PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1195686)

Clipboard (0)
None

Related Articles

1.  Ectopic Lymphoid Structures Support Ongoing Production of Class-Switched Autoantibodies in Rheumatoid Synovium 
PLoS Medicine  2009;6(1):e1.
Background
Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium.
Methods and Findings
Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Iγ-Cμ circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis.
Conclusions
Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell–depleting therapies.
Costantino Pitzalis and colleagues show that lymphoid structures in synovial tissue of patients with rheumatoid arthritis support production of anti-citrullinated peptide antibodies, which continues following transplantation into SCID mice.
Editors' Summary
Background.
More than 1 million people in the United States have rheumatoid arthritis, an “autoimmune” condition that affects the joints. Normally, the immune system provides protection against infection by responding to foreign antigens (molecules that are unique to invading organisms) while ignoring self-antigens present in the body's own tissues. In autoimmune diseases, this ability to discriminate between self and non-self fails for unknown reasons and the immune system begins to attack human tissues. In rheumatoid arthritis, the lining of the joints (the synovium) is attacked, it becomes inflamed and thickened, and chemicals are released that damage all the tissues in the joint. Eventually, the joint may become so scarred that movement is no longer possible. Rheumatoid arthritis usually starts in the small joints in the hands and feet, but larger joints and other tissues (including the heart and blood vessels) can be affected. Its symptoms, which tend to fluctuate, include early morning joint pain, swelling, and stiffness, and feeling generally unwell. Although the disease is not always easy to diagnose, the immune systems of many people with rheumatoid arthritis make “anti-citrullinated protein/peptide antibodies” (ACPA). These “autoantibodies” (which some experts believe can contribute to the joint damage in rheumatoid arthritis) recognize self-proteins that contain the unusual amino acid citrulline, and their detection on blood tests can help make the diagnosis. Although there is no cure for rheumatoid arthritis, the recently developed biologic drugs, often used together with the more traditional disease-modifying therapies, are able to halt its progression by specifically blocking the chemicals that cause joint damage. Painkillers and nonsteroidal anti-inflammatory drugs can reduce its symptoms, and badly damaged joints can sometimes be surgically replaced.
Why Was This Study Done?
Before scientists can develop a cure for rheumatoid arthritis, they need to know how and why autoantibodies are made that attack the joints in this common and disabling disease. B cells, the immune system cells that make antibodies, mature in structures known as “germinal centers” in the spleen and lymph nodes. In the germinal centers, immature B cells are exposed to antigens and undergo two genetic processes called “somatic hypermutation” and “class-switch recombination” that ensure that each B cell makes an antibody that sticks as tightly as possible to just one antigen. The B cells then multiply and enter the bloodstream where they help to deal with infections. Interestingly, the inflamed synovium of many patients with rheumatoid arthritis contains structures that resemble germinal centers. Could these ectopic (misplaced) lymphoid structures, which are characterized by networks of immune system cells called follicular dendritic cells (FDCs), promote autoimmunity and long-term inflammation by driving the production of autoantibodies within the joint itself? In this study, the researchers investigate this possibility.
What Did the Researchers Do and Find?
The researchers collected synovial tissue from 55 patients with rheumatoid arthritis and used two approaches, called immunohistochemistry and real-time PCR, to investigate whether FDC-containing structures in synovium expressed an enzyme called activation-induced cytidine deaminase (AID), which is needed for both somatic hypermutation and class-switch recombination. All the FDC-containing structures that the researchers found in their samples expressed AID. Furthermore, these AID-containing structures were surrounded by mature B cells making ACPAs. To test whether these B cells were derived from AID-expressing cells resident in the synovium rather than ACPA-expressing immune system cells coming into the synovium from elsewhere in the body, the researchers transplanted synovium from patients with rheumatoid arthritis under the skin of a special sort of mouse that largely lacks its own immune system. Four weeks later, the researchers found that the transplanted human lymphoid tissue was still making AID, that the level of AID expression correlated with the amount of human ACPA in the blood of the mice, and that the B cells in the transplant were proliferating.
What Do These Findings Mean?
These findings show that the ectopic lymphoid structures present in the synovium of some patients with rheumatoid arthritis are functional and are able to make ACPA. Because ACPA may be responsible for joint damage, the survival of these structures could, therefore, be involved in the development and progression of rheumatoid arthritis. More experiments are needed to confirm this idea, but these findings may explain why drugs that effectively clear B cells from the bloodstream do not always produce a marked clinical improvement in rheumatoid arthritis. Finally, they suggest that AID might provide a new target for the development of drugs to treat rheumatoid arthritis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0060001.
This study is further discussed in a PLoS Medicine Perspective by Rene Toes and Tom Huizinga
The MedlinePlus Encyclopedia has a page on rheumatoid arthritis (in English and Spanish). MedlinePlus provides links to other information on rheumatoid arthritis (in English and Spanish)
The UK National Health Service Choices information service has detailed information on rheumatoid arthritis
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides Fast Facts, an easy to read publication for the public, and a more detailed Handbook on rheumatoid arthritis
The US Centers for Disease Control and Prevention has an overview on rheumatoid arthritis that includes statistics about this disease and its impact on daily life
doi:10.1371/journal.pmed.0060001
PMCID: PMC2621263  PMID: 19143467
2.  Increased proviral load in HTLV-1-infected patients with rheumatoid arthritis or connective tissue disease 
Retrovirology  2005;2:4.
Background
Human T-lymphotropic virus type 1 (HTLV-1) proviral load is related to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and has also been shown to be elevated in the peripheral blood in HTLV-1-infected patients with uveitis or alveolitis. Increased proliferation of HTLV-1-infected cells in, or migration of such cells into, the central nervous system is also seen in HAM/TSP. In the present study, we evaluated the proviral load in a cohort of HTLV-1-infected patients with arthritic conditions.
Results
HTLV-1 proviral load in the peripheral blood from 12 patients with RA and 6 patients with connective tissue disease was significantly higher than that in matched asymptomatic HTLV-1 carriers, but similar to that in matched HAM/TSP controls. HAM/TSP was seen in one-third of the HTLV-1-infected patients with RA or connective tissue disease, but did not account for the higher proviral load compared to the asymptomatic carrier group. The proviral load was increased in the synovial fluid and tissue from an HTLV-1-infected patient with RA, the values suggesting that the majority of infiltrated cells were HTLV-1-infected. In the peripheral blood from HTLV-1-infected patients with RA or connective tissue disease, HTLV-1 proviral load correlated with the percentages of memory CD4+ T cells and activated T cells, and these percentages were shown to be markedly higher in the synovial fluid than in the peripheral blood in an HTLV-1-infected patient with RA.
Conclusions
These biological findings are consistent with a role of the retrovirus in the development of arthritis in HTLV-1-infected patients. A high level of HTLV-1-infected lymphocytes in the peripheral blood and their accumulation in situ might play a central role in the pathogenesis of HTLV-1-associated inflammatory disorders. Alternatively, the autoimmune arthritis, its etiological factors or treatments might secondarily enhance HTLV-1 proviral load.
doi:10.1186/1742-4690-2-4
PMCID: PMC549050  PMID: 15686595
3.  Specificity of T cells in synovial fluid: high frequencies of CD8+ T cells that are specific for certain viral epitopes 
Arthritis Research  2000;2(2):154-164.
CD8+ T cells dominate the lymphocyte population in synovial fluid in chronic inflammatory arthritis. It is known that these CD8+ T cells are often clonally or oligoclonally expanded, but their specificity and their relevance to the pathogenesis of joint disease has remained unclear. We found that as many as 15.5% of synovial CD8+ T cells may be specific for a single epitope from an Epstein-Barr virus lytic cycle protein. The virus-specific T cells within the joint showed increased expression of markers of activation and differentiation compared with those in the periphery, and retained their functional capacity to secrete proinflammatory cytokines on stimulation. These activated, virus-specific CD8+ T cells could therefore interact with synoviocytes, either by cell-cell contact or by a cytokine network, and play a 'bystander' role in the maintenance of inflammation in patients with arthritis.
Introduction:
Epstein-Barr virus (EBV) is transmitted orally, replicates in the oropharynx and establishes life-long latency in human B lymphocytes. T-cell responses to latent and lytic/replicative cycle proteins are readily detectable in peripheral blood from healthy EBV-seropositive individuals. EBV has also been detected within synovial tissue, and T-cell responses to EBV lytic proteins have been reported in synovial fluid from a patient with rheumatoid arthritis (RA). This raises the question regarding whether T cells specific for certain viruses might be present at high frequencies within synovial fluid and whether such T cells might be activated or able to secrete cytokines. If so, they might play a 'bystander' role in the pathogenesis of inflammatory joint disease.
Objectives:
To quantify and characterize T cells that are specific for epitopes from EBV, cytomegalovirus (CMV) and influenza in peripheral blood and synovial fluid from patients with arthritis.
Methods:
Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were obtained from patients with inflammatory arthritis (including those with RA, osteoarthritis, psoriatic arthritis and reactive arthritis). Samples from human leucocyte antigen (HLA)-A2-positive donors were stained with fluorescent-labelled tetramers of HLA-A2 complexed with the GLCTLVAML peptide epitope from the EBV lytic cycle protein BMLF1, the GILGFVFTL peptide epitope from the influenza A matrix protein, or the NLVPMVATV epitope from the CMV pp65 protein. Samples from HLA-B8-positive donors were stained with fluorescent-labelled tetramers of HLA-B8 complexed with the RAKFKQLL peptide epitope from the EBV lytic protein BZLF1 or the FLRGRAYGL peptide epitope from the EBV latent protein EBNA3A. All samples were costained with an antibody specific for CD8. CD4+ T cells were not analyzed. Selected samples were costained with antibodies specific for cell-surface glycoproteins, in order to determine the phenotype of the T cells within the joint and the periphery. Functional assays to detect release of IFN-γ or tumour necrosis factor (TNF)-α were also performed on some samples.
