Search tips
Search criteria

Results 1-25 (1280296)

Clipboard (0)

Related Articles

1.  Induction of Corneal Myofibroblasts by Lens-derived Transforming Growth Factor β1 (TGFβ1): A Transgenic Mouse Model 
Brain research bulletin  2009;81(2-3):287.
Transforming growth factor β(TGFβ) is an important cytokine in corneal development and wound healing. Transgenic mice that express an active form of human TGF β1 driven by a lens-specific promoter were used in the current study to determine the biological effects of lens-derived TGFβ1 on postnatal corneal development and homeostasis.
The postnatal corneal changes in the TGFβ1 transgenic mice were examined by fluorescein labeling and histology. Epithelial/endothelial-to-mesenchymal transition (E/EnMT) in the transgenic mouse cornea was demonstrated by immunostaining for α-smooth muscle actin (α-SMA) and cadherin-11. Expression of E- and N-cadherin in the corneal epithelial and endothelial cells, respectively, was analyzed by in situ hybridization.
Among the established TGF β1 transgenic lines, mice from line OVE853 and OVE917 had normal-sized eyeballs but developed a corneal haze after eyelid opening. Histological examination showed that prenatal corneal development appeared to be normal. However, after postnatal day 7 (P7), the corneal endothelial cells in transgenic line OVE853 began to lose normal cell-cell contact and basement membrane structure. The endothelial layer was eventually absent in the inner surface of the transgenic mouse cornea. The morphological changes in the cornea correlated with abnormal expression of α-SMA, a molecular marker of EMT, and stress fiber formation in myofibroblast-like cells, which initially appeared in the corneal endothelial layer and subsequently in the corneal epithelial and stromal layers. The E/EnMT in the transgenic mouse cornea was further demonstrated by loss of E- and N-cadherin expression in the corneal epithelial and endothelial cells respectively, and meanwhile increasing expression of cadherin-11 in both corneal epithelium and stroma.
Elevated levels of active TGF β1 in the anterior chamber can lead to myofibroblast formation in the corneal endothelial layer and subsequently in the corneal epithelial and stromal layers. Our data suggest that the levels of biologically active TGFβ in the aqueous humor must be under tight control to maintain corneal homeostasis. TGF β1 is the major cytokine during wound healing. Therefore, our findings also suggest a potential mechanism to explain the loss of corneal endothelial barrier and corneal opacification after intraocular surgery or trauma.
PMCID: PMC2814984  PMID: 19897021
2.  Mucin Characteristics of Human Corneal-Limbal Epithelial Cells that Exclude the Rose Bengal Anionic Dye 
Rose bengal is an organic anionic dye used to assess damage of the ocular surface epithelium in ocular surface disease. It has been proposed that mucins have a protective role, preventing rose bengal staining of normal ocular surface epithelial cells. The current study was undertaken to evaluate rose bengal staining in a human corneal-limbal epithelial (HCLE) cell line known to produce and glycosylate membrane-associated mucins.
HCLE cells were grown to confluence in serum-free medium and switched to DMEM/F12 with 10% serum to promote differentiation. Immunolocalization of the membrane-associated mucins MUC1 and MUC16 and the T-antigen carbohydrate epitope was performed with the monoclonal antibodies HMFG-2 and OC125 and jacalin lectin, respectively. To assess dye uptake, cultures were incubated for 5 minutes with 0.1% rose bengal and photographed. To determine whether exclusion of negatively charged rose bengal requires a negative charge at the cell surface, cells were incubated with fluoresceinated cationized ferritin. The effect of hyperosmotic stress on rose bengal staining in vitro was evaluated by increasing the ion concentration (Ca+2 and Mg+2) in the rose bengal uptake assay.
The cytoplasm and nucleus of confluent HCLE cells cultured in media without serum, lacking the expression of MUC16 but not MUC1, as well as human corneal fibroblasts, which do not express mucins, stained with rose bengal. Culture of HCLE cells in medium containing serum resulted in the formation of islands of stratified cells that excluded rose bengal. Apical cells of the stratified islands produced MUC16 and the T-antigen carbohydrate epitope on their apical surfaces. Colocalization experiments demonstrated that fluoresceinated cationized ferritin did not bind to these stratified cells, indicating that rose bengal is excluded from cells that lack negative charges. Increasing the amounts of divalent cations in the media reduced the cellular area protected against rose bengal uptake.
These results indicate that stratification and differentiation of corneal epithelial cells, as measured by the capacity to produce the membrane-associated mucin MUC16 and the mucin-associated T-antigen carbohydrate on their apical surfaces provide protection against rose bengal penetrance in vitro and suggest a role for membrane-associated mucins and their oligosaccharides in the protection of ocular surface epithelia.
PMCID: PMC1351157  PMID: 16384952
3.  Wakayama Symposium: Challenges of Future Research in Ocular Surface Cell Biology 
The ocular surface  2012;11(1):19-24.
During embryonic development, surface ectoderm differentiates to form corneal, conjunctival, and eyelid epidermal epithelia, and glandular epithelium (lacrimal and meibomian glands). Periocular mesenchymal cells of neural crest origin migrate and differentiate, leading to the formation of corneal endothelium and the stromas of the cornea, conjunctiva, eyelids, and trabecular meshwork. The formation of functional ocular surface tissues requires coordinated spatial and temporal expression of transcription factors and signaling molecules of various cytokines and signaling pathways, and the synthesis and remodeling of unique extracellular matrix. Although bidirectional interactions and signaling between mesenchyme and epithelium are considered necessary for embryonic formation of ocular surface tissues and homeostasis in adults, the molecular and cellular mechanisms that regulate such processes remain largely unknown. To investigate possible mechanisms, we have developed mouse models in which the gene functions of ocular surface epithelia and stromas can be altered by Doxycycline induction in spatial and temporal specific manners.
PMCID: PMC3551217  PMID: 23321356
Cre-LoxP system; gene targeting; genetically modified mouse lines; ocular surface tissues morphogenesis; Tet-On system; transgenesis
4.  Notch Signaling Modulates MUC16 Biosynthesis in an In Vitro Model of Human Corneal and Conjunctival Epithelial Cell Differentiation 
Notch proteins are a family of transmembrane receptors that coordinate binary cell fate decisions and terminal differentiation. This study demonstrates that biosynthesis of the cell surface-associated mucin MUC16 is posttranscriptionally regulated by Notch signaling at early stages of epithelial cell differentiation, suggesting that Notch signaling plays an important role in maintaining a wet-surface phenotype at the ocular surface.
Notch proteins are a family of transmembrane receptors that coordinate binary cell fate decisions and differentiation in wet-surfaced epithelia. We sought to determine whether Notch signaling contributes to maintaining mucosal homeostasis by modulating the biosynthesis of cell surface-associated mucins in an in vitro model of human corneal (HCLE) and conjunctival (HCjE) epithelial cell differentiation.
