PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (571965)

Clipboard (0)
None

Related Articles

1.  A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis 
The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine.
doi:10.1128/CVI.00601-12
PMCID: PMC3647749  PMID: 23486420
2.  A LigA Three-Domain Region Protects Hamsters from Lethal Infection by Leptospira interrogans 
The leptospiral LigA protein consists of 13 bacterial immunoglobulin-like (Big) domains and is the only purified recombinant subunit vaccine that has been demonstrated to protect against lethal challenge by a clinical isolate of Leptospira interrogans in the hamster model of leptospirosis. We determined the minimum number and location of LigA domains required for immunoprotection. Immunization with domains 11 and 12 was found to be required but insufficient for protection. Inclusion of a third domain, either 10 or 13, was required for 100% survival after intraperitoneal challenge with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. As in previous studies, survivors had renal colonization; here, we quantitated the leptospiral burden by qPCR to be 1.2×103 to 8×105 copies of leptospiral DNA per microgram of kidney DNA. Although renal histopathology in survivors revealed tubulointerstitial changes indicating an inflammatory response to the infection, blood chemistry analysis indicated that renal function was normal. These studies define the Big domains of LigA that account for its vaccine efficacy and highlight the need for additional strategies to achieve sterilizing immunity to protect the mammalian host from leptospiral infection and its consequences.
Author Summary
Leptospirosis is the most widespread bacterial infection transmitted to humans from host animals that harbor the bacteria in their kidneys. Human infections caused by the bacterium, Leptospira interrogans, frequently result in a life-threatening illness characterized by jaundice and kidney failure. Vaccines are urgently needed to prevent leptospirosis in populations at risk. The leptospiral protein, LigA, is a promising vaccine candidate because it is the first purified protein to be shown to protect animals from fatal leptospirosis. The goal of this study was to determine which of LigA's 13 domains are required for the protective effect. Immunization with domains 11 and 12 was found to be required, but was insufficient, for protection. A third domain, either 10 or 13, was required for 100% survival. As in previous studies, residual bacteria were cultured from the kidneys of survivors. However, in contrast to previous studies, we determined the amount of bacterial DNA in the kidneys as a measure of vaccine efficacy. We also examined the kidneys microscopically for signs of damage and measured blood chemistries to assess kidney function. These are important steps towards developing vaccines that provide protection from kidney damage and infection.
doi:10.1371/journal.pntd.0001422
PMCID: PMC3236721  PMID: 22180800
3.  Immunoprotection of Recombinant Leptospiral Immunoglobulin-Like Protein A against Leptospira interrogans Serovar Pomona Infection  
Infection and Immunity  2006;74(3):1745-1750.
We previously reported the cloning and characterization of leptospiral immunoglobulin-like proteins LigA and LigB of Leptospira interrogans. LigA and LigB are conserved at the amino-terminal region but are variable at the carboxyl-terminal region. Here, we evaluate the potential of recombinant LigA (rLigA) as a vaccine candidate against infection by L. interrogans serovar Pomona in a hamster model. rLigA was truncated into conserved (rLigAcon) and variable (rLigAvar) regions and expressed in Escherichia coli as a fusion protein with glutathione-S-transferase (rLigA). Golden Syrian hamsters were immunized at 3 and 6 weeks of age with rLigA (rLigAcon and rLigAvar) with aluminum hydroxide as an adjuvant. Hamsters given recombinant glutathione-S-transferase (rGST)-adjuvant and phosphate-buffered saline-adjuvant served as nonvaccinated controls. Three weeks after the last vaccination, all animals were challenged intraperitoneally with 108 L. interrogans serovar Pomona bacteria (NVSL 1427-35-093002). All hamsters immunized with recombinant LigA survived after challenge and had no significant histopathological changes. In contrast, nonimmunized and rGST-immunized hamsters were subjected to lethal doses, and the hamsters that survived showed severe tubulointerstitial nephritis. All vaccinated animals showed a rise in antibody titers against rLigA. Results from this study indicate that rLigA is a potential vaccine candidate against L. interrogans serovar Pomona infection.
doi:10.1128/IAI.74.3.1745-1750.2006
PMCID: PMC1418682  PMID: 16495547
4.  Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily 
Molecular microbiology  2003;49(4):929-945.