Results:
The first group of 15 patients included 10 patients with RA, one patient with reactive arthritis, one patient with psoriatic arthritis and three patients with osteoarthritis. Of these, 11 were HLA-A2 positive and five were HLA-B8 positive. We used HLA-peptide tetrameric complexes to analyze the frequency of EBV-specific T cells in PBMCs and SFMCs (Figs 1 and 2). Clear enrichment of CD8+ T cells specific for epitopes from the EBV lytic cycle proteins was seen within synovial fluid from almost all donors studied, including patients with psoriatic arthritis and osteoarthritis and those with RA. In donor RhA6, 9.5% of CD8+ SFMCs were specific for the HLA-A2 restricted GLCTLVAML epitope, compared with 0.5% of CD8+ PBMCs. Likewise in a donor with osteoarthritis (NR4), 15.5% of CD8+ SFMCs were specific for the HLA-B8-restricted RAKFKQLL epitope, compared with 0.4% of CD8+ PBMCs. In contrast, we did not find enrichment of T cells specific for the HLA-B8-restricted FLRGRAYGL epitope (from the latent protein EBNA3A) within SFMCs compared with PBMCs in any donors. In selected individuals we performed ELISpot assays to detect IFN-γ secreted by SFMCs and PBMCs after a short incubation in vitro with peptide epitopes from EBV lytic proteins. These assays confirmed enrichment of T cells specific for epitopes from EBV lytic proteins within synovial fluid and showed that subpopulations of these cells were able to secrete proinflammatory cytokines after short-term stimulation.
We used a HLA-A2/GILGFVFTL tetramer to stain PBMCs and SFMCs from six HLA-A2-positive patients. The proportion of T cells specific for this influenza epitope was low (<0.2%) in all donors studied, and we did not find any enrichment within SFMCs.
We had access to SFMCs only from a second group of four HLA-A2-positive patients with RA. A tetramer of HLA-A2 complexed to the NLVPMVATV epitope from the CMV pp65 protein reacted with subpopulations of CD8+ SFMCs in all four donors, with frequencies of 0.2, 0.5, 2.3 and 13.9%. SFMCs from all four donors secreted TNF after short-term incubation with COS cells transfected with HLA-A2 and pp65 complementary DNA. We analyzed the phenotype of virus-specific cells within PBMCs and SFMCs in three donors. The SFMC virus-specific T cells were more highly activated than those in PBMCs, as evidenced by expression of high levels of CD69 and HLA-DR. A greater proportion of SFMCs were CD38+, CD62L low, CD45RO bright, CD45RA dim, CD57+ and CD28- when compared with PBMCs.
Discussion:
This work shows that T cells specific for certain epitopes from viral proteins are present at very high frequencies (up to 15.5% of CD8+ T cells) within SFMCs taken from patients with inflammatory joint disease. This enrichment does not reflect a generalized enrichment for the 'memory pool' of T cells; we did not find enrichment of T cells specific for the GILGFVFTL epitope from influenza A or for the FLRGRAYGL epitope from the EBV latent protein EBNA3A, whereas we found clear enrichment of T cells specific for the GLCTLVAML epitope from the EBV lytic protein BMLF1 and for the RAKFKQLL epitope from the EBV lytic protein BZLF1.
The enrichment might reflect preferential recruitment of subpopulations of virus-specific T cells, perhaps based on expression of selectins, chemokine receptors or integrins. Alternatively, T cells specific for certain viral epitopes may be stimulated to proliferate within the joint, by viral antigens themselves or by cross-reactive self-antigens. Finally, it is theoretically possible that subpopulations of T cells within the joint are preferentially protected from apoptotic cell death. Whatever the explanation, the virus-specific T cells are present at high frequency, are activated and are able to secrete proinflammatory cytokines. They could potentially interact with synoviocytes and contribute to the maintenance of inflammation within joints in many different forms of inflammatory arthritis.
PMCID: PMC17809  PMID: 11062606
CD8+ T cell; Epstein-Barr virus lytic cycle; human leucocyte antigen peptide tetrameric complex; rheumatoid arthritis; viral immunity
4.  Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts 
Arthritis Research  1999;1(1):71-80.
Our aim was to identify specifically expressed genes using RNA arbitrarily primed (RAP)-polymerase chain reaction (PCR) for differential display in patients with rheumatoid arthritis (RA). In RA, amplification of a distinct PCR product suitable for sequencing could be observed. Sequence analysis identified the PCR product as highly homologous to a 434 base pair segment of the human centromere kinesin-like protein CENP-E. Differential expression of CENP-E was confirmed by quantitative reverse transcription PCR, immunohistochemistry and in situ hybridization. CENP-E expression was independent from prednisolone and could not be completely inhibited by serum starvation. RAP-PCR is a suitable method to identify differentially expressed genes in rheumatoid synovial fibroblasts. Also, because motifs of CENP-E show homologies to jun and fos oncogene products and are involved in virus assembly, CENP-E may be involved in the pathophysiology of RA.
Introduction:
Articular destruction by invading synovial fibroblasts is a typical feature in rheumatoid arthritis (RA). Recent data support the hypothesis that key players in this scenario are transformed-appearing synovial fibroblasts at the site of invasion into articular cartilage and bone. They maintain their aggressive phenotype toward cartilage, even when first cultured and thereafter coimplanted together with normal human cartilage into severe combined immunodeficient mice for an extended period of time. However, little is known about the upregulation of genes that leads to this aggressive fibroblast phenotype. To inhibit this progressive growth without interfering with pathways of physiological matrix remodelling, identification of pathways that operate specifically in RA synovial fibroblasts is required. In order to achieve this goal, identification of genes showing upregulation restricted to RA synovial fibroblasts is essential.
Aims:
To identify specifically expressed genes using RNA arbitrarily primed (RAP)-polymerase chain reaction (PCR) for differential display in patients with RA.
Methods:
RNA was extracted from cultured synovial fibroblasts from 10 patients with RA, four patients with osteoarthritis (OA), and one patient with psoriatic arthritis. RAP-PCR was performed using different arbitrary primers for first-strand and second-strand synthesis. First-strand and second-strand synthesis were performed using arbitrary primers: US6 (5' -GTGGTGACAG-3') for first strand, and Nuclear 1+ (5' -ACGAAGAAGAG-3'), OPN28 (5' -GCACCAGGGG-3'), Kinase A2+ (5' -GGTGCCTTTGG-3')and OPN24 (5' -AGGGGCACCA-3') for second-strand synthesis. PCR reactions were loaded onto 8 mol/l urea/6% polyacrylamide-sequencing gels and electrophoresed.Gel slices carrying the target fragment were then excised with a razor blade, eluated and reamplified. After verifying their correct size and purity on 4% agarose gels, the reamplified products derived from the single-strand confirmation polymorphism gel were cloned, and five clones per transcript were sequenced. Thereafter, a GenBank® analysis was performed. Quantitative reverse transcription PCR of the segments was performed using the PCR MIMIC® technique.In-situ expression of centromere kinesin-like protein-E (CENP-E) messenger (m)RNA in RA synovium was assessed using digoxigenin-labelled riboprobes, and CENP-E protein expression in fibroblasts and synovium was performed by immunogold-silver immunohistochemistry and cytochemistry. Functional analysis of CENP-E was done using different approaches (eg glucocorticoid stimulation, serum starvation and growth rate analysis of synovial fibroblasts that expressed CENP-E).
Results:
In RA, amplification of a distinct PCR product suitable for sequencing could be observed. The indicated complementary DNA fragment of 434 base pairs from RA mRNA corresponded to nucleotides 6615-7048 in the human centromere kinesin-like protein CENP-E mRNA (GenBank® accession No. emb/Z15005).The isolated sequence shared greater than 99% nucleic acid (P = 2.9e-169) identity with the human centromere kinesin-like protein CENP-E. Two base changes at positions 6624 (A to C) and 6739 (A to G) did not result in alteration in the amino acid sequence, and therefore 100% amino acid identity could be confirmed. The amplification of 10 clones of the cloned RAP product revealed the presence of CENP-E mRNA in every fibroblast culture examined, showing from 50% (271.000 ± 54.000 phosphor imager arbitrary units) up to fivefold (961.000 ± 145.000 phosphor imager arbitrary units) upregulation when compared with OA fibroblasts. Neither therapy with disease-modifying antirheumatic drugs such as methotrexate, gold, resochine or cyclosporine A, nor therapy with oral steroids influenced CENP-E expression in the RA fibroblasts. Of the eight RA fibroblast populations from RA patients who were receiving disease-modifying antirheumatic drugs, five showed CENP-E upregulation; and of the eight fibroblast populations from RA patients receiving steroids, four showed CENP-E upregulation.
Numerous synovial cells of the patients with RA showed a positive in situ signal for the isolated CENP-E gene segment, confirming CENP-E mRNA production in rheumatoid synovium, whereas in OA synovial tissue CENP-E mRNA could not be detected. In addition, CENP-E expression was independent from medication. This was further confirmed by analysis of the effect of prednisolone on CENP-E expression, which revealed no alteration in CENP-E mRNA after exposure to different (physiological) concentrations of prednisolone. Serum starvation also could not suppress CENP-E mRNA completely.
Discussion:
Since its introduction in 1992, numerous variants of the differential display method and continuous improvements including RAP-PCR have proved to have both efficiency and reliability in examination of differentially regulated genes. The results of the present study reveal that RAP-PCR is a suitable method to identify differentially expressed genes in rheumatoid synovial fibroblasts.