HCLE and HCjE cells were grown at different stages of differentiation, representing nondifferentiated (preconfluent and confluent) and differentiated (stratified) epithelial cultures. Notch signaling was blocked with the γ-secretase inhibitor dibenzazepine (DBZ). The presence of Notch intracellular domains (Notch1 to Notch3) and mucin protein (MUC1, -4, -16) was evaluated by electrophoresis and Western blot analysis. Mucin gene expression was determined by TaqMan real-time polymerase chain reaction.
Here we demonstrate that Notch3 is highly expressed in undifferentiated and differentiated HCLE and HCjE cells, and that Notch1 and Notch2 biosynthesis is enhanced by induction of differentiation with serum-containing media. Inhibition of Notch signaling with DBZ impaired MUC16 biosynthesis in a concentration-dependent manner in undifferentiated cells at both preconfluent and confluent stages, but not in postmitotic stratified cells. In contrast to protein levels, the amount of MUC16 transcripts were not significantly reduced after DBZ treatment, suggesting that Notch regulates MUC16 posttranscriptionally. Immunoblots of DBZ-treated epithelial cells grown at different stages of differentiation revealed no differences in the levels of MUC1 and MUC4.
These results indicate that MUC16 biosynthesis is posttranscriptionally regulated by Notch signaling at early stages of epithelial cell differentiation, and suggest that Notch activation contributes to maintaining a mucosal phenotype at the ocular surface.
PMCID: PMC3176047  PMID: 21508102
5.  SSEA4 Is a Potential Negative Marker for the Enrichment of Human Corneal Epithelial Stem/Progenitor Cells 
This study shows the first evidence that SSEA4 is highly expressed in differentiated corneal epithelial cells and could be used as a negative marker to enrich the isolation of limbal stem cells.
To examine the expression of stage-specific embryonic antigen-4 (SSEA4) in the epithelium of the human ocular surface and characterize SSEA4+ and SSEA4− limbal epithelial cells.
SSEA4 expression in the human cornea and limbus was examined by RT-PCR and immunohistochemistry. SSEA4+ and SSEA4− cells were then separated by using magnetic beads. The phenotypes of these two cell populations were evaluated on the basis of cell size, clonogenic assay, and expression of putative limbal stem cell (LSC) and corneal epithelial differentiation markers.
SSEA4 was expressed in all layers of the corneal and anterior limbal epithelia. Discrete clusters of SSEA4+ cells were present in the central and posterior limbal epithelia. SSEA4+ cells accounted for an average of 40% of the total limbal epithelial cells. The SSEA4− population contained five times more small cells (≤11 μm in diameter) than did the SSEA4+ population. The expression levels of the putative LSC markers ABCG2, ΔNp63α, and cytokeratin (K)14 were significantly higher in the SSEA4− population than in the SSEA4+ population. The SSEA4− cells also expressed a significantly higher level of N-cadherin, but a lower level of the differentiation marker K12. The colony-forming efficiency in the SSEA4− population was 25.2% (P = 0.04) and 1.6-fold (P < 0.05) higher than in the unsorted population and the SSEA4+ population, respectively.
SSEA4 is highly expressed in differentiated corneal epithelial cells, and SSEA4− limbal epithelial cells contain a higher proportion of limbal stem/progenitor cells. SSEA4 could be used as a negative marker to enrich the isolation of LSCs.
PMCID: PMC3175983  PMID: 21685344
6.  The Ocular Surface Phenotype of Muc5ac and Muc5b Null Mice 
Recent development of mice null for either Muc5ac or Muc5b mucin allows study of their specific roles at the mouse ocular surface. A recent report indicated that Muc5ac null mice show an ocular surface phenotype similar to that seen in dry eye syndrome. The purpose of our study was to determine the effect of lack of Muc5ac or Muc5b on the ocular surface, and to determine if environmental desiccating stress exacerbated a phenotype.
Muc5ac null and Muc5b null mice, and their wild-type controls were examined for ocular surface defects by fluorescein staining. The number of goblet cells per area of conjunctival epithelium was counted, and levels of mucin gene expression and genes associated with epithelial stress, keratinization, and differentiation, known to be altered in dry eye syndrome, were assayed. To determine if the null mice would respond more to desiccating stress than their wild-type controls, they were challenged in a controlled environment chamber (CEC) and assessed for changes in fluorescein staining, tear volume, and inflammatory cells within the conjunctival and corneal epithelia.
Unlike the previous study, we found no ocular surface phenotype in the Muc5ac null mice, even after exposure to desiccating environmental stress. Similarly, no ocular surface phenotype was present in the Muc5b null mice, either before or after exposure to a dry environment in the CEC.
Our results indicate that deleting either the Muc5ac or Muc5b gene is insufficient to create an observable dry eye phenotype on the ocular surface of these mice.
Mice null for either Muc5ac or Muc5b, the major secretory mucins on the ocular surface, were assessed for an ocular surface phenotype. Results indicate that deletion of either the Muc5ac or Muc5b gene is insufficient to create an observable dry eye phenotype on the ocular surface of these mice.
PMCID: PMC3894795  PMID: 24327612
mucins; dry eye; animal models
7.  Conditional Disruption of Mouse Klf5 Results in Defective Eyelids with Malformed Meibomian Glands, Abnormal Cornea and Loss of Conjunctival Goblet Cells 
Developmental biology  2011;356(1):5-18.
Members of the Krüppel-like family of transcription factors regulate diverse developmental processes in various organs. Previously, we have demonstrated the role of Klf4 in the mouse ocular surface. Herein, we determined the role of the structurally related Klf5, using Klf5-conditional null (Klf5CN) mice derived by mating Klf5-LoxP and Le-Cre mice. Klf5 mRNA was detected as early as embryonic day 12 (E12) in the cornea, conjunctiva and eyelids, wherein its expression increased during development. Though the embryonic eye morphogenesis was unaltered in the Klf5CN mice, postnatal maturation was defective, resulting in smaller eyes with swollen eyelids that failed to separate properly. Klf5CN palpebral epidermis was hyperplastic with 7-9 layers of keratinocytes, compared with 2-3 in the wild type (WT). Klf5CN eyelid hair follicles and sebaceous glands were significantly enlarged, and the meibomian glands malformed. Klf5CN lacrimal glands displayed increased vasculature and large number of infiltrating cells. Klf5CN corneas were translucent, thicker with defective epithelial basement membrane and hypercellular stroma. Klf5CN conjunctiva lacked goblet cells, demonstrating that Klf5 is required for conjunctival goblet cell development. The number of Ki67-positive mitotic cells was more than doubled, consistent with the increased number of Klf5CN ocular surface epithelial cells. Co-ablation of Klf4 and Klf5 resulted in a more severe ocular surface phenotype compared with Klf4CN or Klf5CN, demonstrating that Klf4 and Klf5 share few if any, redundant functions. Thus, Klf5CN mice provide a useful model for investigating ocular surface pathologies involving meibomian gland dysfunction, blepharitis, corneal or conjunctival defects.
PMCID: PMC3130829  PMID: 21600198
Klf5; cornea; conjunctiva; meibomian glands; lacrimal glands; eyelids; goblet cells
8.  Immune profile of squamous metaplasia development in autoimmune regulator-deficient dry eye 
Molecular Vision  2009;15:563-576.