Summary
Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis.
doi:10.1046/j.1365-2958.2003.03619.x
PMCID: PMC1237129  PMID: 12890019
5.  Physiological Osmotic Induction of Leptospira interrogans Adhesion: LigA and LigB Bind Extracellular Matrix Proteins and Fibrinogen▿  
Infection and Immunity  2007;75(5):2441-2450.
Transmission of leptospirosis occurs through contact of mucous membranes and abraded skin with freshwater contaminated by pathogenic Leptospira spp. Exposure to physiological osmolarity induces leptospires to express high levels of the Lig surface proteins containing imperfect immunoglobulin-like repeats that are shared or differ between LigA and LigB. We report that osmotic induction of Lig is accompanied by 1.6- to 2.5-fold increases in leptospiral adhesion to immobilized extracellular matrix and plasma proteins, including collagens I and IV, laminin, and especially fibronectin and fibrinogen. Recombinant LigA-unique and LigB-unique repeat proteins bind to these same host ligands. We found that the avidity of LigB in binding fibronectin is comparable to that of the Staphylococcus aureus FnBPA D repeats. Both LigA- and LigB-unique repeats interact with the amino-terminal fibrin- and gelatin-binding domains of fibronectin, which are also recognized by fibronectin-binding proteins mediating the adhesion of other microbial pathogens. In contrast, repeats common to both LigA and LigB do not bind these host proteins, and nonrepeat sequences in the carboxy-terminal domain of LigB show only weak interaction with fibronectin and fibrinogen. A functional role for the binding activity of LigA and LigB is suggested by the ability of the recombinants to inhibit leptospiral adhesion to fibronectin by 28% and 21%, respectively. The binding of LigA and LigB to multiple ligands present in different tissues suggests that these adhesins may be involved in the initial colonization and dissemination stages of leptospirosis. The characterization of the Lig adhesin function should aid the design of Lig-based vaccines and serodiagnostic tests.
doi:10.1128/IAI.01635-06
PMCID: PMC1865782  PMID: 17296754
6.  The Terminal Immunoglobulin-Like Repeats of LigA and LigB of Leptospira Enhance Their Binding to Gelatin Binding Domain of Fibronectin and Host Cells 
PLoS ONE  2010;5(6):e11301.
Leptospira spp. are pathogenic spirochetes that cause the zoonotic disease leptospirosis. Leptospiral immunoglobulin (Ig)-like protein B (LigB) contributes to the binding of Leptospira to extracellular matrix proteins such as fibronectin, fibrinogen, laminin, elastin, tropoelastin and collagen. A high-affinity Fn-binding region of LigB has been localized to LigBCen2, which contains the partial 11th and full 12th Ig-like repeats (LigBCen2R) and 47 amino acids of the non-repeat region (LigBCen2NR) of LigB. In this study, the gelatin binding domain of fibronectin was shown to interact with LigBCen2R (KD = 1.91±0.40 µM). Not only LigBCen2R but also other Ig-like domains of Lig proteins including LigAVar7'-8, LigAVar10, LigAVar11, LigAVar12, LigAVar13, LigBCen7'-8, and LigBCen9 bind to GBD. Interestingly, a large gain in affinity was achieved through an avidity effect, with the terminal domains, 13th (LigA) or 12th (LigB) Ig-like repeat of Lig protein (LigAVar7'-13 and LigBCen7'-12) enhancing binding affinity approximately 51 and 28 fold, respectively, compared to recombinant proteins without this terminal repeat. In addition, the inhibited effect on MDCKs cells can also be promoted by Lig proteins with terminal domains, but these two domains are not required for gelatin binding domain binding and cell adhesion. Interestingly, Lig proteins with the terminal domains could form compact structures with a round shape mediated by multidomain interaction. This is the first report about the interaction of gelatin binding domain of Fn and Lig proteins and provides an example of Lig-gelatin binding domain binding mediating bacterial-host interaction.
doi:10.1371/journal.pone.0011301
PMCID: PMC2892007  PMID: 20585579
7.  Xanthan Gum as an Adjuvant in a Subunit Vaccine Preparation against Leptospirosis 
BioMed Research International  2014;2014:636491.