The mRNA, which has been found to be upregulated in rheumatoid synovial fibroblasts, codes for a kinesin-like motor protein named CENP-E, which was first characterized in 1991. It is a member of a family of centromere-associated proteins, of which six (CENP-A to CENP-F) are currently known. CENP-E itself is a kinetochore motor, which accumulates transiently at kinetochores in the G2 phase of the cell cycle before mitosis takes place, appears to modulate chromosome movement and spindle elongation,and is degraded at the end of mitosis. The presence or upregulation of CENP-E has never been associated with RA.
The three-dimensional structure of CENP-E includes a coiled-coil domain. This has important functions and shows links to known pathways in RA pathophysiology. Coiled-coil domains can also be found in jun and fos oncogene products, which are frequently upregulated in RA synovial fibroblasts. They are also involved in DNA binding and transactivation processes resembling the situation in AP-1 (Jun/Fos)-dependent DNA-binding in rheumatoid synovium. Most interestingly, these coiled-coil motifs are crucial for the assembly of viral proteins, and the upregulation of CENP-E might reflect the influence of infectious agents in RA synovium. We also performed experiments showing that serum starvation decreased, but did not completely inhibit CENP-E mRNA expression. This shows that CENP-E is related to, but does not completely depend on proliferation of these cells. In addition, we determined the growth rate of CENP-E high and low expressors, showing that it was independent from the amount of CENP-E expression. supporting the statement that upregulation of CENP-E reflects an activated RA fibroblast phenotype. In summary, the results of the present study support the hypothesis that CENP-E, presumably independently from medication, may not only be upregulated, but may also be involved in RA pathophysiology.
PMCID: PMC17776  PMID: 11056662
arthritis; centromere; differential display; immunohistochemistry; in situ hybridization; RNA fingerprinting
5.  The potential role of human endogenous retrovirus K10 in the pathogenesis of rheumatoid arthritis: a preliminary study 
Annals of the Rheumatic Diseases  2005;65(5):612-616.
Objective
To examine whether human endogenous retrovirus K10 is associated with autoimmune rheumatic disease.
Design
A novel multiplex reverse transcription polymerase chain reaction (RT‐PCR) system was developed to investigate HERV‐K10 mRNA expression in patients with rheumatoid arthritis.
Methods
40 patients with rheumatoid arthritis, 17 with osteoarthritis, and 27 healthy individuals were recruited and total RNA was extracted from peripheral blood mononuclear cells (PBMCs) and analysed using multiplex RT‐PCR for the level of HERV‐K10 gag mRNA expression. Southern blot and DNA sequencing confirmed the authenticity of the PCR products.
Results
Using the histidyl tRNA synthetase (HtRNAS) gene as a housekeeping gene in the optimised multiplex RT‐PCR, a significantly higher level of HERV‐K10 gag mRNA expression was found in rheumatoid arthritis than in osteoarthritis (p = 0.01) or in the healthy controls (p = 0.02).
Conclusion
There is enhanced mRNA expression of the HERV‐K10 gag region in rheumatoid arthritis compared with osteoarthritis or healthy controls. This could contribute to the pathogenesis of rheumatoid arthritis.
doi:10.1136/ard.2004.031146
PMCID: PMC1798125  PMID: 16192292
human endogenous retroviruses; rheumatoid arthritis; peripheral blood mononuclear cells; histidyl tRNA synthetase
6.  Mycoplasma fermentans, but not M penetrans, detected by PCR assays in synovium from patients with rheumatoid arthritis and other rheumatic disorders. 
Journal of Clinical Pathology  1996;49(10):824-828.
AIM/BACKGROUND: Mycoplasmas, especially Mycoplasma fermentans, were suggested more than 20 years ago as a possible cause of rheumatoid arthritis but this hypothesis was never substantiated. In view of the superior sensitivity of the polymerase chain reaction (PCR) assay over culture, the aim was to use this method to seek M fermentans and M penetrans in synovial samples from patients with various arthritides. METHODS: Synovial fluid samples (n = 154) and synovial biopsy specimens (n = 20) from 133 patients with various rheumatic disorders were stored at -80 degrees C for between one and 40 months. Aliquots (500 microliters) of the synovial fluid samples were centrifuged and the deposit, and also the synovial biopsy specimens (approximately 1 g) were placed in lysis buffer with proteinase K for DNA extraction. The DNA was tested by using a semi-nested PCR assay for M fermentans and a single-round PCR for M penetrans. RESULTS: M fermentans was detected in the joints of eight (21%) of 38 patients with rheumatoid arthritis, two (20%) of 10 patients with spondyloarthropathy with peripheral arthritis, one (20%) of five patients with psoriatic arthritis, and four (13%) of 31 patients with unclassified arthritis. M fermentans was not found in the joints of the seven patients with reactive arthritis, the 29 with osteoarthritis or post-traumatic hydrarthrosis, the nine with gouty arthritis, nor the four with chronic juvenile arthritis. M penetrans was not detected in any sample. CONCLUSIONS: These findings show that the presence of M fermentans in the joint is associated with inflammatory rheumatic disorders of unknown cause, including rheumatoid arthritis. However, whether this organism triggers or perpetuates disease of behaves as a passenger remains conjectural.
PMCID: PMC500777  PMID: 8943749
7.  Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion 
Arthritis Research  1999;2(1):65-74.
Mast cell (MC) activation in the rheumatoid lesion provides numerous mediators that contribute to inflammatory and degradative processes, especially at sites of cartilage erosion. MC activation in rheumatoid synovial tissue has often been associated with tumour necrosis factor (TNF)-α and interleukin (IL)-1β production by adjacent cell types. By contrast, our in situ and in vitro studies have shown that the production of IL-15 was independent of MC activation, and was not related to TNF-α and IL-1β expression. Primary cultures of dissociated rheumatoid synovial cells produced all three proinflammatory cytokines, with production of IL-1β exceeding that of TNF-α, which in turn exceeded that of IL-15. In vitro cultures of synovial macrophages, synovial fibroblasts and articular chondrocytes all produced detectable amounts of free IL-15, macrophages being the most effective.
Introduction:
Increased numbers of mast cells (MCs) are found in the synovial tissues and fluids of patients with rheumatoid arthritis (RA), and at sites of cartilage erosion. MC activation has been reported for a significant proportion of rheumatoid specimens. Because the MC contains potent mediators, including histamine, heparin, proteinases, leukotrienes and multifunctional cytokines, its potential contributions to the processes of inflammation and matrix degradation have recently become evident.
Proinflammatory cytokines are important mediators of inflammation, immunity, proteolysis, cell recruitment and proliferation. Tumour necrosis factor (TNF) reportedly plays a pivotal role in the pathogenesis of RA, especially its ability to regulate interleukin (IL)-1β expression, this being important for the induction of prostanoid and matrix metalloproteinase production by synovial fibroblasts and chondrocytes. IL-15 has been assigned numerous biological effects and has been implicated as an important factor in TNF-α expression by monocyte/macrophages. Some in vitro studies have placed IL-15 upstream from TNF-α in the cytokine cascade, suggesting an interdependence between TNF, IL-1 and IL-15 for the promotion of proinflammatory cytokine expression in the rheumatoid joint.
Aims:
To examine the in situ relationships of TNF-α, IL-1β and IL-15 in relation to MC activation in rheumatoid tissues by use of immunolocalization techniques; and to compare quantitatively the proinflammatory cytokine production by specific cell cultures and rheumatoid synovial explants with and without exposure to a MC secretagogue.
Materials and methods:
Samples of rheumatoid synovial tissue and cartilage–pannus junction were obtained from patients (n = 15) with classic late-stage RA. Tissue sections were immunostained for MC (tryptase) and the proinflammatory cytokines IL-1, TNF-α and IL-15. Rheumatoid synovial tissue explants were cultured in Dulbecco's modified Eagles medium (DMEM) containing either the MC secretagogue rabbit antihuman immunoglobulin (Ig)E, or control rabbit IgG. Primary rheumatoid synovial cell cultures, human articular chondrocytes, synovial fibroblasts and synovial macrophages were prepared as described in the full article. Conditioned culture media from these cultures were collected and assayed for IL-1β, TNF-α and IL-15 using enzyme-linked immunosorbent assay methodology.
Results:
Immunohistological studies of rheumatoid synovial tissues have demonstrated local concentrations of MCs in most specimens of the rheumatoid lesion. Sites of MC activation were associated with localized oedema, and TNF-α, IL-1α and IL-1β production by a proportion of mononuclear inflammatory cells. By contrast, no evidence was found for IL-15 production in tissue sites containing either intact or activated MCs, and IL-15 expression, when observed, bore no relation to tissue sites where TNF-α and IL-1β were evident. The immunodetection of IL-15 was restricted to microfocal sites and was not typical of most junctional specimens, but was associated with a proportion of articular chondrocytes in a minority of junctional specimens.
MC activation within synovial explant cultures was induced by the addition of polyclonal antibody to human IgE. MC activation significantly reduced the levels of TNF-α and IL1β released into the medium, this representing approximately 33% of control values. By contrast, MC activation had little effect on the levels of IL-15 released into the culture medium, the average value being very low in relation to the release of TNF-α and IL-1β . Thus, induced MC activation brings about changes in the amounts of released tryptase, TNF-α and IL-1β , but not of IL-15.
Four preparations of primary rheumatoid synovial cell cultures produced more IL-1β than TNF-α, with only modest values for IL-15 production, indicating that all three cytokines are produced and released as free ligands by these cultures. Of specific cell types that produced IL-15 in vitro, macrophages produced more than fibroblasts, which in turn produced more than chondrocytes. This demonstrates that all three cell types have the potential to produce IL-15 in situ.