Squamous metaplasia of the ocular surface epithelium in severe Sjögren syndrome (SS) dry eye has been implicated to be associated with chronic engagement of immune-mediated inflammation. While the detailed immunopathological mechanism underlying keratinization of the ocular muco-epithelium in this setting remains unclear, mice deficient in the autoimmune regulator gene (Aire) demonstrate SS-like pathological changes in the exocrine organs and ocular surface including squamous metaplasia. Using this murine model, we sought to determine the specific immune events that predict squamous metaplasia of the cornea in Aire deficiency.
Lissamine green staining, goblet cell density, and corneal small proline-rich protein 1B (SPRR1B) were compared in Aire-sufficient and -deficient mice at 4, 8, and 16 weeks of age. Corneal, limbal and conjunctival infiltration of CD4+ and CD8+ T cells as well as CD11c+ and MHC class II (I-Ad+) dendritic cells (DCs) were examined at the same time points. Ordinary least squares regression was used to model SPRR1B’s relationship with lissamine green staining, goblet cell density, and immune cell infiltration.
Lissamine green staining was present in Aire-deficient mice by four weeks of age and increased over time. Compared to Aire-sufficient controls, conjunctival goblet cell density (GCD) decreased and corneal SPRR1B increased in Aire-deficient mice with significant differences noted at both 8 and 16 weeks. Immune-mediated CD4+ T cell infiltration of the conjunctiva and limbus peaked at eight weeks and then decreased. In contrast, corneal T cell infiltration continued to increase over time, reaching a maximum cell number at 16 weeks. CD11c+ myeloid-derived DCs were found in the conjunctiva and limbus at all time points. As the mice aged, there was a notable increase in corneal CD11c+ cell counts. Interestingly, the dynamic of activated MHC class II+ DCs was nearly identical to that of CD4+ T cells, peaking first in the limbus at eight weeks with maximum infiltration of the cornea by 16 weeks. Regression analysis showed that squamous metaplasia biomarker, SPRR1B, is strongly related to the lissamine green staining of the ocular surface. Corneal infiltration of activated DCs was most prognostic of corneal SPRR1B expression while the presence of precursor DCs, activated DCs, and CD4+ T cells in the limbus were also significant predictors of SPRR1B.
Aire-deficient mice represent a useful model to study Sjögren-like autoimmune-mediated ocular surface disease. Results of the current study suggest that squamous cell precursor protein, SPRR1B, provides an important readout to evaluate ocular surface damage and specific events related to immune-mediated inflammation. Results also define an appropriate time frame for interventional studies to develop more effective therapies for keratinizing ocular surface disease.
PMCID: PMC2660375  PMID: 19365590
9.  A Role for Smoothened during Murine Lens and Cornea Development 
PLoS ONE  2014;9(9):e108037.
Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316–30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5–E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects in lens and appears to be due to defective migration of peri-ocular Nrp2+ neural crest/mesenchymal cells.
PMCID: PMC4182430  PMID: 25268479
10.  14-3-3σ Controls Corneal Epithelium Homeostasis and Wound Healing 
Stratified squamous epithelial differentiation is characterized by expression of 14-3-3σ. This study provides evidence that 14-3-3σ regulates corneal epithelial cell differentiation. Reduced 14-3-3σ activity led to age-dependent meibomian gland atrophy and corneal plaque formation.
To investigate the functional role of 14-3-3σ in regulation of the corneal epithelial proliferation, differentiation, and wound-healing response.
Corneal phenotypes were investigated in heterozygous repeated epilation (Er) mice carrying mutations in the sfn (14-3-3σ) gene. Immunohistochemistry was used to study the corneal morphogenesis of the Er/Er embryos at embryonic day (E)18.5. Corneal homeostasis and the wound-healing response were investigated macroscopically and microscopically in the adult heterozygous Er mice. Corneal epithelial cell proliferation and differentiation were assessed by BrdU incorporation and immunohistochemistry with specific antibodies for differentiation markers. Furthermore, corneal stroma neovascularization and meibomian gland degeneration were examined by immunohistochemistry. The healing of corneal wounds after debridement was monitored and visualized by fluorescent staining.
Homozygous mutation of 14-3-3σ led to defects in embryonic corneal epithelial development and differentiation, whereas young heterozygotes showed normal corneal development and homeostasis. However, older heterozygotes displayed a dramatic corneal wound-healing defect characterized by hyperplastic basal progenitor cells (some of which undergo a differentiation switch to express markers of keratinized epidermis); cornea stroma changes including neovascularization; and corneal opacity, leading to plaque formation. Aged heterozygotes also showed meibomian gland atrophy.
14-3-3σ is essential for corneal epithelium differentiation, and plays an important role in corneal epithelium development and daily renewal of the adult corneal epithelium.
PMCID: PMC3081250  PMID: 21228373
11.  Cleavage of functional IL-2 receptor alpha chain (CD25) from murine corneal and conjunctival epithelia by MMP-9 
IL-2 has classically been considered a cytokine that regulates T cell proliferation and differentiation, signaling through its heterotrimeric receptor (IL-2R) consisting of α (CD25), β (CD122), γ chains (CD132). Expression of IL-2R has also been detected in mucosal epithelial cells. Soluble IL-2Rα (CD25) has been reported as an inflammatory marker. We evaluated the expression of CD25 and CD122 in the ocular surface epithelium and investigated the mechanism of proteolytic cleavage of CD25 from these cells.
Desiccating stress (DS) was used as an inducer of matrix metalloproteinase 9 (MMP-9). DS was created by subjecting C57BL/6 and MMP-9 knockout (BKO) mice and their wild-type littermates (WT) mice to a low humidity and drafty environment for 5 days (DS5). A separate group of C57BL/6 mice was subjected to DS5 and treatment with topical 0.025% doxycycline, a MMP inhibitor, administered QID. The expression of CD25 and CD122 was evaluated in cryosections by dual-label laser scanning confocal microscopy. Western blot was used to measure relative levels of CD25 in epithelial lysates. Gelatinase activity was evaluated by in situ zymography. Soluble CD25 in tear fluid was measured by an immunobead assay.
CD25 and CD122 were abundantly expressed in cornea (all layers) and conjunctiva epithelia (apical and subapical layers) in nonstressed control mice. After desiccating stress, we found that immunoreactivity to CD25, but not CD122, decreased by the ocular surface epithelia and concentration of soluble CD25 in tears increased as MMP-9 staining increased. CD25 was preserved in C57BL/6 mice topically treated with an MMP-9 inhibitor and in MMP-9 knock-out mice. MMP-9 treatment of human cultured corneal epithelial cells decreased levels of CD25 protein in a concentration dependent fashion.
Our results indicate that functional IL-2R is produced by the ocular surface epithelia and that CD25 is proteolytic cleaved to its soluble form by MMP-9, which increases in desiccating stress. These findings provide new insight into IL-2 signaling in mucosal epithelia.