Leptospiral immunoglobulin-like (Lig) proteins are of great interest due to their ability to act as mediators of pathogenesis, serodiagnostic antigens, and immunogens. Purified recombinant LigA protein is the most promising subunit vaccine candidate against leptospirosis reported to date, however, as purified proteins are weak immunogens the use of a potent adjuvant is essential for the success of LigA as a subunit vaccine. In the present study, we compared xanthan pv. pruni (strain 106), aluminium hydroxide (alhydrogel), and CpG ODN as adjuvants in a LigA subunit vaccine preparation. Xanthan gum is a high molecular weight extracellular polysaccharide produced by fermentation of Xanthomonas spp., a plant-pathogenic bacterium genus. Preparations containing xanthan induced a strong antibody response comparable to that observed when alhydrogel was used. Upon challenge with a virulent strain of L. interrogans serovar Copenhageni, significant protection (Fisher test, P < 0.05) was observed in 100%, 100%, and 67% of hamsters immunized with rLigANI-xanthan, LigA-CpG-xanthan, and rLigANI-alhydrogel, respectively. Furthermore, xanthan did not cause cytotoxicity in Chinese hamster ovary (CHO) cells in vitro. The use of xanthan as an adjuvant is a novel alternative for enhancing the immunogenicity of vaccines against leptospirosis and possibly against other pathogens.
doi:10.1155/2014/636491
PMCID: PMC4033433  PMID: 24895594
8.  Identification of immunodominant antigens in canine leptospirosis by Multi-Antigen Print ImmunoAssay (MAPIA) 
BMC Veterinary Research  2014;10(1):288.
Background
The microscopic agglutination test (MAT), the standard method for serological diagnosis of leptospirosis, may present limitations regarding its sensitivity. Current studies suggest that Leptospira immunoglobulin-like (Lig) proteins and LipL32 are of particular interest as serodiagnostic markers since they are present only in pathogenic species of the Leptospira genus. The purpose of this study was to identify leptospiral immunodominant proteins that are recognized by canine sera from diseased dogs.
Results
A total of 109 dogs were studied, including seroreactive dogs (MAT ≥800) and dogs with no seroreactivity detectable by MAT. Eight recombinant fragments (31–70 kDa) of pathogenic Leptospira were tested for their use as diagnostic markers for canine leptospirosis using the Multi-antigen Print Immunoassay (MAPIA) platform: LigB [582-947aa] from L. interrogans serovar Pomona, L. interrogans serovar Copenhageni and L. kirschneri serovar Gryppotyphosa, LigB [131-649aa] from L. interrogans serovar Copenhageni, L. interrogans serovar Canicola and L. kirschneri serovar Gryppotyphosa, LigA [625-1224aa] L. interrogans serovar Copenhageni and LipL32 from L. interrogans serovar Copenhageni. The data were analyzed and ROC curves were generated. Altogether, LigB [131-649aa] L. interrogans Canicola, LigB [131-649aa] L. kirschneri Gryppotyphosa and LipL32 L. interrogans Copenhageni showed best accuracy (AUC = 0.826 to 0.869), with 70% specificity and sensitivity ranging from 89% to 95%.
Conclusions
These results reinforce their potential as diagnostic candidates for the development of new methods for the serological diagnosis of canine leptospirosis.
doi:10.1186/s12917-014-0288-2
PMCID: PMC4269070  PMID: 25466383
Leptospirosis; Dogs; MAPIA; LipL32; Lig proteins
9.  Oral Immunization with Escherichia coli Expressing a Lipidated Form of LigA Protects Hamsters against Challenge with Leptospira interrogans Serovar Copenhageni 
Infection and Immunity  2014;82(2):893-902.
Leptospirosis is a potentially fatal zoonosis transmitted by reservoir host animals that harbor leptospires in their renal tubules and shed the bacteria in their urine. Leptospira interrogans serovar Copenhageni transmitted from Rattus norvegicus to humans is the most prevalent cause of urban leptospirosis. We examined L. interrogans LigA, domains 7 to 13 (LigA7-13), as an oral vaccine delivered by Escherichia coli as a lipidated, membrane-associated protein. The efficacy of the vaccine was evaluated in a susceptible hamster model in terms of the humoral immune response and survival from leptospiral challenge. Four weeks of oral administration of live E. coli expressing LigA7-13 improved survival from intraperitoneal (i.p.) and intradermal (i.d.) challenge by L. interrogans serovar Copenhageni strain Fiocruz L1-130 in Golden Syrian hamsters. Immunization with E. coli expressing LigA7-13 resulted in a systemic antibody response, and a significant LigA7-13 IgG level after the first 2 weeks of immunization was completely predictive of survival 28 days after challenge. As in previous LigA vaccine studies, all immunized hamsters that survived infection had renal leptospiral colonization and histopathological changes. In summary, an oral LigA-based vaccine improved survival from leptospiral challenge by either the i.p. or i.d. route.