Discussion:
The biological consequences of MC activation in vivo are extremely complex, and in all probability relate to the release of various combinations of soluble and granular factors, as well as to the expression of appropriate receptors by neighbouring cells. The subsequent synthesis and release of cytokines such as TNF-α and IL-1 may well follow at specific stages after activation, or may be an induced cytokine response by adjacent macrophagic or fibroblastic cells. However, because no IL-15 was detectable either in or around activated or intact MCs, and the induced MC activation explant study showed no change in IL-15 production, it seems unlikely that the expression of this cytokine is regulated by MCs. The immunohistochemistry (IHC) demonstration of IL-15 at sites of cartilage erosion, and especially by some chondrocytes of articular cartilage, showed no spatial relationship with either T cells or neutrophils, and suggests other functional properties in these locations. The lack of evidence for an in situ association of IL-15 with TNF and IL-1 does not support a role for IL-15 in a proinflammatory cytokine 'cascade', as proposed by other in vitro experiments. We believe that sufficient evidence is available, however, to suggest that MC activation makes a significant contribution to the pathophysiological processes of the rheumatoid lesion.
PMCID: PMC17805  PMID: 11219391
interleukin-15; interleukin-1β; mast cells; rheumatoid arthritis; tumour necrosis factor-α
8.  A New Arthritis Therapy with Oxidative Burst Inducers 
PLoS Medicine  2006;3(9):e348.
Background
Despite recent successes with biological agents as therapy for autoimmune inflammatory diseases such as rheumatoid arthritis (RA), many patients fail to respond adequately to these treatments, making a continued search for new therapies extremely important. Recently, the prevailing hypothesis that reactive oxygen species (ROS) promote inflammation was challenged when polymorphisms in Ncf1, that decrease oxidative burst, were shown to increase disease severity in mouse and rat arthritis models. Based on these findings we developed a new therapy for arthritis using oxidative burst-inducing substances.
Methods and Findings
Treatment of rats with phytol (3,7,11,15-tetramethyl-2-hexadecene-1-ol) increased oxidative burst in vivo and thereby corrected the effect of the genetic polymorphism in arthritis-prone Ncf1DA rats. Importantly, phytol treatment also decreased the autoimmune response and ameliorated both the acute and chronic phases of arthritis. When compared to standard therapies for RA, anti-tumour necrosis factor-α and methotrexate, phytol showed equally good or better therapeutic properties. Finally, phytol mediated its effect within hours of administration and involved modulation of T cell activation, as injection prevented adoptive transfer of disease with arthritogenic T cells.
Conclusions
Treatment of arthritis with ROS-promoting substances such as phytol targets a newly discovered pathway leading to autoimmune inflammatory disease and introduces a novel class of therapeutics for treatment of RA and possibly other chronic inflammatory diseases.
Treatment of arthritis in rats with phytol, a reactive oxygen species promoting substance, suggests a novel pathway of autoimmune inflammatory disease and possibly a novel therapeutic strategy.
Editors' Summary
Background.
Rheumatoid arthritis (RA) is a chronic illness that affects between 0.3% and 1% of people worldwide, causing pain and swelling in joints, tendons, and other tissues, and frequently leading to permanent deformity and disability. RA involves an abnormal attack by cells of the immune system against the body's own connective tissues (so-called autoimmunity). Current drugs for RA work by counteracting the molecules that cause the pain and swelling (inflammation). By reducing the severity of autoimmune inflammation, these drugs may also reduce the disease's long-term damage to joints.
Inflammation is not always abnormal, but in fact plays an important part in the body's defense against infection. As part of their activity against disease-causing bacteria, the white blood cells known as granulocytes generate reactive oxygen species (ROS), sometimes known as “free radicals.” After engulfing invading bacteria, neutrophils release an “oxidative burst” of ROS—essentially the subcellular equivalent of pouring hydrogen peroxide on a wound to disinfect it. A complex of molecules known collectively as the NADPH oxidase complex has the specific function of generating ROS to fuel the oxidative burst. Interestingly, recent experiments in arthritis-prone rats found that animals with an altered form of one of the subunits of this complex, Ncf1, that decreased the production of ROS also had greater susceptibility to arthritis. This finding was surprising because free radicals have generally been associated with inflammation and long-term damage to cells, so that a reduction in ROS might have been expected to decrease susceptibility to an inflammatory disease like RA.
Why Was This Study Done?
Because many patients with autoimmune inflammatory illnesses like RA do not respond to currently available therapies, new approaches to treatment merit investigation. Based on the observed association between reduced ROS and increased susceptibility to arthritis, the researchers wanted to find out whether treatment with a compound that increases ROS production by the NADPH oxidase complex would cause an improvement in arthritis.
What Did the Researchers Do and Find?
The researchers tested a compound called phytol in arthritis-prone rats to see how it affected inflammation. It is known that arthritis can be induced in these rats by injecting them with an oil called pristane. The researchers found that phytol caused a strong oxidative burst in human granulocyte cells grown in the laboratory, but did not cause arthritis in rats; whereas pristane, which does cause arthritis, caused a lower oxidative burst in the granulocytes.
They then studied whether phytol prevented arthritis in rats. They found that rats injected with phytol were protected from arthritis following a later injection of pristane. Given this result, they wanted to know if phytol increased ROS in the rats as it did in laboratory cell cultures. Studying granulocytes taken from rats that had been treated with phytol, they found that the oxidative burst of these cells was indeed increased, and remained increased for several weeks after treatment. They went on to test phytol as a treatment for active arthritis, and found that it dramatically reduced swollen joints and destruction of cartilage when given to rats with acute pristane-induced arthritis.
The beneficial effects of phytol were seen not only in rats bred with a form of Ncf1 that produces abnormally low amounts of ROS, but also in rats whose granulocytes produce normal oxidative bursts. When compared (in rats) to drugs licensed for RA (etanercept and methotrexate), phytol appeared to be at least as effective. The activity of phytol against arthritis was shown to involve T lymphocytes, as injection of phytol inhibited transfer of pristane-induced arthritis with these cells.
What Do These Findings Mean?
These experiments raise the intriguing possibility of an entirely new modality for treating autoimmune diseases; namely, through drugs designed to increase the production of ROS. This study raises a number of practical and scientific issues. For example, it is not known whether reduced capacity to produce ROS is a significant factor in human RA. Also, the connection between ROS production (by granulocytes) and autoimmune arthritis (which involves activity by T lymphocytes) remains to be clarified. Finally, the destructive effects typically associated with free radicals (such as damage to DNA and blockage of blood vessels) could complicate the use of this approach in humans, and like any new drugs, those that increase ROS production might have other, unanticipated side effects. Whatever the outcome of drug development efforts, however, this study is an excellent reminder that there are no “good” or “evil” biochemicals—in the intricacies of cellular metabolism, it's all a matter of balance.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030348.
The Arthritis Foundation: Rheumatoid Arthritis pages
Medical Inflammation Research pages (R. Holmdahl research group)
Wikipedia chapter on Rheumatoid Arthritis (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
Wikipedia chapter on Reactive Oxygen Species (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030348
PMCID: PMC1564167  PMID: 16968121
9.  Quantitative biomarker analysis of synovial gene expression by real-time PCR 
Arthritis Research & Therapy  2003;5(6):R352-R360.
Synovial biomarker analysis in rheumatoid arthritis can be used to evaluate drug effect in clinical trials of novel therapeutic agents. Previous studies of synovial gene expression for these studies have mainly relied on histological methods including immunohistochemistry and in situ hybridization. To increase the reliability of mRNA measurements on small synovial tissue samples, we developed and validated real time quantitative PCR (Q-PCR) methods on biopsy specimens. RNA was isolated from synovial tissue and cDNA was prepared. Cell-based standards were prepared from mitogen-stimulated peripheral blood mononuclear cells. Real time PCR was performed using TaqMan chemistry to quantify gene expression relative to the cell-based standard. Application of the cellular standard curve method markedly reduced intra- and inter-assay variability and corrected amplification efficiency errors compared with the C(t) method. The inter-assay coefficient of variation was less than 25% over time. Q-PCR methods were validated by demonstrating increased expression of IL-1β and IL-6 expression in rheumatoid arthritis synovial samples compared with osteoarthritis synovium. Based on determinations of sampling error and coefficient of variation, twofold differences in gene expression in serial biopsies can be detected by assaying approximately six synovial tissue biopsies from 8 to 10 patients. These data indicate that Q-PCR is a reliable method for determining relative gene expression in small synovial tissue specimens. The technique can potentially be used in serial biopsy studies to provide insights into mechanism of action and therapeutic effect of new anti-inflammatory agents.
doi:10.1186/ar1004
PMCID: PMC333415  PMID: 14680510
arthritis; biomarker; rheumatoid; synovium
10.  Persistence with Statins and Onset of Rheumatoid Arthritis: A Population-Based Cohort Study 
PLoS Medicine  2010;7(9):e1000336.
In a retrospective cohort study, Gabriel Chodick and colleagues find a significant association between persistence with statin therapy and reduced risk of developing rheumatoid arthritis, but only a modest decrease in risk of osteoarthritis.
Background
The beneficial effects of statins in rheumatoid arthritis (RA) have been suggested previously, but it is unclear whether statins may prevent its development. The aim of this retrospective cohort study was to explore whether persistent use of statins is associated with onset of RA.
Methods and Findings
The computerized medical databases of a large health organization in Israel were used to identify diagnosed RA cases among adults who began statin therapy between 1998 and 2007. Persistence with statins was assessed by calculating the mean proportion of follow-up days covered (PDC) with statins for every study participant. To assess the possible effects of healthy user bias, we also examined the risk of osteoarthritis (OA), a common degenerative joint disease that is unlikely to be affected by use of statins.