PMCID: PMC2777897  PMID: 19878594
12.  Desiccating Stress Promotion of Th17 Differentiation by Ocular Surface Tissues through a Dendritic Cell-Mediated Pathway 
This study explored the interesting phenomenon that desiccating stress creates an environment on the ocular surface that stimulates the production of Th17-inducing cytokines by corneal and conjunctival epithelia that promote Th17 differentiation through a dendritic cell-mediated pathway.
To explore the phenomenon that corneal and conjunctival tissues subjected to desiccating stress (DS) promote Th17 differentiation by stimulating the production of Th17-inducing cytokines through a dendritic cell (DC)–mediated pathway.
Experimental dry eye was created by subjecting C57BL/6 mice to desiccating environmental stress. Corneal and conjunctival explants from dry eye or control mice were cocultured with DCs for 24 hours before CD4+ T cells were added for an additional 4 to 7 days. Expression of Th17-associated genes in the cornea, conjunctiva, DCs, and CD4+ T cells was evaluated by real-time PCR. Cytokine concentrations in coculture supernatants were measured by immunobead assay. IL-17–producing T cells were identified by ELISPOT bioassay.
Higher levels of IL-17A, TGF-β1, TGF-β2, IL-6, IL-23, and IL-1β mRNA transcripts and TGF-β1, IL-6, and IL-1β protein were observed in corneal epithelium and conjunctiva from dry eye mice. DCs cocultured with epithelial explants from dry eye mice for 2 days produced higher levels of TGF-β1, IL-6, IL-23, and IL-1β mRNA transcripts and of TGF-β1, IL-6, and IL-1β protein. CD4+ T cells cocultured with DCs and epithelial explants from dry eye mice expressed increased levels of IL-17A, IL-17F, IL-22, CCL-20, and retinoic acid receptor–related orphan receptor-γt mRNA transcripts and increased IL-17A protein and number of IL-17–producing T cells (Th17 cells).
These findings demonstrate that DS creates an environment on the ocular surface that stimulates the production of Th17-inducing cytokines by corneal and conjunctival epithelia that promote Th17 differentiation through a dendritic cell–mediated pathway.
PMCID: PMC2891467  PMID: 20130281
13.  Conjunctival FOXP3 Expression in Trachoma: Do Regulatory T Cells Have a Role in Human Ocular Chlamydia trachomatis Infection? 
PLoS Medicine  2006;3(8):e266.
Trachoma, caused by ocular infection with Chlamydia trachomatis, remains the leading infectious cause of blindness and in 2002 was responsible for 3.6% of total global blindness. Although transmission can be successfully interrupted using antibiotics and improvements in public and personal hygiene, the long-term success of the control programmes advocated by the World Health Organization are still uncertain. For the complete control and prevention of trachoma, a vaccine would be highly desirable. Currently there are no licensed vaccines for trachoma, and no human vaccine trials have been conducted since the 1960s. A barrier to new attempts to design and introduce a vaccine is the identification of immunologic correlates of protective immunity or immunopathology. We studied important correlates of the immune response in a trachoma-endemic population in order to improve our knowledge of this disease. This is essential for the successful development of a vaccine against both ocular and genital C. trachomatis infection.
Methods and Findings
We used quantitative real-time PCR for C. trachomatis 16S rRNA to identify conjunctival infection. The expression of IFN-γ, IDO, IL-10, and FOXP3 mRNA transcripts was measured. We evaluated the role of immune effector and regulatory responses in the control of chlamydial infection and in the resolution of clinical signs of trachoma in endemic communities in Gambia. All host transcripts examined were detectable even in normal conjunctiva. The levels of these transcripts were increased, compared to normal uninfected conjunctiva, when infection was detected, with or without clinical disease signs. Interestingly, when clinical disease signs were present in the absence of infection, the expression of a regulatory T cell transcription factor, FOXP3, remained elevated.
There is evidence of an increase in the magnitude of the local anti-chlamydial cytokine immune responses with age. This increase is coupled to a decline in the prevalence of infection and active trachoma, suggesting that effective adaptive immunity is acquired over a number of years. The anti-chlamydial and inflammatory immune response at the conjunctival surface, which may control chlamydial replication, is closely matched by counter inflammatory or regulatory IL-10 expression. Differences in the level of FOXP3 expression in the conjunctiva may indicate a role for regulatory T cells in the resolution of the conjunctival immune response, which is important in protection from immunopathology. However, the expression of cytokines that control chlamydial replication and those that regulate the conjunctival immune response is not simply juxtaposed; the interaction between the infection and the clinical disease process is therefore more complex.
The immune response in a trachoma-endemic population showed an increase in local anti-chlamydial cytokine responses with age, associated with a decline in the prevalence of infection and active trachoma.
Editors' Summary
Trachoma is the leading infectious cause of blindness worldwide. Six million people—most of whom live in crowded, unhygienic conditions with limited water supplies—are blind because of repeated eye infections with Chlamydia trachomatis. This bacterium passes easily from person to person on hands or clothing and is also spread by flies. Successive infections starting in childhood cause progressive scarring of the inside of the eyelid. Eventually, the eyelashes turn inwards and rub painfully over the front of the eye (the cornea). This causes corneal scarring, loss of corneal transparency, and, finally, irreversible loss of sight, usually in adulthood. C. trachomatis infections can be prevented by improving personal hygiene and by reducing fly breeding sites, and they can be treated with antibiotics. In addition, early scarring of the eyelid and turned-in eyelashes can be treated surgically.
Why Was This Study Done?
Through the above interventions, the World Health Organization hopes to eliminate trachoma by 2020, but a vaccine might also be necessary. To develop a vaccine, the human immune response to C. trachomatis needs to be better understood. As with other diseases, the immune response to C. trachomatis includes a pro-inflammatory side, which activates immune cells to attack the bacteria, and a regulatory side, which keeps the pro-inflammatory responses in check. The balance between these two sides is not perfect, however. Although the immune response deals with C. trachomatis infections efficiently, it also causes some of the tissue damage that leads to scarring and loss of sight. In this study, the researchers have investigated the human immune response to C. trachomatis to provide immunological information that might help vaccine development.
What Did the Researchers Do and Find?
The researchers examined school children living in Gambia, where trachoma is very common, for clinical signs of active trachoma (for example, red or swollen eyelids). To find out which children were infected with C. trachomatis, the researchers collected a few cells from the surface of their eyes and looked for a ribonucleic acid (RNA) molecule that is only made by C. trachomatis. The researchers also looked in these samples for human messenger RNA (mRNA) molecules that are made during pro-inflammatory and regulatory immune responses.
The children formed four groups based on infection with C. trachomatis and clinical signs. Some children—particularly the older ones—were uninfected and had no clinical signs. Others were infected but showed no clinical signs—these children were incubating the bacteria. Some were infected and had clinical disease; these children had the highest bacterial loads. Finally, children recovering from an infection carried no bacteria but still had some clinical signs.
The researchers detected different types of immune response in each of these groups. Children incubating the bacteria had a strong pro-inflammatory response—their immune systems were trying to fight off infection. The pro-inflammatory response was even stronger in the infected children with clinical signs, but now the regulatory response had also increased, presumably to limit inflammation. In children in the recovery phase, only regulatory immune cells, which were making an mRNA from a gene called FOXP3, remained active.