doi:10.1128/IAI.01533-13
PMCID: PMC3911400  PMID: 24478102
10.  Genetic diversity of the Leptospiral immunoglobulin-like (Lig) genes in pathogenic Leptospira spp. 
Recent serologic, immunoprotection, and pathogenesis studies identified the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains from five Leptospira species. All strains were found to have intact ligB genes and genetic drift accounting for most of the ligB genetic diversity observed. The ligA gene was found exclusively in L. interrogans and L. kirschneri strains, and was created from ligB by a two-step partial gene duplication process. The aminoterminal domain of LigB and the LigA paralog were essentially identical (98.5 ± 0.8% mean identity) in strains with both genes. Like ligB, ligC gene variation also followed phylogenetic patterns, suggesting an early gene duplication event. However, ligC is a pseudogene in several strains, suggesting that LigC is not essential for virulence. Two ligB genes and one ligC gene had mosaic compositions and evidence for recombination events between related Leptospira species was also found for some ligA genes. In conclusion, the results presented here indicate that Lig diversity has important ramifications for the selection of Lig polypeptides for use in diagnosis and as vaccine candidates. This sequence information will aid the identification of highly conserved regions within the Lig proteins and improve upon the performance characteristics of the Lig proteins in diagnostic assays and in subunit vaccine formulations with the potential to confer heterologous protection.
doi:10.1016/j.meegid.2008.10.012
PMCID: PMC2812920  PMID: 19028604
Leptospirosis; Lig; Pathogenesis; Molecular evolution; Sequence analysis
11.  Cloning and Molecular Characterization of an Immunogenic LigA Protein of Leptospira interrogans  
Infection and Immunity  2002;70(11):5924-5930.
A clone expressing a novel immunoreactive leptospiral immunoglobulin-like protein A of 130 kDa (LigA) from Leptospira interrogans serovar pomona type kennewicki was isolated by screening a genomic DNA library with serum from a mare that had recently aborted due to leptospiral infection. LigA is encoded by an open reading frame of 3,675 bp, and the deduced amino acid sequence consists of a series of 90-amino-acid tandem repeats. A search of the NCBI database found that homology of the LigA repeat region was limited to an immunoglobulin-like domain of the bacterial intimin binding protein of Escherichia coli, the cell adhesion domain of Clostridium acetobutylicum, and the invasin of Yersinia pestis. Secondary structure prediction analysis indicates that LigA consists mostly of beta sheets with a few alpha-helical regions. No LigA was detectable by immunoblot analysis of lysates of the leptospires grown in vitro at 30°C or when cultures were shifted to 37°C. Strikingly, immunohistochemistry on kidney from leptospira-infected hamsters demonstrated LigA expression. These findings suggest that LigA is specifically induced only in vivo. Sera from horses, which aborted as a result of natural Leptospira infection, strongly recognize LigA. LigA is the first leptospiral protein described to have 12 tandem repeats and is also the first to be expressed only during infection. Thus, LigA may have value in serodiagnosis or as a protective immunogen in novel vaccines.
doi:10.1128/IAI.70.11.5924-5930.2002
PMCID: PMC130282  PMID: 12379666
12.  Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin 
BMC Microbiology  2011;11:129.
Background
In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc.
Results
The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion.
Conclusions
This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.
doi:10.1186/1471-2180-11-129
PMCID: PMC3133549  PMID: 21658265
13.  The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans 
PLoS ONE  2011;6(2):e16879.
Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9–11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats.
doi:10.1371/journal.pone.0016879
PMCID: PMC3036719  PMID: 21347378
14.  Development of an Enzyme-Linked Immunosorbent Assay Using a Recombinant LigA Fragment Comprising Repeat Domains 4 to 7.5 as an Antigen for Diagnosis of Equine Leptospirosis 
Leptospira immunoglobulin (Ig)-like (Lig) proteins are a novel family of surface-associated proteins in which the N-terminal 630 amino acids are conserved. In this study, we truncated the LigA conserved region into 7 fragments comprising the 1st to 3rd (LigACon1-3), 4th to 7.5th (LigACon4-7.5), 4th (LigACon4), 4.5th to 5.5th (LigACon4.5–5.5), 5.5th to 6.5th (LigACon5.5–6.5), 4th to 5th (LigACon4-5), and 6th to 7.5th (LigACon6-7.5) repeat domains. All 7 recombinant Lig proteins were screened using a slot-shaped dot blot assay for the diagnosis of equine leptospirosis. Our results showed that LigACon4-7.5 is the best candidate diagnostic antigen in a slot-shaped dot blot assay. LigACon4-7.5 was further evaluated as an indirect enzyme-linked immunosorbent assay (ELISA) antigen for the detection of Leptospira antibodies in equine sera. This assay was evaluated with equine sera (n = 60) that were microscopic agglutination test (MAT) negative and sera (n = 220) that were MAT positive to the 5 serovars that most commonly cause equine leptospirosis. The indirect ELISA results showed that at a single serum dilution of 1:250, the sensitivity and specificity of ELISA were 80.0% and 87.2%, respectively, compared to those of MAT. In conclusion, an indirect ELISA was developed utilizing a recombinant LigA fragment comprising the 4th to 7.5th repeat domain (LigACon4-7.5) as a diagnostic antigen for equine leptospirosis. This ELISA was found to be sensitive and specific, and it yielded results that concurred with those of the standard MAT.
doi:10.1128/CVI.00245-13
PMCID: PMC3754523  PMID: 23720368
15.  Osmolarity, a Key Environmental Signal Controlling Expression of Leptospiral Proteins LigA and LigB and the Extracellular Release of LigA  
Infection and Immunity  2005;73(1):70-78.
The high-molecular-weight leptospiral immunoglobulin-like repeat (Lig) proteins are expressed only by virulent low-passage forms of pathogenic Leptospira species. We examined the effects of growth phase and environmental signals on the expression, surface exposure, and extracellular release of LigA and LigB. LigA was lost from stationary-phase cells, while LigB expression was maintained. The loss of cell-associated LigA correlated with selective release of a lower-molecular-weight form of LigA into the culture supernatant, while LigB and the outer membrane lipoprotein LipL41 remained associated with cells. Addition of tissue culture medium to leptospiral culture medium induced LigA and LigB expression and caused a substantial increase in released LigA. The sodium chloride component of tissue culture medium was primarily responsible for the enhanced release of LigA. Addition of sodium chloride, potassium chloride, or sodium sulfate to leptospiral medium to physiological osmolarity caused the induction of both cell-associated LigA and LigB, indicating that osmolarity regulates the expression of Lig proteins. Osmotic induction of Lig expression also resulted in enhanced release of LigA and increased surface exposure of LigB, as determined by surface immunofluorescence. Osmolarity appears to be a key environmental signal that controls the expression of LigA and LigB.
doi:10.1128/IAI.73.1.70-78.2005
PMCID: PMC538979  PMID: 15618142
16.  Big Domains Are Novel Ca2+-Binding Modules: Evidences from Big Domains of Leptospira Immunoglobulin-Like (Lig) Proteins 
PLoS ONE  2010;5(12):e14377.
Background
Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca2+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca2+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold.
Principal Findings
We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9th (Lig A9) and 10th repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca2+ with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold.
Conclusions
We demonstrate that the Lig are Ca2+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca2+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca2+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca2+ binding.
doi:10.1371/journal.pone.0014377
PMCID: PMC3012076  PMID: 21206924
17.  Leptospira Immunoglobulin-Like Proteins as a Serodiagnostic Marker for Acute Leptospirosis▿  
Journal of Clinical Microbiology  2007;45(5):1528-1534.