A total of 211,627 and 193,770 individuals were eligible for the RA and OA cohort analyses, respectively. During the study follow-up period, there were 2,578 incident RA cases (3.07 per 1,000 person-years) and 17,878 incident OA cases (24.34 per 1,000 person-years). The crude incidence density rate of RA among nonpersistent patients (PDC level of <20%) was 51% higher (3.89 per 1,000 person-years) compared to highly persistent patients who were covered with statins for at least 80% of the follow-up period. After adjustment for potential confounders, highly persistent patients had a hazard ratio of 0.58 (95% confidence interval 0.52–0.65) for RA compared with nonpersistent patients. Larger differences were observed in younger patients and in patients initiating treatment with high efficacy statins. In the OA cohort analysis, high persistence with statins was associated only with a modest decrement in risk ratio (hazard ratio = 0.85; 0.81–0.88) compared to nonadherent patients.
Conclusions
The present study demonstrates an association between persistence with statin therapy and reduced risk of developing RA. The relationship between continuation of statin use and OA onset was weak and limited to patients with short-term follow-up.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The role of statins in the management of diseases that have an inflammatory component is unclear. There is some evidence that statins may have anti-inflammatory and immunumodulatory properties, demonstrated by reducing the level of C-reactive protein that may play an important role in chronic inflammatory diseases, such as rheumatoid arthritis—a chronic condition that is a major cause of disability. Some small studies have suggested a modest effect of statins in decreasing disease activity in patients with rheumatoid arthritis, but a recent larger study involving over 30,000 patients with rheumatoid arthritis showed no beneficial effect. Furthermore, it has been suggested that statins may have a role in the primary prevention of rheumatoid arthritis, but so far there has been no solid evidence base to support this hypothesis. Before statins can potentially be included in the treatment options for rheumatoid arthritis, or possibly prescribed for the prevention of this condition, there needs to be a much stronger evidence base, such as larger studies with longer follow-up periods, which clearly demonstrates any significant clinical benefits of statin use.
Why Was This Study Done?
This large study (more than 200,000 patients) with a long follow-up period (average of 10 years) was conducted to discover whether there was any kind of association between persistent use of statins and the onset of rheumatoid arthritis.
What Did the Researchers Do and Find?
The researchers conducted a retrospective cohort study among the members of Maccabi Healthcare Services (a health maintenance organization [HMO]) in Israel, which has 1.8-million enrollees and covers every section of the Israeli population, to identify statin users who were at least 18 years of age and did not have RA or a related disease at study entry. The cohort covered the period 1998–2007 and included members who were continuously enrolled in the HMO from 1995 to 1998. The researchers then analyzed the incidence of newly diagnosed rheumatoid arthritis, recording the date of first diagnostic codes (International Classification of Diseases, 9th revision [ICD-9]) associated with rheumatoid arthritis during the study follow-up period. To assess any potential effects of “healthy adherer” bias (good adherence to medication in patients with a chronic illness may be more likely to lead to better health and improved survival), the researchers also examined any possible association between persistent statin use and the development of osteoarthritis, a common degenerative joint disease that is unlikely to be affected by statin use.
During the study follow-up period, there were 2,578 incident cases of rheumatoid arthritis and 17,878 incident cases of osteoarthritis. The crude incidence density rate of rheumatoid arthritis among patients who did not persistently take statins was 51% higher than that of patients who used statins for at least 80% of the follow-up period. Furthermore, patients who persistently used statins had a risk ratio of 0.58 for rheumatoid arthritis compared with patients who did not persistently use statins. In the osteoarthritis cohort analysis, high persistence with statin use was associated with a modest decrement in risk ratio (0.85) compared to patients who did not persist with statins.
What Do These Findings Mean?
This study suggests that there is an association between persistence with statin therapy and reduced risk of developing rheumatoid arthritis. Although the researchers took into account the possibility of healthy adherer bias (by comparing results with the osteoarthritis cohort), this study has other limitations, such as the retrospective design, and the nonrandomization of statin use, which could affect the interpretation of the results. However, the observed associations were greater than those that would be expected from methodological biases alone. Larger, systematic, controlled, prospective studies with high efficacy statins, particularly in younger adults who are at increased risk for rheumatoid arthritis, are needed to confirm these findings and to clarify the exact nature of the biological relationship between adherence to statin therapy and the incidence of rheumatoid arthritis.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000336.
Arthritis Research UK provides a wide range of information on arthritis research
The American College of Rheumatology provides information on rheumatology research
Patient information on rheumatoid arthritis is available at Patient UK
Extensive information about statins is available at statin answers
doi:10.1371/journal.pmed.1000336
PMCID: PMC2935457  PMID: 20838658
11.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
Introduction:
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
Aims:
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Methods:
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
Results:
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Discussion:
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
12.  Viruses and lymphocytes in rheumatoid arthritis. II. Examination of lymphocytes and sera from patients with rheumatoid arthritis for evidence of retrovirus infection. 
Annals of the Rheumatic Diseases  1979;38(6):514-525.
The possible involvement of retroviruses in the aetiology of rheumatoid arthritis (RA) was investigated. Retrovirus antigens were not expressed on rheumatoid synovial and peripheral blood lymphocytes as judged by membrane immunofluorescence, radioimmunoassay, and complement-mediated cytotoxicity. The specific antiretroviral (anti-RD-144 and anti-SSAV) sera used in this study were produced in rabbits immunised with viral antigens grown in a homologous system (rabbit cells and medium supplemented with normal rabbit serum), avoiding non-specific immunofluorescence previously detected with donated antiretroviral sera. Immune complexes lodged in the rheumatoid synovial membranes did not contain, and other cells within the membranes did not express, retroviral antigens. Antibodies cross-reacting with primate retrovirus antigens were sought in sera from patients with 'autoimmune' diseases by means of solid phase radioimmunoassay. There were no retrovirus antibodies in the 3 groups of patients studied, that is, those with rheumatoid arthritis, systemic lupus erythematosus, and with non-RA conditions. Absorption of rheumatoid factor did not alter this conclusion. These results give little support to the hypothesis that activation of endogenous human retroviruses or an infection with horizontally transmitted retroviruses is associated with the rheumatoid process.
PMCID: PMC1000411  PMID: 395909
13.  S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases 
Annals of the Rheumatic Diseases  2006;65(12):1645-1648.
The metastasis‐associated protein S100A4 promotes the progression of cancer by regulating the remodelling of the extracellular matrix. The expression of S100A4 in vivo is shown and the functional role of S100A4 in the pathogenesis of osteoarthritis and rheumatoid arthritisis is explored. The expression of S100A4 in rheumatoid arthritis, osteoarthritis and normal synovial tissues was determined by immunohistochemistry. The expression of matrix metalloproteinase (MMP) mRNA was measured in rheumatoid arthritis and osteoarthritis synovial fibroblasts treated and untreated with S100A4 oligomer by real‐time polymerase chain reaction. Levels of released MMPs were confirmed by ELISA in cell culture supernatants. S100A4 protein was expressed in rheumatoid arthritis and osteoarthritis synovial tissues, in contrast with normal synovium. S100A4 up regulated MMP‐3 mRNA in rheumatoid arthritis synovial fluid, with a peak after 6 h. This resulted in release of MMP‐3 protein. MMP‐1, MMP‐9 and MMP‐13 mRNA were also up regulated in synovial fluid, but with different kinetics. MMP‐14 mRNA showed no change. Thus, S100A4 protein is expressed in synovial tissues of patients with rheumatoid arthritis and osteoarthritis in contrast with healthy people. It induces the expression and release of MMP‐3 and other MMPs from synovial fluid. The data suggest that S100A4‐producing cells could be involved in the pathogenesis of osteoarthritis and rheumatoid arthritis, including pannus formation and joint destruction.
doi:10.1136/ard.2005.047704
PMCID: PMC1798462  PMID: 17105852
14.  Comparison of HTLV-I Proviral Load in Adult T Cell Leukemia/Lymphoma (ATL), HTLV-I-Associated Myelopathy (HAM-TSP) and Healthy Carriers 
Objective(s): Human T Lymphocyte Virus Type one (HTLV-I) is a retrovirus that infects about 10-20 million people worldwide. Khorasan province in Iran is an endemic area. The majority of HTLV-I-infected individuals sustain healthy carriers but small proportion of infected population developed two progressive diseases: HAM/TSP and ATL. The proviral load could be a virological marker for disease monitoring, therefore in the present study HTLV-I proviral load has been evaluated in ATL and compared to HAM/TSP and healthy carriers.
Materials and Methods: In this case series study, 47 HTLV-I infected individuals including 13 ATL, 23 HAM/TSP and 11 asymptomatic subjects were studied. Peripheral blood mononuclear cells (PBMCs) were investigated for presence of HTLV-I DNA provirus by PCR using LTR and Tax fragments. Then in infected subjects, HTLV-I proviral load was measured using real time PCR TaqMan method.
Results: The average age of patients in ATL was 52±8, in HAM/TSP 45.52±15.17 and in carrier’s 38.65±14.9 years which differences were not statistically significant. The analysis of data showed a significant difference in mean WBC among study groups (ATL vs HAM/TSP and carriers P=0.0001). Moreover, mean HTLV-I proviral load was 11967.2 ± 5078, 409 ± 71.3 and 373.6 ± 143.3 in ATL, HAM/TSP and Healthy Carriers, respectively. The highest HTLV-I proviral load was measured in ATL group that had a significant correlation with WBC count (R=0.495, P=0.001). The proviral load variations between study groups was strongly significant (ATL vs carrier P=0.0001; ATL vs HAM/TSP P= 0.0001 and HAM/TSP vs carriers P< 0.05).
Conclusion : The present study demonstrated that HTLV-I proviral load was higher in ATL group in comparison with HAM/TSP and healthy carriers. Therefore, HTLV-I proviral load is a prognostic factor for development of HTLV-I associated diseases and can be used as a monitoring marker for the efficiency of therapeutic regime.
PMCID: PMC3881246  PMID: 24470863
HTLV-I; HAM/TSP; ATL; HTLV-I proviral load
15.  Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue 
Arthritis Research  2000;2(2):142-144.