What Do These Findings Mean?
The relative rarity of infections and active disease in older children together with indications of a more active immune response to infection indicates that protective immunity to C. trachomatis is acquired through repeated exposure to it. This bodes well for the development of a vaccine, which would speed up the acquisition of this natural immunity. Furthermore, the new information about immune responses at different stages of infection with C. trachomatis should help in vaccine design. The findings need to be confirmed by tracking immune responses in individual children during episodes of infection, but could then be used to help design vaccines that produce good protective immunity against C. trachomatis without causing too much collateral tissue damage. The current results suggest, for example, that regulatory immune cells are important in limiting the inflammatory response, so vaccine developers may need to ensure that their vaccines stimulate the production of this sort of cell as well as of the pro-inflammatory cells needed to clear the infection.
Additional Information.
Please access these Web sites via the online version of this summary at
• NHS Direct Online patient information on trachoma
• World Health Organization information on trachoma and its elimination
• US Centers for Disease Control and Prevention general information on trachoma
• MedlinePlus encyclopedia entry on trachoma
PMCID: PMC1526769  PMID: 16881731
14.  FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate 
Development (Cambridge, England)  2009;136(10):1741-1750.
There are conflicting reports about whether BMP signaling is required for eyelid closure during fetal development. This question was addressed using mice deficient in BMP or TGFβ signaling in prospective eyelid and conjunctival epithelial cells. Genes encoding two type I BMP receptors, the type II TGFβ receptor, two BMP- or two TGFβ-activated R-Smads or the co-Smad Smad4 were deleted from the ocular surface ectoderm using Cre recombinase. Only mice with deletion of components of the BMP pathway had an ‘eyelid open at birth’ phenotype. Mice lacking Fgf10 or Fgfr2 also have open eyelids at birth. To better understand the pathways that regulate BMP expression and function during eyelid development, we localized BMPs and BMP signaling intermediates in Fgfr2 and Smad4 conditional knockout (CKO) mice. We found that Fgfr2 was required for the expression of Bmp4, the normal distribution of Shh signaling and for preserving the differentiation of the conjunctival epithelium. FGF signaling also promoted the expression of the Wnt antagonist Sfrp1 and suppressed Wnt signaling in the prospective eyelid epithelial cells, independently of BMP function. Transcripts encoding Foxc1 and Foxc2, which were previously shown to be necessary for eyelid closure, were not detectable in Smad4CKO animals. c-Jun, another key regulator of eyelid closure, was present and phosphorylated in eyelid periderm cells at the time of fusion, but failed to translocate to the nucleus in the absence of BMP function. Smad4CKO mice also showed premature differentiation of the conjunctival epithelium, conjunctival hyperplasia and the acquisition of epidermal characteristics, including formation of an ectopic row of hair follicles in place of the Meibomian glands. A second row of eyelashes is a feature of human lymphedema-distichiasis syndrome, which is associated with mutations in FOXC2.
PMCID: PMC2673764  PMID: 19369394
Eyelid closure; Conjunctival cell fate; c-Jun nuclear transport; BMP signaling; FGF signaling; Mouse
15.  N-cadherin knock-down decreases invasiveness of esophageal squamous cell carcinoma in vitro 
AIM: To examine the expressions of N-cadherin and E-cadherin in specimens of 62 normal esophageal epithela, 31 adjacent atypical hyperplastic epithelia and 62 esophageal squamous cell carcinomas (ESCCs), and to investigate the roles of N-cadherin in the invasiveness of ESCC cell line EC9706 transfected by N-cadherin shRNA.
METHODS: PV immunohistochemistry was used to detect the expression pattern of N-cadherin and E-cadherin in specimens of 62 normal esophageal epithelia, 31 adjacent atypical hyperplastic epithelia and 62 ESCCs. The invasiveness of ESCC line EC9706 was determined by transwell assay after EC9706 was transfected by N-cadherin shRNA.
RESULTS: The positive rates of N-cadherin decreased in the carcinoma, adjacent atypical hyperplastic and normal esophageal tissues (75.8%, 61.3% and 29.0%, P < 0.05), respectively, while those of E-cadherin increased (40.3%, 71.0% and 95.2%, P < 0.05). The increased expression of N-cadherin and decreased expression of E-cadherin were related to invasion, differentiation, and lymph node metastasis (P < 0.05). The expression level of N-cadherin decreased in the N-cadherin knocked down cells, and the invasiveness of those cells decreased significantly as well. The number of cells which crossed the basement membrane filter decreased from 123.40 ± 8.23 to 49.60 ± 6.80 (P < 0.05).
CONCLUSION: E-cadherin and N-cadherin expression is correlated with the invasion and aggravation of ESCC. The down-regulation of N-cadherin lowers the invasiveness of EC9706 cell line.
PMCID: PMC2653438  PMID: 19222093
Esophageal squamous cell carcinoma; RNAi; N-cadherin; EC9706
16.  Expression analysis of human pterygium shows a predominance of conjunctival and limbal markers and genes associated with cell migration 
Molecular Vision  2009;15:2421-2434.
Pterygium is a vision-impairing fibrovascular lesion that grows across the corneal surface and is associated with sunlight exposure. To increase our understanding of the cells types involved in pterygium, we have used expressed sequence tag analysis to examine the transcriptional repertoire of isolated pterygium and to identify marker genes for tissue origin and cell migration.
An unnormalized unamplified cDNA library was prepared from 15 pooled specimens of surgically removed pterygia as part of the NEIBank project. Gene expression patterns were compared with existing data for human cornea, limbus, and conjunctiva, and expression of selected genes was verified by immunofluorescence localization in normal eye ocular surface and in pterygium.
Sequence analysis of 2,976 randomly selected clones produced over 1,800 unique clusters, potentially representing single genes. The most abundant complementary DNAs from pterygium include clusterin, keratins 13 (Krt13) and 4 (Krt4), S100A9/calgranulin B, and spermidine/spermine N1-acetyltransferase (SAT1). Markers for both conjunctiva (such as keratin 13/4 and AQP3) and corneal epithelium (such as keratin 12/3 and AQP5) were present. Immunofluorescence of Krt12 and 13 in the normal ocular surface showed specificity of Krt12 in cornea and Krt13 in conjunctival and limbal epithelia, with a fairly sharp boundary at the limbal–corneal border. In the pterygium there was a patchy distribution of both Krt12 and 13 up to a normal corneal epithelial region specific for Krt12. Immunoglobulins were also among the prominently expressed transcripts. Several of the genes expressed most abundantly in excised pterygium, particularly S100A9 and SAT1, have roles in cell migration. SAT1 exerts its effects through control of polyamine levels. IPENSpm, a polyamine analogue, showed a significant ability to reduce migration in primary cultures of pterygium. A number of genes highly expressed in cornea were not found in pterygium (several small leucine-rich proteoglycan family members) or were expressed at considerably lower levels (ALDH3A1 and decorin).