There is an urgent need for improved diagnosis of leptospirosis, an emerging infectious disease which imparts a large disease burden in developing countries. We evaluated the use of Leptospira immunoglobulin (Ig)-like (Lig) proteins as a serodiagnostic marker for leptospirosis. Lig proteins have bacterial immunoglobulin-like (Big) tandem repeat domains, a moiety found in virulence factors in other pathogens. Sera from patients identified during urban outbreaks in Brazil reacted strongly with immunoblots of a recombinant fragment comprised of the second to sixth Big domains of LigB from L. interrogans serovar Copenhageni, the principal agent for transmission in this setting. Furthermore, the sera recognized an analogous LigB fragment derived from L. kirschneri serovar Grippotyphosa, a pathogenic serovar which is not endemic to the study area. The immunoblot assay detected anti-LigB IgM antibodies in sera from 92% (95% confidence interval, 85 to 96%) of patients during acute-phase leptospirosis. The assay had a sensitivity of 81% for sera from patients with less than 7 days of illness. Anti-LigB antibodies were found in sera from 57% of the patients who did not have detectable anti-whole-Leptospira responses as detected by IgM enzyme-linked immunosorbent assay and microagglutination test. The specificities of the assay were 93 to 100% and 90 to 97% among sera from healthy individuals and patients with diseases that have clinical presentations that overlap with those of leptospirosis, respectively. These findings indicate that the antibody response to this putative virulence determinant is a sensitive and specific marker for acute infection. The use of this marker may aid the prompt and timely diagnosis required to reduce the high mortality associated with severe forms of the disease.
doi:10.1128/JCM.02344-06
PMCID: PMC1865864  PMID: 17360842
18.  Targeted Mutagenesis in Pathogenic Leptospira Species: Disruption of the LigB Gene Does Not Affect Virulence in Animal Models of Leptospirosis▿  
Infection and Immunity  2008;76(12):5826-5833.
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spcr) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
doi:10.1128/IAI.00989-08
PMCID: PMC2583567  PMID: 18809657
19.  Distribution of the leptospiral immunoglobulin-like (lig) genes in pathogenic Leptospira species and application of ligB to typing leptospiral isolates 
Journal of Medical Microbiology  2009;58(Pt 9):1173-1181.
The family of leptospiral immunoglobulin-like (lig) genes comprises ligA, ligB and ligC. This study used PCR to demonstrate the presence of lig genes among serovars from a collection of leptospiral strains and clinical isolates. Whilst ligA and ligC appeared to be present in a limited number of pathogenic serovars, the ligB gene was distributed ubiquitously among all pathogenic strains. None of the lig genes were detected among intermediate or saprophytic Leptospira species. It was also shown that, similar to the previously characterized secY gene, a short specific PCR fragment of ligB could be used to correctly identify pathogenic Leptospira species. These findings demonstrate that ligB is widely present among pathogenic strains and may be useful for their reliable identification and classification.
doi:10.1099/jmm.0.009175-0
PMCID: PMC2887549  PMID: 19528180
20.  Multiple Activities of LigB Potentiate Virulence of Leptospira interrogans: Inhibition of Alternative and Classical Pathways of Complement 
PLoS ONE  2012;7(7):e41566.
Microbial pathogens acquire the immediate imperative to avoid or counteract the formidable defense of innate immunity as soon as they overcome the initial physical barriers of the host. Many have adopted the strategy of directly disrupting the complement system through the capture of its components, using proteins on the pathogen's surface. In leptospirosis, pathogenic Leptospira spp. are resistant to complement-mediated killing, in contrast to the highly vulnerable non-pathogenic strains. Pathogenic L. interrogans uses LenA/LfhA and LcpA to respectively sequester and commandeer the function of two regulators, factor H and C4BP, which in turn bind C3b or C4b to interrupt the alternative or classical pathways of complement activation. LigB, another surface-proximal protein originally characterized as an adhesin binding multiple host proteins, has other activities suggesting its importance early in infection, including binding extracellular matrix, plasma, and cutaneous repair proteins and inhibiting hemostasis. In this study, we used a recent model of ectopic expression of LigB in the saprophyte, L. biflexa, to test the hypothesis that LigB also interacts with complement proteins C3b and C4b to promote the virulence of L. interrogans. The surface expression of LigB partially rescued the non-pathogen from killing by 5% normal human serum, showing 1.3- to 48-fold greater survival 4 to 6 d following exposure to complement than cultures of the non-expressing parental strain. Recombinant LigB7′-12 comprising the LigB-specific immunoglobulin repeats binds directly to human complement proteins, C3b and C4b, with respective Kds of 43±26 nM and 69±18 nM. Repeats 9 to 11, previously shown to contain the binding domain for fibronectin and fibrinogen, are also important in LigB-complement interactions, which interfere with the alternative and classical pathways measured by complement-mediated hemolysis of erythrocytes. Thus, LigB is an adaptable interface for L. interrogans to efficiently counteract the multiple homeostatic processes of the host.