Acute-phase serum amyloid A (A-SAA) is a major component of the acute-phase response. A sustained acute-phase response in rheumatoid arthritis (RA) is associated with increased joint damage. A-SAA mRNA expression was confirmed in all samples obtained from patients with RA, but not in normal synovium. A-SAA mRNA expression was also demonstrated in cultured RA synoviocytes. A-SAA protein was identified in the supernatants of primary synoviocyte cultures, and its expression colocalized with sites of macrophage accumulation and with some vascular endothelial cells. It is concluded that A-SAA is produced by inflamed RA synovial tissue. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
Introduction:
Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% homologous in both coding and noncoding regions. SAA3 is a pseudogene. SAA4 encodes constitutive SAA and is minimally inducible. A-SAA increases dramatically during acute inflammation and may reach levels that are 1000-fold greater than normal. A-SAA is mainly synthesized in the liver, but extrahepatic production has been demonstrated in many species, including humans. A-SAA mRNA is expressed in RA synoviocytes and in monocyte/macrophage cell lines such as THP-1 cells, in endothelial cells and in smooth muscle cells of atherosclerotic lesions. A-SAA has also been localized to a wide range of histologically normal tissues, including breast, stomach, intestine, pancreas, kidney, lung, tonsil, thyroid, pituitary, placenta, skin and brain.
Aims:
To identify the cell types that produce A-SAA mRNA and protein, and their location in RA synovium.
Materials and methods:
Rheumatoid synovial tissue was obtained from eight patients undergoing arthroscopic biopsy and at joint replacement surgery. Total RNA was analyzed by reverse transcription (RT) polymerase chain reaction (PCR) for A-SAA mRNA. PCR products generated were confirmed by Southern blot analysis using human A-SAA cDNA. Localization of A-SAA production was examined by immunohistochemistry using a rabbit antihuman A-SAA polyclonal antibody. PrimaryRA synoviocytes were cultured to examine endogenous A-SAA mRNA expression and protein production.
Results:
A-SAA mRNA expression was detected using RT-PCR in all eight synovial tissue samples studied. Figure 1 demonstrates RT-PCR products generated using synovial tissue from three representative RA patients. Analysis of RA synovial tissue revealed differences in A-SAA mRNA levels between individual RA patients.
In order to identify the cells that expressed A-SAA mRNA in RA synovial tissue, we analyzed primary human synoviocytes (n = 2). RT-PCR analysis revealed A-SAA mRNA expression in primary RA synoviocytes (n = 2; Fig. 2). The endogenous A-SAA mRNA levels detected in individual primary RA synoviocytes varied between patients. These findings are consistent with A-SAA expression in RA synovial tissue (Fig. 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were relatively similar in the RA synoviocytes examined (Fig. 2). A-SAA protein in the supernatants of primary synoviocyte cultures from four RA patients was measured using ELISA. Mean values of a control and four RA samples were 77.85, 162.5, 249.8, 321.5 and 339.04 μg/l A-SAA, respectively, confirming the production of A-SAA protein by the primary RA synoviocytes. Immunohistochemical analysis was performed to localize sites of A-SAA production in RA synovial tissue. Positive staining was present in both the lining and sublining layers of all eight RA tissues examined (Fig. 3a). Staining was intense and most prominent in the cells closest to the surface of the synovial lining layer. Positively stained cells were evident in the perivascular areas of the sublining layer. In serial sections stained with anti-CD68 monoclonal antibody, positive staining of macrophages appeared to colocalize with A-SAA-positive cells (Fig. 3b). Immunohistochemical studies of cultured primary RA synoviocytes confirmed specific cytoplasmic A-SAA expression in these cells. The specificity of the staining was confirmed by the absence of staining found on serial sections and synoviocyte cells treated with IgG (Fig. 3c).
Discussion:
This study demonstrates that A-SAA mRNA is expressed in several cell populations infiltrating RA synovial tissue. A-SAA mRNA expression was observed in all eight unseparated RA tissue samples studied. A-SAA mRNA expression and protein production was demonstrated in primary cultures of purified RA synoviocytes. Using immunohistochemical techniques, A-SAA protein appeared to colocalize with both lining layer and sublining layer synoviocytes, macrophages and some endothelial cells. The detection of A-SAA protein in culture media supernatants harvested from unstimulated synoviocytes confirms endogenous A-SAA production, and is consistent with A-SAA mRNA expression and translation by the same cells. Moreover, the demonstration of A-SAA protein in RA synovial tissue, RA cultured synoviocytes, macrophages and endothelial cells is consistent with previous studies that demonstrated A-SAA production by a variety of human cell populations.
The RA synovial lining layer is composed of activated macrophages and fibroblast-like synoviocytes. The macrophage is the predominant cell type and it has been shown to accumulate preferentially in the surface of the lining layer and in the perivascular areas of the sublining layer. Nevertheless, our observations strongly suggest that A-SAA is produced not only by synoviocytes, but also by synovial tissue macrophage populations. Local A-SAA protein production by vascular endothelial cells was detected in some, but not all, of the tissues examined. The reason for the variability in vascular A-SAA staining is unknown, but may be due to differences in endothelial cell activation, events related to angiogenesis or the intensity of local inflammation.
The value of measuring serum A-SAA levels as a reliable surrogate marker of inflammation has been demonstrated for several diseases including RA, juvenile chronic arthritis, psoriatic arthropathy, ankylosing spondylitis, Behçet's disease, reactive arthritis and Crohn's disease. It has been suggested that serum A-SAA levels may represent the most sensitive measurement of the acute-phase reaction. In RA, A-SAA levels provide the strongest correlations with clinical measurements of disease activity, and changes in serum levels best reflect the clinical course.
A number of biologic activities have been described for A-SAA, including several that are relevant to the understanding of inflammatory and tissue-degrading mechanisms in human arthritis. A-SAA induces migration, adhesion and tissue infiltration of circulating monocytes and polymorphonuclear leukocytes. In addition, human A-SAA can induce interleukin-1β, interleukin-1 receptor antagonist and soluble type II tumour necrosis factor receptor production by a monocyte cell line. Moreover, A-SAA can stimulate the production of cartilage-degrading proteases by both human and rabbit synoviocytes. The effects of A-SAA on protease production are interesting, because in RA a sustained acute-phase reaction has been strongly associated with progressive joint damage. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
Conclusion:
In contrast to noninflamed synovium, A-SAA mRNA expression was identified in all RA tissues examined. A-SAA appeared to be produced by synovial tissue synoviocytes, macrophages and endothelial cells. The observation of A-SAA mRNA expression in cultured RA synoviocytes and human RA synovial tissue confirms and extends recently published findings that demonstrated A-SAA mRNA expression in stimulated RA synoviocytes, but not in unstimulated RA synoviocytes.
PMCID: PMC17807  PMID: 11062604
acute-phase response; rheumatoid arthritis; serum amyloid A; synovial tissue
16.  Regulation of Peripheral Inflammation by Spinal p38 MAP Kinase in Rats 
PLoS Medicine  2006;3(9):e338.
Background
Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP) kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.
Methods and Findings
Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT) catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and −6 and matrix metalloproteinase (MMP3) gene expression. Activation of p38 required tumor necrosis factor α (TNFα) in the nervous system because IT etanercept (a TNF inhibitor) given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.
Conclusions
These data suggest that peripheral inflammation is sensed by the central nervous system (CNS), which subsequently activates stress-induced kinases in the spinal cord via a TNFα-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.
Inhibition of p38 MAP kinase in the CNS reduces peripheral inflammation and joint destruction in arthritic rats.
Editors' Summary
Background.
Rheumatoid arthritis is a disease marked by chronic inflammation, leading to joint pain and destruction. Pain and inflammation in the joints as well as other locations in the body (i.e., the “periphery”) are constantly monitored by the central nervous system (i.e., the brain and spinal cord). Scientists have long suspected that the central nervous system (CNS) can regulate inflammation and immune responses, but little is known about how the CNS does this. One potential player is a protein called p38 that is involved in a number of cellular processes critical to the development of rheumatoid arthritis. Several substances that block the action of p38 are effective in animal models of arthritis and are currently being tested in clinical trials in patients with rheumatoid arthritis. Originally, p38 was considered as a drug target that should mainly be blocked in the joints. But recent work has shown that pain in the periphery can lead to activation of p38 in the spinal cord, and that blocking p38 in the spinal cord might reduce peripheral pain.
Why Was This Study Done?
Based on the observation that p38 is activated in the CNS in response to peripheral pain, the researchers who did this study wondered whether it might be involved in the interaction between inflammation in the joints and the CNS.
What Did the Researchers Do and Find?
They induced inflammation in the joints of rats and then looked for responses in the spinal cord. They found that p38 was indeed activated in the spinal cord of these rats. This activation depended on another protein, called TNFα, which is another major regulator of inflammation. The scientists then blocked either p38 or the TNFα with drugs directly delivered to the spinal cord of the arthritic rats, they could substantially reduce inflammation, arthritis, and destruction of the joints, compared with rats that had undergone the same treatment but received no active drug. Treatment of arthritic rats with the same amount of drugs given directly under the skin (this is called “systemic treatment”) did not have any effect on the joints.
What Do These Findings Mean?
Blocking p38 and TNFα by giving drugs systemically is known to have beneficial effects in animal models and human patients with rheumatoid arthritis. However, the drugs tested in patients to date also have side effects. Given that much lower doses were needed to achieve beneficial effects in the rats when the drugs were administered directly into the spinal cord, it is possible that spinal cord administration might reduce the side effects (and possibly the costs) of the drugs without compromising the benefits to the patients. If future studies confirm that the action of these drugs on the CNS is essential to achieve a response even when administered as a systemic treatment, designing drugs that get into the CNS easier might improve the effectiveness and/or make it possible to use lower doses systemically.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030338.