The expression pattern of keratins and other markers in pterygium most closely resemble those of conjunctival and limbal cells; some corneal markers are present, notably Krt12, but at lower levels than equivalent conjunctival markers. Our data are consistent with the model of pterygium developing from the migration of conjunctival- and limbal-like cells into corneal epithelium. Identification of genes with roles in cell migration suggests potential therapeutic targets. In particular, the ability of polyamine analogues to reduce migration in primary cultures of pterygium presents a possible approach to slowing pterygium growth.
PMCID: PMC2785720  PMID: 19956562
17.  Air Exposure–Induced Squamous Metaplasia of Human Limbal Epithelium 
Squamous metaplasia is a pathologic process that frequently occurs in nonkeratinized stratified ocular surface epithelia. The mechanism for this occurrence is largely unknown except for vitamin A deficiency.
Human limbal explants were cultured under airlift with or without p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 or in a submerged manner for different durations up to 2 weeks. Epithelial cell proliferation, differentiation, limbal stem cell maintenance, and expansion were studied using certain markers such as Ki67, p63, K10 and K12 keratins, filaggrin, Pax6, ABCG-2, and Musashi-1. Expression of phospho-p38 MAPK and its downstream transcription factors, C/EBPα and C/EBPβ, were studied by immunohistochemistry. Epithelial cells harvested from explants after 2 weeks of culturing under different conditions were seeded onto 3T3 feeder layers and cultured for 12 days. The differentiation of clonal epithelial cells was investigated by double staining to K12 and K10 keratins.
The squamous metaplasia model was successfully created by culturing human limbal explants at an air-liquid interface (airlift) for 2 weeks. Increased stratification and hyperproliferation only happened in the limbal, but not the corneal, epithelium in airlift, but not submerged, cultures. Epithelial proliferation was associated with a transient increase of limbal epithelial stem cells. Abnormal epidermal differentiation—evidenced by positive expression of K10 keratin in suprabasal cells and filaggrin in superficial cells—ensued. Clones generated from epithelial cells harvested from airlift culture only expressed K12 keratin without K10. As early as 2 days in airlift cultures, p38 expression emerged in limbal basal epithelial cells and gradually extended to the cytoplasm and nuclei. Furthermore, addition of the p38 inhibitor SB203580 abolished abnormal epidermal differentiation without affecting limbal epithelial proliferation. Expression of C/EBPα and C/EBPβ downstream of the p38 MAPK signaling pathway, was strongly induced by airlift culture and partially was inhibited by SB203580.
Dryness resulting from exposure activates p38 MAPK signaling coupled with abnormal epidermal differentiation without intrinsic alteration of stem cells in the limbus. On the ocular surface, p38 inhibitors may have the potential to revert the pathologic process of squamous metaplasia induced by dryness.
PMCID: PMC2254557  PMID: 18172087
18.  Expression and Regulation of Cornified Envelope Proteins in Human Corneal Epithelium 
Stratified squamous epithelial cells assemble a specialized protective barrier structure on their periphery, termed the cornified envelope. The purpose of this study was to evaluate the presence and distribution of cornified envelope precursors in human corneal epithelium, their expression in human corneal epithelial cell cultures, and the effect of ultraviolet radiation (UVB) and transglutaminase (TG) inhibition on their expression.
Tissue distribution of small proline-rich proteins (SPRRs) and filaggrin and involucrin was studied in human cornea sections by immunofluorescence staining. Primary human corneal epithelial cells (HCECs) from limbal explants were used in cell culture experiments. A single dose of UVB at 20 mJ/cm2 was used to stimulate these cells, in the presence or absence of mono-dansyl cadaverine (MDC), a TG inhibitor. SPRR2 and involucrin protein levels were studied by immunofluorescence staining and Western blot analysis. Gene expression of 12 proteins was investigated by semiquantitative reverse transcription–polymerase chain reaction.
In human cornea tissue, SPRR1, SPRR2, filaggrin, and involucrin protein expression were detected in the central and peripheral corneal and limbal epithelium. In HCECs, SPRR2 and involucrin proteins were detected in the cytosolic fraction, and involucrin levels increased after UVB. Both SPRR2 and involucrin levels accumulated in the presence of MDC. Nine genes including involucrin, SPRR (types 1A, 1B, 2A, 2B, and 3), late envelope protein (LEP) 1 and 16, and filaggrin were expressed by HCECs. SPRR 4, loricrin, and LEP 6 transcripts were not detected. UVB downregulated SPRR (2A, 2B) and LEP 1 transcripts.
Various envelope precursors are expressed in human corneal epithelium and in HCECs, acute UVB stress differentially alters their expression in HCECs. The expression of envelope precursors and their rapid modulation by UVB supports the role of these proteins in the regulation of ocular surface stress. TG function may be relevant in the regulation of soluble precursors in UVB-stimulated corneal epithelium.
PMCID: PMC2906387  PMID: 16639001
19.  Ocular manifestations of xeroderma pigmentosum: long term follow-up highlights the role of DNA repair in protection from sun damage 
Ophthalmology  2013;120(7):1324-1336.
Xeroderma pigmentosum (XP) is a rare autosomal recessive disease caused by mutations in DNA repair genes. Clinical manifestations of XP include mild to extreme sensitivity to ultraviolet radiation resulting in inflammation and neoplasia in sun-exposed areas of the skin, mucous membranes, and ocular surfaces. This report describes the ocular manifestations of XP in patients systematically evaluated in the Clinical Center at the National Institutes of Health.
Retrospective Observational Case Series
Eighty-seven participants, aged 1.3 to 63.4 years, referred to the National Eye Institute for examination from 1964 to 2011. Eighty-three had XP, 3 had XP/Cockayne Syndrome complex, and 1 had XP/trichothiodystrophy complex.
Complete, age- and developmental stage-appropriate ophthalmic examination.
Main Outcome Measures
Visual acuity; eyelid, ocular surface and lens pathology; tear film and tear production measures; and cytological analysis of conjunctival surface swabs.
Of the 87 patients, 91% had at least one ocular abnormality. The most common abnormalities were conjunctivitis (51%), corneal neovascularization (44%), dry eye (38%), corneal scarring (26%), ectropion (25%), blepharitis (23%), conjunctival melanosis (20%), and cataracts (14%). Thirteen percent of patients had some degree of visual axis impingement and 5% had no light perception in one or both eyes. Ocular surface cancer or a history of ocular surface cancer was present in 10% of patients. Patients with an acute sunburning skin phenotype were less likely to develop conjunctival melanosis and ectropion but more likely to develop neoplastic ocular surface lesions than non-burning patients. Some patients also showed signs of limbal stem cell deficiency.
Our longitudinal study reports the ocular status of the largest group of XP patients systematically examined at one facility over an extended period of time. Structural eyelid abnormalities, neoplasms of the ocular surface and eyelids, tear film and tear production abnormalities, ocular surface disease and inflammation, as well as corneal abnormalities were present in this population. Burning and non-burning XP patients exhibit different rates of important ophthalmologic findings, including neoplasia. Additionally, ophthalmic characteristics can help refine diagnoses in the case of XP complex phenotypes. DNA repair plays major role in protection of the eye from sunlight induced damage.