doi:10.1371/journal.pone.0041566
PMCID: PMC3402383  PMID: 22911815
21.  Role for cis-Acting RNA Sequences in the Temperature-Dependent Expression of the Multiadhesive Lig Proteins in Leptospira interrogans 
Journal of Bacteriology  2013;195(22):5092-5101.
The spirochete Leptospira interrogans causes a systemic infection that provokes a febrile illness. The putative lipoproteins LigA and LigB promote adhesion of Leptospira to host proteins, interfere with coagulation, and capture complement regulators. In this study, we demonstrate that the expression level of the LigA and LigB proteins was substantially higher when L. interrogans proliferated at 37°C instead of the standard culture temperature of 30°C. The RNA comprising the 175-nucleotide 5′ untranslated region (UTR) and first six lig codons, whose sequence is identical in ligA and ligB, is predicted to fold into two distinct stem-loop structures separated by a single-stranded region. The ribosome-binding site is partially sequestered in double-stranded RNA within the second structure. Toeprint analysis revealed that in vitro formation of a 30S-tRNAfMet-mRNA ternary complex was inhibited unless a 5′ deletion mutation disrupted the second stem-loop structure. To determine whether the lig sequence could mediate temperature-regulated gene expression in vivo, the 5′ UTR and the first six codons were inserted between the Escherichia coli l-arabinose promoter and bgaB (β-galactosidase from Bacillus stearothermophilus) to create a translational fusion. The lig fragment successfully conferred thermoregulation upon the β-galactosidase reporter in E. coli. The second stem-loop structure was sufficient to confer thermoregulation on the reporter, while sequences further upstream in the 5′ UTR slightly diminished expression at each temperature tested. Finally, the expression level of β-galactosidase was significantly higher when point mutations predicted to disrupt base pairs in the second structure were introduced into the stem. Compensatory mutations that maintained base pairing of the stem without restoring the wild-type sequence reinstated the inhibitory effect of the 5′ UTR on expression. These results indicate that ligA and ligB expression is limited by double-stranded RNA that occludes the ribosome-binding site. At elevated temperatures, the ribosome-binding site is exposed to promote translation initiation.
doi:10.1128/JB.00663-13
PMCID: PMC3811586  PMID: 24013626
22.  Cross-protective Immunity Against Leptospirosis Elicited by a Live, Attenuated Lipopolysaccharide Mutant 
The Journal of Infectious Diseases  2011;203(6):870-879.
Background. Leptospira species cause leptospirosis, a zoonotic disease found worldwide. Current vaccines against leptospirosis provide protection only against closely related serovars.
Methods. We evaluated an attenuated transposon mutant of Leptospira interrogans serovar Manilae (M1352, defective in lipopolysaccharide biosynthesis) as a live vaccine against leptospirosis. Hamsters received a single dose of vaccine and were challenged with the homologous serovar (Manilae) and a serologically unrelated heterologous serovar (Pomona). Comparisons were made with killed vaccines. Potential cross-protective antigens against leptospirosis were investigated.
Results. Live M1352 vaccine induced superior protection in hamsters against homologous challenge. The live vaccine also stimulated cross-protection against heterologous challenge, with 100% survival (live M1352) versus 40% survival (killed vaccine). Hamsters receiving either vaccine responded to the dominant membrane proteins LipL32 and LipL41. Hamsters receiving the live vaccine additionally recognized LA3961/OmpL36 (unknown function), Loa22 (OmpA family protein, recognized virulence factor), LA2372 (general secretory protein G), and LA1939 (hypothetical protein). Manilae LigA was recognized by M1352 vaccinates, whereas LipL36 was detected in Pomona.