MedlinePlus entry on rheumatoid arthritis
Rheumatoid arthritis pages from the US National Institute of Arthritis and Musculoskeletal and Skin Diseases
Rheumatoid Arthritis fact sheet from the American College of Rheumatology Description
Wikipedia entry on rheumatoid arthritis (note: Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030338
PMCID: PMC1560929  PMID: 16953659
17.  Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing 
Introduction
Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reactive arthritis and undifferentiated arthritis (UA) using PCR, cloning and sequencing.
Methods
We examined synovial tissue samples from 28 patients: six patients with ReA and nine with UA, and a control group consisting of seven patients with rheumatoid arthritis and six with osteoarthritis (OA). Using broad-range bacterial PCR producing a 1,400-base-pair fragment from the 16S rRNA gene, at least 24 clones were sequenced for each synovial tissue sample. To identify the corresponding bacteria, DNA sequences were compared with sequences from the EMBL (European Molecular Biology Laboratory) database.
Results
Bacterial DNA was detected in 75% of the 28 synovial tissue samples. DNA from 68 various bacterial species were found in ReA and UA samples, whereas DNA from 12 bacteria were detected in control group samples. Most of the bacterial DNAs detected were from skin or intestinal bacteria. DNA from bacteria known to trigger ReA, such as Shigella flexneri and Shigella sonnei, were detected in ReA and UA samples of synovial tissue and not in control samples. DNA from various bacterial species detected in this study have not previously been found in synovial samples.
Conclusion
This study is the first to use broad-range PCR targeting the full 16S rRNA gene for detection of bacterial DNA in synovial tissue. We detected DNA from a wide spectrum of bacterial species, including those known to be involved in ReA and others not previously associated with ReA or related arthritis. The pathogenic significance of some of these intrasynovial bacterial DNAs remains unclear.
doi:10.1186/ar2398
PMCID: PMC2453759  PMID: 18412942
18.  Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum 
Annals of the Rheumatic Diseases  2006;66(4):458-463.
Background
Resistin is a newly identified adipocytokine which has demonstrated links between obesity and insulin resistance in rodents. In humans, proinflammatory properties of resistin are superior to its insulin resistance‐inducing effects.
Objectives
To assess resistin expression in synovial tissues, serum and synovial fluid from patients with rheumatoid arthritis, osteoarthritis and spondylarthropathies (SpA), and to study its relationship with inflammatory status and rheumatoid arthritis disease activity.
Methods
Resistin expression and localisation in synovial tissue was determined by immunohistochemistry and confocal microscopy. Serum and synovial fluid resistin, leptin, interleukin (IL)1β, IL6, IL8, tumour necrosis factor α, and monocyte chemoattractant protein‐1 levels were measured. The clinical activity of patients with rheumatoid arthritis was assessed according to the 28 joint count Disease Activity Score (DAS28).
Results
Resistin was detected in the synovium in both rheumatoid arthritis and osteoarthritis. Staining in the sublining layer was more intensive in patients with rheumatoid arthritis compared with those with osteoarthritis. In rheumatoid arthritis, macrophages (CD68), B lymphocytes (CD20) and plasma cells (CD138) but not T lymphocytes (CD3) showed colocalisation with resistin. Synovial fluid resistin was higher in patients with rheumatoid arthritis than in those with SpA or osteoarthritis (both p<0.001). In patients with rheumatoid arthritis and SpA, serum resistin levels were higher than those with osteoarthritis (p<0.01). Increased serum resistin in patients with rheumatoid arthritis correlated with both CRP (r = 0.53, p<0.02), and DAS28 (r = 0.44, p<0.05), but not with selected (adipo) cytokines.
Conclusion
The upregulated resistin at local sites of inflammation and the link between serum resistin, inflammation and disease activity suggest a role for resistin in the pathogenesis of rheumatoid arthritis.
doi:10.1136/ard.2006.054734
PMCID: PMC1856051  PMID: 17040961
19.  Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients 
Arthritis Research & Therapy  2008;10(4):R101.
Introduction
MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis.
Methods
Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR.
Results
Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production.
Conclusions
Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.
doi:10.1186/ar2493
PMCID: PMC2575615  PMID: 18759964
20.  Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction 
Arthritis Research  1999;2(1):59-64.
In the present study, we searched for mutant PTEN transcripts in aggressive rheumatoid arthritis synovial fibroblasts (RA-SF) and studied the expression of PTEN in RA. By automated sequencing, no evidence for the presence of mutant PTEN transcripts was found. However, in situ hybridization on RA synovium revealed a distinct expression pattern of PTEN, with negligible staining in the lining layer but abundant expression in the sublining. Normal synovial tissue exhibited homogeneous staining for PTEN. In cultured RA-SF, only 40% expressed PTEN. Co-implantation of RA-SF and normal human cartilage into severe combined immunodeficiency (SCID) mice showed only limited expression of PTEN, with no staining in those cells aggressively invading the cartilage. Although PTEN is not genetically altered in RA, these findings suggest that a lack of PTEN expression may constitute a characteristic feature of activated RA-SF in the lining, and may thereby contribute to the invasive behaviour of RA-SF by maintaining their aggressive phenotype at sites of cartilage destruction.
Aims:
PTEN is a novel tumour suppressor which exhibits tyrosine phosphatase activity as well as homology to the cytoskeletal proteins tensin and auxilin. Mutations of PTEN have been described in several human cancers and associated with their invasiveness and metastatic properties. Although not malignant, rheumatoid arthritis synovial fibroblasts (RA-SF) exhibit certain tumour-like features such as attachment to cartilage and invasive growth. In the present study, we analyzed whether mutant transcripts of PTEN were present in RA-SF. In addition, we used in situ hybridization to study the expression of PTEN messenger (m)RNA in tissue samples of RA and normal individuals as well as in cultured RA-SF and in the severe combined immunodeficiency (SCID) mouse model of RA.
Methods:
Synovial tissue specimens were obtained from seven patients with RA and from two nonarthritic individuals. Total RNA was isolated from synovial fibroblasts and after first strand complementary (c)DNA synthesis, polymerase chain reaction (PCR) was performed to amplify a 1063 base pair PTEN fragment that encompassed the coding sequence of PTEN including the phosphatase domain and all mutation sites described so far. The PCR products were subcloned in Escherichia coli, and up to four clones were picked from each plate for automated sequencing. For in situ hybridization, digoxigenin-labelled PTEN-specific RNA probes were generated by in vitro transcription. For control in situ hybridization, a matrix metalloproteinase (MMP)-2-specific probe was prepared. To investigate the expression of PTEN in the absence of human macrophage or lymphocyte derived factors, we implanted RA-SF from three patients together with normal human cartilage under the renal capsule of SCID mice. After 60 days, mice were sacrificed, the implants removed and embedded into paraffin.
Results:
PCR revealed the presence of the expected 1063 base pair PTEN fragment in all (9/9) cell cultures (Fig. 1). No additional bands that could account for mutant PTEN variants were detected. Sequence analysis revealed 100% homology of all RA-derived PTEN fragments to those from normal SF as well as to the published GenBank sequence (accession number U93051). However, in situ hybridization demonstrated considerable differences in the expression of PTEN mRNA within the lining and the sublining layers of RA synovial membranes. As shown in Figure 2a, no staining was observed within the lining layer which has been demonstrated to mediate degradation of cartilage and bone in RA. In contrast, abundant expression of PTEN mRNA was found in the sublining of all RA synovial tissues (Figs 2a and b). Normal synovial specimens showed homogeneous staining for PTEN within the thin synovial membrane (Fig. 2c). In situ hybridization using the sense probe gave no specific staining (Fig. 2d). We also performed in situ hybridization on four of the seven cultured RA-SF and followed one cell line from the first to the sixth passage. Interestingly, only 40% of cultured RA-SF expressed PTEN mRNA (Fig. 3a), and the proportion of PTEN expressing cells did not change throughout the passages. In contrast, control experiments using a specific RNA probe for MMP-2 revealed mRNA expression by nearly all cultured cells (Fig. 3b). As seen before, implantation of RA-SF into the SCID mice showed considerable cartilage degradation. Interestingly, only negligible PTEN expression was found in those RA-SF aggressively invading the cartilage (Fig. 3c). In situ hybridization for MMP-2 showed abundant staining in these cells (Fig. 3d).
Discussion:
Although this study found no evidence for mutations of PTEN in RA synovium, the observation that PTEN expression is lacking in the lining layer of RA synovium as well as in more than half of cultured RA-SF is of interest. It suggests that loss of PTEN function may not exclusively be caused by genetic alterations, yet at the same time links the low expression of PTEN to a phenotype of cells that have been shown to invade cartilage aggressively.
It has been proposed that the tyrosine phosphatase activity of PTEN is responsible for its tumour suppressor activity by counteracting the actions of protein tyrosine kinases. As some studies have demonstrated an upregulation of tyrosine kinase activity in RA synovial cells, it might be speculated that the lack of PTEN expression in aggressive RA-SF contributes to the imbalance of tyrosine kinases and phosphatases in this disease. However, the extensive amino-terminal homology of the predicted protein to the cytoskeletal proteins tensin and auxilin suggests a complex regulatory function involving cellular adhesion molecules and phosphatase-mediated signalling. The tyrosine phosphatase TEP1 has been shown to be identical to the protein encoded by PTEN, and gene transcription of TEP1 has been demonstrated to be downregulated by transforming growth factor (TGF)-β. Therefore, it could be hypothesized that TGF-β might be responsible for the downregulation of PTEN. However, the expression of TGF-β is not restricted to the lining but found throughout the synovial tissue in RA. Moreover, in our study the percentage of PTEN expressing RA-SF remained stable for six passages in culture, whereas molecules that are cytokine-regulated in vivo frequently change their expression levels when cultured over several passages. Also, cultured RA-SF that were implanted into SCID mice and deeply invaded the cartilage did not show significant expression of PTEN after 60 days. The drop in the percentage of PTEN expressing cells from the original cell cultures to the SCID mouse implants is of interest as this observation goes along with data from previous studies that have shown the prominent expression of activation-related molecules in the SCID mice implants that in vivo are found predominantly in the lining layer. Therefore, our data point to endogenous mechanisms rather than to the influence of exogenous human cytokines or factors in the downregulation of PTEN. Low expression of PTEN may belong to the features that distinguish between the activated phenotype of RA-SF and the sublining, proliferating but nondestructive cells.
