells that line blood vessels and VE-cadherin, the predominant cadherin found in this cell type. The binding of bacteria was reduced in the presence of antibodies against VE-cadherin, supporting the role of this protein in bacterial attachment. The attachment of L. interrogans to the inner lining of the vessels via VE-cadherin may result in damage, facilitating the escape of the pathogen from the bloodstream into different tissues, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to identify a mammalian cell surface protein as a receptor for L. interrogans.
doi:10.1371/journal.pntd.0002672
PMCID: PMC3907533  PMID: 24498454
25.  The Contribution of Bats to Leptospirosis Transmission in São Paulo City, Brazil 
The biodiversity of potential leptospiral reservoir hosts is lower in urban than in rural environments. Previous data indicate the potential for bats to act as carriers of Leptospira in regions such as the Amazon of South America and in Australia. Yet, little is known about the contribution of bats to leptospirosis in urban environments in South America. This study aimed to test the hypothesis that bats infected with Leptospira are sources of leptospirosis transmission to humans in São Paulo City, Brazil. Six of 343 bats caught in different districts within the city of Sao Paulo (182 insectivorous, 161 frugivorous or nectarivorous) were polymerase chain reaction (PCR) positive for pathogenic Leptospira; no seropositive bats were found. That few renal carriers of Leptospira were found in the city of Sao Paulo suggests that bats are not important in the transmission of leptospirosis to humans in this, and possibly other urban settings.
doi:10.4269/ajtmh.2010.09-0227
PMCID: PMC2813174  PMID: 20134010

Results 1-25 (362256)