PMCID: PMC3702678  PMID: 23601806
20.  A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos 
The Journal of Cell Biology  1986;103(6):2649-2658.
The Ca2+-dependent cell adhesion molecules, termed cadherins, were previously divided into two subclasses, E- and N-types, with different adhesive specificity. In this study, we identified a novel class of cadherin, termed P-cadherin, using a visceral endoderm cell line PSA5- E. This cadherin was a 118,000-D glycoprotein and distinct from E- and N-cadherins in immunological specificity and molecular mass. In accord with these findings, cells with P-cadherin did not cross-adhere with cells with E-cadherin. P-Cadherin first appeared in developing mouse embryos in the extraembryonic ectoderm and the visceral endoderm at the egg cylinder stage and later was expressed in various tissues. The placenta and the uterine decidua most abundantly expressed this cadherin. The expression of P-cadherin was transient in many tissues, and its permanent expression was limited to certain tissues such as the epidermis, the mesothelium, and the corneal endothelium. When the tissue distribution of P-cadherin was compared with that of E-cadherin, we found that: each cadherin displayed a unique spatio-temporal pattern of expression; P-cadherin was co-expressed with E-cadherin in local regions of various tissues; and onset or termination of expression of P- cadherin was closely associated with connection or segregation of cell layers, as found with other cadherins. These results suggested that differential expression of multiple classes of cadherins play a role in implantation and morphogenesis of embryos by providing cells with heterogenous adhesive specificity.
PMCID: PMC2114609  PMID: 3539943
21.  Tear Film Mucins: Front Line Defenders of the Ocular Surface; Comparison with Airway and Gastrointestinal Tract Mucins 
Experimental eye research  2013;117:62-78.
The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract.
PMCID: PMC4222248  PMID: 23954166
Cornea; Conjunctiva; Mucin; Secretion; Proliferation; Tears
22.  Transcription, Translation, and Function of Lubricin, a Boundary Lubricant, at the Ocular Surface 
JAMA ophthalmology  2013;131(6):10.1001/jamaophthalmol.2013.2385.
Lubricin may be an important barrier to the development of corneal and conjunctival epitheliopathies that may occur in dry eye disease and contact lens wear.
To test the hypotheses that lubricin (ie, proteoglycan 4 [PRG4]), a boundary lubricant, is produced by ocular surface epithelia and acts to protect the cornea and conjunctiva against significant shear forces generated during an eyelid blink and that lubricin deficiency increases shear stress on the ocular surface and promotes corneal damage.
Design, Setting, and Participants
Human, porcine, and mouse tissues and cells were processed for molecular biological, immunohistochemical, and tribological studies, and wild-type and PRG4 knockout mice were evaluated for corneal damage.
Our findings demonstrate that lubricin is transcribed and translated by corneal and conjunctival epithelial cells. Lubricin messenger RNA is also present in lacrimal and meibomian glands, as well as in a number of other tissues. Absence of lubricin in PRG4 knockout mice is associated with a significant increase in corneal fluorescein staining. Our studies also show that lubricin functions as an effective friction-lowering boundary lubricant at the human cornea-eyelid interface. This effect is specific and cannot be duplicated by the use of hyaluronate or bovine serum albumin solutions.
Conclusions and Relevance
Our results show that lubricin is transcribed, translated, and expressed by ocular surface epithelia. Moreover, our findings demonstrate that lubricin presence significantly reduces friction between the cornea and conjunctiva and that lubricin deficiency may play a role in promoting corneal damage.
PMCID: PMC3887468  PMID: 23599181
23.  Entrapment of Conjunctival Goblet Cells by Desiccation-Induced Cornification 
The results of this study showed that exposure to desiccating stress stimulates production of cornified envelope precursors and the tissue transglutaminase enzyme that cross-links them via the ocular surface epithelia. These cornifying cells entrap conjunctival goblet cells and block egress of their mucin contents to the ocular surface. This mechanism may contribute to the mucin deficiency that develops in dry eye.
To evaluate the effects of desiccating stress on conjunctival goblet cell density and morphology and the expression of cornified envelope precursors by the ocular surface epithelia.
Experimental dry eye (EDE) was created in C57BL/6 mice. Real-time PCR evaluated the expression of cornified envelope (CE) precursor proteins (involucrin and small proline-rich [Sprr] -1a, -1b, -2a, -2b, -2f, and -2g proteins), the cross-linking transglutaminase 1 enzyme (Tg-1) and Muc5AC mRNA transcripts by the ocular surface epithelia. Laser scanning confocal microscopy evaluated the expression of the CE precursor proteins Tg-1 and Muc5AC in cryosections. Tg-1 activity was measured by a fluorescein cadaverine assay. Muc5AC concentration was measured by ELISA.
Levels of involucrin; Sprr-1a, -1b, -2a, -2b, -2f, and -2g; and Tg1–1 mRNA transcripts in ocular surface tissues increased in response to desiccating stress. Expression and activity of Tg in the conjunctiva markedly increased after EDE. Desiccating stress caused progressive loss of mucin-filled goblet cells. The apical portion of the remaining conjunctival goblet cells became entrapped by adjacent stratified apical epithelia expressing increased levels of cornified envelope precursors.
Exposure to desiccating stress stimulates ocular surface epithelia to produce cornified envelope precursors and the tissue transglutaminase enzyme that cross-links them. This effect is accompanied by loss of mucin-filled goblet cells and entrapment of mucin contents in the remaining ones by cornifying cells that block the egress of mucin contents to the ocular surface. This mechanism may contribute to the conjunctival mucin deficiency that develops in dry eye.
PMCID: PMC3109039  PMID: 21421863
24.  Limbal Stem Cell Transplantation 
Executive Summary
The objective of this analysis is to systematically review limbal stem cell transplantation (LSCT) for the treatment of patients with limbal stem cell deficiency (LSCD). This evidence-based analysis reviews LSCT as a primary treatment for nonpterygium LSCD conditions, and LSCT as an adjuvant therapy to excision for the treatment of pterygium.
Clinical Need: Condition and Target Population
The outer surface of the eye is covered by 2 distinct cell layers: the corneal epithelial layer that overlies the cornea, and the conjunctival epithelial layer that overlies the sclera. These cell types are separated by a transitional zone known as the limbus. The corneal epithelial cells are renewed every 3 to 10 days by a population of stem cells located in the limbus.
Nonpterygium Limbal Stem Cell Deficiency
When the limbal stem cells are depleted or destroyed, LSCD develops. In LSCD, the conjunctival epithelium migrates onto the cornea (a process called conjunctivalization), resulting in a thickened, irregular, unstable corneal surface that is prone to defects, ulceration, corneal scarring, vascularization, and opacity. Patients experience symptoms including severe irritation, discomfort, photophobia, tearing, blepharospasm, chronic inflammation and redness, and severely decreased vision.