PMCID: PMC17804  PMID: 11219390
rheumatoid arthritis; synovial membrane; fibroblasts; PTEN tumour suppressor; severe combined immunodeficiency (SCID) mouse model; cartilage destruction; in situ hybridization
21.  Nuclear factor-κB activity in T cells from patients with rheumatic diseases: A preliminary report 
Annals of the Rheumatic Diseases  1998;57(12):738-741.
OBJECTIVE—The NF-κB/Rel family of transcription factors regulates the expression of many genes involved in the immune or inflammatory response at the transcriptional level. The aim of this study was to determine whether distinctive patterns of NF-kB activation are seen in different forms of joint disease.
METHODS—The DNA binding activity of these nucleoproteins was examined in purified synovial and peripheral T cells from patients with various chronic rheumatic diseases (12: four with rheumatoid arthritis; five with spondyloarthropathies; and three with osteoarthritis).
RESULTS—Electrophoretic mobility shift assays disclosed two specific complexes bound to a NF-κB specific 32P-labelled oligonucleotide in nucleoproteins extracted from purified T cells isolated from synovial fluid and peripheral blood of patients with rheumatoid arthritis. The complexes consisted of p50/p50 homodimers and p50/p65 heterodimers. Increased NF-kB binding to DNA in synovial T cells was observed relative to peripheral T cells. In non-rheumatoid arthritis, binding of NF-κB in synovial T cells was exclusively mediated by p50/p50 homodimers.
CONCLUSION—Overall, the results suggest that NF-κB may play a central part in the activation of infiltrating T cells in chronic rheumatoid arthritis. The activation of this nuclear factor is qualitatively different in rheumatoid synovial T cells to that in other forms of non-rheumatoid arthritis (for example, osteoarthritis, spondyloarthropathies).

 Keywords: NF-κB; synovial T cells; rheumatoid arthritis; spondyloarthropathy; osteoarthritis
PMCID: PMC1752520  PMID: 10070274
22.  Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients 
Clinical proteomics  2014;11(1):1.
Background
Rheumatoid arthritis and osteoarthritis are two common musculoskeletal disorders that affect the joints. Despite high prevalence rates, etiological factors involved in these disorders remain largely unknown. Dissecting the molecular aspects of these disorders will significantly contribute to improving their diagnosis and clinical management. In order to identify proteins that are differentially expressed between these two conditions, a quantitative proteomic profiling of synovial fluid obtained from rheumatoid arthritis and osteoarthritis patients was carried out by using iTRAQ labeling followed by high resolution mass spectrometry analysis.
Results
We have identified 575 proteins out of which 135 proteins were found to be differentially expressed by ≥3-fold in the synovial fluid of rheumatoid arthritis and osteoarthritis patients. Proteins not previously reported to be associated with rheumatoid arthritis including, coronin-1A (CORO1A), fibrinogen like-2 (FGL2), and macrophage capping protein (CAPG) were found to be upregulated in rheumatoid arthritis. Proteins such as CD5 molecule-like protein (CD5L), soluble scavenger receptor cysteine-rich domain-containing protein (SSC5D), and TTK protein kinase (TTK) were found to be upregulated in the synovial fluid of osteoarthritis patients. We confirmed the upregulation of CAPG in rheumatoid arthritis synovial fluid by multiple reaction monitoring assay as well as by Western blot. Pathway analysis of differentially expressed proteins revealed a significant enrichment of genes involved in glycolytic pathway in rheumatoid arthritis.
Conclusions
We report here the largest identification of proteins from the synovial fluid of rheumatoid arthritis and osteoarthritis patients using a quantitative proteomics approach. The novel proteins identified from our study needs to be explored further for their role in the disease pathogenesis of rheumatoid arthritis and osteoarthritis.
Sartaj Ahmad and Raja Sekhar Nirujogi contributed equally to this article.
doi:10.1186/1559-0275-11-1
PMCID: PMC3918105  PMID: 24393543
Arthritis; Joint inflammation; Cartilage degradation; Extracellular matrix
23.  Antigens related to the major internal protein, p27, of a psoriasis associated retrovirus-like particle are expressed in patients with chronic arthritis. 
Annals of the Rheumatic Diseases  1985;44(11):761-765.
A rabbit antiserum against the major internal protein, p27, of a psoriasis associated retrovirus-like particle has been applied in an immunofluorescence assay for the detection of antigens cross reacting with p27 in patients with psoriatic arthritis, seronegative rheumatoid arthritis, or ankylosing spondylitis. Antigens reacting with anti-p27 antibodies were present in lymphocytes from blood or synovial fluid from all patients examined. However, the expression was restricted to 0.01-0.1% of the cells. Among the positive p27 cells were cells reacting with markers for T, B, or NK cells. The anti-p27 antibodies also reacted with mononuclear cells in the synovial membrane and with the internal wall of some small or medium sized vessels in sections of synovial biopsy specimens from the patients with chronic arthritis. The reaction with mononuclear synovial membrane cells was restricted to approximately 0.1% of the cells. Blood lymphocytes or synovial sections from healthy persons did not react with the anti-p27 antibodies. The implication of these observations in the pathogenesis of chronic arthritis in man is discussed.
Images
PMCID: PMC1001770  PMID: 3904644
24.  Angiotensin converting enzyme in human synovium: increased stromal [125I]351A binding in rheumatoid arthritis 
Annals of the Rheumatic Diseases  2000;59(2):125-131.
OBJECTIVE—To determine whether tissue angiotensin converting enzyme (ACE) is increased in synovia from patients with rheumatoid arthritis, osteoarthritis or chondromalacia patellae.
METHODS—Sections of synovia from patients with rheumatoid arthritis (n = 7), osteoarthritis (n = 7) or chondromalacia patellae (n = 6) were tested for immunoreactivity for ACE, and for binding of the ACE inhibitor [125I]351A. The amount of ACE was measured with computer assisted image analysis as the proportion of synovial section area occupied by ACE-immunoreactive cells, and the density of [125I]351A binding.
RESULTS—[125I]351A binding sites had characteristics of ACE and colocalised with ACE-like immunoreactivity to microvascular endothelium and fibroblast-like stromal cells in inflamed and non-inflamed human synovium. Stromal [125I]351A binding densities (Beq) and the fraction of synovial section area occupied by ACE-immunoreactivity (fractional area) were higher in synovia from patients with rheumatoid arthritis (Beq 28 amol/mm2, fractional area 0.21) than from those with osteoarthritis (Beq 9 amol/mm2, fractional area 0.10) or chondromalacia patellae (Beq 9 amol/mm2, fractional area 0.09)(p < 0.05). Density of [125I]351A binding to stroma was similar to that to blood vessels in rheumatoid arthritis, but less dense than vascular binding in chondromalacia patellae and osteoarthritis. Increases in [125I]351A binding densities were attributable to increases in the numbers of binding sites, and were consistent with an increase in the density of ACE bearing stromal cells.
CONCLUSION—ACE is upregulated in synovial stroma in rheumatoid arthritis. Increased tissue ACE may result in increased local generation of the vasoconstrictor and mitogenic peptide angiotensin II and thereby potentiate synovial hypoxia and proliferation in rheumatoid arthritis.


doi:10.1136/ard.59.2.125
PMCID: PMC1753069  PMID: 10666168
25.  Polymerase chain reaction fails to incriminate exogenous retroviruses HTLV-I and HIV-1 in rheumatological diseases although a minority of sera cross react with retroviral antigens. 
Annals of the Rheumatic Diseases  1994;53(11):749-754.
OBJECTIVES--To investigate the presence of antibodies to HTLV and HIV retroviral antigens in the rheumatological diseases rheumatoid arthritis (RA), polymyositis/dermatomyositis (PM/DM), primary Sjögren's syndrome (pSS), and systemic lupus erythematosus (SLE), and to use polymerase chain reaction (PCR) to seek these exogenous retroviruses in proviral form in cellular DNA from these patients. METHODS--Thirty patients with active RA, 13 with PM, 14 with pSS and five with SLE were recruited and their sera tested for antibodies to HTLV-I in enzyme linked immunosorbent assay (ELISA) and Western blot analysis. Seropositivity to HIV-1 was also sought. DNA was extracted from peripheral blood lymphocytes, synovial tissue and muscle biopsies and tested by polymerase chain reaction using consensus primers for HTLV-I and HIV-1. RESULTS--In HTLV-I ELISA, nine rheumatological sera (4/30 RA, 3/13 PM/DM and 2/5 SLE patients) were considered positive; 14 from pSS patients and 30 from normal subjects were negative. In a control group which included osteoarthritis, Crohn's disease and bacterial endocarditis patients, only two of 80 proved positive in this system. Validation of these sera by Western blotting generally revealed weak reactivity against a variety of HTLV-I antigens. PCR of genomic DNA derived from patients' peripheral blood mononuclear cells did not reveal the presence of HTLV-I and HIV-1 target sequences. CONCLUSIONS--This study shows that PCR precludes HTLV-I and HIV-1 infection as causative agents in these rheumatological diseases although a minority of patients possess antibodies that are weakly cross-reactive with retroviral antigens.
PMCID: PMC1005456  PMID: 7826136

Results 1-25 (1195686)