Conclusion. This study demonstrated that a live, attenuated vaccine can stimulate cross-protective immunity to L. interrogans and has identified antigens that potentially confer cross-protection against leptospirosis.
doi:10.1093/infdis/jiq127
PMCID: PMC3071135  PMID: 21220775
23.  Response of Leptospira interrogans to Physiologic Osmolarity: Relevance in Signaling the Environment-to-Host Transition▿ † 
Infection and Immunity  2007;75(6):2864-2874.
Transmission of pathogenic Leptospira between mammalian hosts usually involves dissemination via soil or water contaminated by the urine of carrier animals. The ability of Leptospira to adapt to the diverse conditions found inside and outside the host is reflected in its relatively large genome size and high percentage of signal transduction genes. An exception is Leptospira borgpetersenii serovar Hardjo, which is transmitted by direct contact and appears to have lost genes necessary for survival outside the mammalian host. Invasion of host tissues by Leptospira interrogans involves a transition from a low osmolar environment outside the host to a higher physiologic osmolar environment within the host. Expression of the lipoprotein LigA and LigB adhesins is strongly induced by an upshift in osmolarity to the level found in mammalian host tissues. These data suggest that Leptospira utilizes changes in osmolarity to regulate virulence characteristics. To better understand how L. interrogans serovar Copenhageni adapts to osmolar conditions that correspond with invasion of a mammalian host, we quantified alterations in transcript levels using whole-genome microarrays. Overnight exposure in leptospiral culture medium supplemented with sodium chloride to physiologic osmolarity significantly altered the transcript levels of 6% of L. interrogans genes. Repressed genes were significantly more likely to be absent or pseudogenes in L. borgpetersenii, suggesting that osmolarity is relevant in studying the adaptation of L. interrogans to host conditions. Genes induced by physiologic osmolarity encoded a higher than expected number of proteins involved in signal transduction. Further, genes predicted to encode lipoproteins and those coregulated by temperature were overrepresented among both salt-induced and salt-repressed genes. In contrast, leptospiral homologues of hyperosmotic or general stress genes were not induced at physiologic osmolarity. These findings suggest that physiologic osmolarity is an important signal for regulation of gene expression by pathogenic leptospires during transition from ambient conditions to the host tissue environment.
doi:10.1128/IAI.01619-06
PMCID: PMC1932867  PMID: 17371863
24.  Development of Transcriptional Fusions to Assess Leptospira interrogans Promoter Activity 
PLoS ONE  2011;6(3):e17409.
Background
Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field.
Methodology and Principal Findings
A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain.
Conclusions
The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.
doi:10.1371/journal.pone.0017409
PMCID: PMC3060810  PMID: 21445252
25.  B-Cell-Specific Peptides of Leptospira interrogans LigA for Diagnosis of Patients with Acute Leptospirosis 
Leptospirosis is a reemerging infectious disease that is underdiagnosed and under-recognized due to low-sensitivity and cumbersome serological tests. Rapid reliable alternative tests are needed for early diagnosis of the disease. Considering the importance of the pathogenesis-associated leptospiral LigA protein expressed in vivo, we have evaluated its application in the diagnosis of the acute form of leptospirosis. The C-terminal coding sequence of ligA (ligA-C) was cloned into pET15b and expressed in Escherichia coli. Furthermore, the B-cell-specific epitopes were predicted and were synthesized as peptides for evaluation along with recombinant LigA-C. Epitope 1 (VVIENTPGK), with a VaxiJen score of 1.3782, and epitope 2 (TALSVGSSK), with a score of 1.2767, were utilized. A total of 140 serum samples collected from leptospirosis cases during the acute stage of the disease and 138 serum samples collected from normal healthy controls were utilized for evaluation. The sensitivity, specificity, positive predictive value, and negative predictive value were calculated for the recombinant LigA-C-specific IgM enzyme-linked immunosorbent assay (ELISA) and were found to be 92.1%, 97.7%, 92.8%, and 97.5%, respectively. Epitopes 1 and 2 used in the study showed 5.1 to 5.8% increased sensitivity over recombinant LigA-C in single and combination assays for IgM antibody detection. These findings suggest that these peptides may be potential candidates for the early diagnosis of leptospirosis.
doi:10.1128/CVI.00456-13
PMCID: PMC3957670  PMID: 24403522

Results 1-25 (571965)