Depending on the degree of limbal stem cell loss, LSCD may be total (diffuse) or partial (local). In total LSCD, the limbal stem cell population is completed destroyed and conjunctival epithelium covers the entire cornea. In partial LSCD, some areas of the limbus are unharmed, and the corresponding areas on the cornea maintain phenotypically normal corneal epithelium.
Confirmation of the presence of conjunctivalization is necessary for LSCD diagnosis as the other characteristics and symptoms are nonspecific and indicate a variety of diseases. The definitive test for LSCD is impression cytology, which detects the presence of conjunctival epithelium and its goblet cells on the cornea. However, in the opinion of a corneal expert, diagnosis is often based on clinical assessment, and in the expert’s opinion, it is unclear whether impression cytology is more accurate and reliable than clinical assessment, especially for patients with severe LSCD.
The incidence of LSCD is not well understood. A variety of underlying disorders are associated with LSCD including chemical or thermal injuries, ultraviolet and ionizing radiation, Stevens-Johnson syndrome, multiple surgeries or cryotherapies, contact lens wear, extensive microbial infection, advanced ocular cicatricial pemphigoid, and aniridia. In addition, some LSCD cases are idiopathic. These conditions are uncommon (e.g., the prevalence of aniridia ranges from 1 in 40,000 to 1 in 100,000 people).
Pterygium is a wing-shaped fibrovascular tissue growth from the conjunctiva onto the cornea. Pterygium is the result of partial LSCD caused by localized ultraviolet damage to limbal stem cells. As the pterygium invades the cornea, it may cause irregular astigmatism, loss of visual acuity, chronic irritation, recurrent inflammation, double vision, and impaired ocular motility.
Pterygium occurs worldwide. Incidence and prevalence rates are highest in the “pterygium belt,” which ranges from 30 degrees north to 30 degrees south of the equator, and lower prevalence rates are found at latitudes greater than 40 degrees. The prevalence of pterygium for Caucasians residing in urban, temperate climates is estimated at 1.2%.
Existing Treatments Other Than Technology Being Reviewed
Nonpterygium Limbal Stem Cell Deficiency
In total LSCD, a patient’s limbal stem cells are completely depleted, so any successful treatment must include new stem cells. Autologous oral mucosal epithelium transplantation has been proposed as an alternative to LSCT. However, this procedure is investigational, and there is very limited level 4c evidence1 to support this technique (fewer than 20 eyes examined in 4 case series and 1 case report).
For patients with partial LSCD, treatment may not be necessary if their visual axis is not affected. However, if the visual axis is conjunctivalized, several disease management options exist including repeated mechanical debridement of the abnormal epithelium; intensive, nonpreserved lubrication; bandage contact lenses; autologous serum eye drops; other investigational medical treatments; and transplantation of an amniotic membrane inlay. However, these are all disease management treatments; LSCT is the only curative option.
The primary treatment for pterygium is surgical excision. However, recurrence is a common problem after excision using the bare sclera technique: reported recurrence rates range from 24% to 89%. Thus, a variety of adjuvant therapies have been used to reduce the risk of pterygium recurrence including LSCT, amniotic membrane transplantation (AMT), conjunctival autologous (CAU) transplantation, and mitomycin C (MMC, an antimetabolite drug).
New Technology Being Reviewed
To successfully treat LSCD, the limbal stem cell population must be repopulated. To achieve this, 4 LSCT procedures have been developed: conjunctival-limbal autologous (CLAU) transplantation; living-related conjunctival-limbal allogeneic (lr-CLAL) transplantation; keratolimbal allogeneic (KLAL) transplantation; and ex vivo expansion of limbal stem cells transplantation. Since the ex vivo expansion of limbal stem cells transplantation procedure is considered experimental, it has been excluded from the systematic review. These procedures vary by the source of donor cells and the amount of limbal tissue used. For CLAU transplants, limbal stem cells are obtained from the patient’s healthy eye. For lr-CLAL and KLAL transplants, stem cells are obtained from living-related and cadaveric donor eyes, respectively.
In CLAU and lr-CLAL transplants, 2 to 4 limbal grafts are removed from the superior and inferior limbus of the donor eye. In KLAL transplants, the entire limbus from the donor eye is used.
The recipient eye is prepared by removing the abnormal conjunctival and scar tissue. An incision is made into the conjunctival tissue into which the graft is placed, and the graft is then secured to the neighbouring limbal and scleral tissue with sutures. Some LSCT protocols include concurrent transplantation of an amniotic membrane onto the cornea.
Regulatory Status
Health Canada does not require premarket licensure for stem cells. However, they are subject to Health Canada’s clinical trial regulations until the procedure is considered accepted transplantation practice, at which time it will be covered by the Safety of Human Cells, Tissues and Organs for Transplantation Regulations (CTO Regulations).
Review Strategy
The Medical Advisory Secretariat systematically reviewed the literature to assess the effectiveness and safety of LSCT for the treatment of patients with nonpterygium LSCD and pterygium. A comprehensive search method was used to retrieve English-language journal articles from selected databases.
The GRADE approach was used to systematically and explicitly evaluate the quality of evidence and strength of recommendations.
Summary of Findings
Nonpterygium Limbal Stem Cell Deficiency
The search identified 873 citations published between January 1, 2000, and March 31, 2008. Nine studies met the inclusion criteria, and 1 additional citation was identified through a bibliography review. The review included 10 case series (3 prospective and 7 retrospective).
Patients who received autologous transplants (i.e., CLAU) achieved significantly better long-term corneal surface results compared with patients who received allogeneic transplants (lr-CLAL, P< .001; KLAL, P< .001). There was no significant difference in corneal surface outcomes between the allogeneic transplant options, lr-CLAL and KLAL (P = .328). However, human leukocyte antigen matching and systemic immunosuppression may improve the outcome of lr-CLAL compared with KLAL. Regardless of graft type, patients with Stevens-Johnson syndrome had poorer long-term corneal surface outcomes.
Concurrent AMT was associated with poorer long-term corneal surface improvements. When the effect of the AMT was removed, the difference between autologous and allogeneic transplants was much smaller.
Patients who received CLAU transplants had a significantly higher rate of visual acuity improvements compared with those who received lr-CLAL transplants (P = .002). However, to achieve adequate improvements in vision, patients with deep corneal scarring will require a corneal transplant several months after the LSCT.
No donor eye complications were observed.
Epithelial rejection and microbial keratitis were the most common long-term complications associated with LSCT (complications occurred in 6%–15% of transplantations). These complications can result in graft failure, so patients should be monitored regularly following LSCT.
The search yielded 152 citations published between January 1, 2000 and May 16, 2008. Six randomized controlled trials (RCTs) that evaluated LSCT as an adjuvant therapy for the treatment of pterygium met the inclusion criteria and were included in the review.
Limbal stem cell transplantation was compared with CAU, AMT, and MMC. The results showed that CLAU significantly reduced the risk of pterygium recurrence compared with CAU (relative risk [RR], 0.09; 95% confidence interval [CI], 0.01–0.69; P = .02). CLAU reduced the risk of pterygium recurrence for primary pterygium compared with MMC, but this comparison did not reach statistical significance (RR, 0.48; 95% CI, 0.21–1.10; P = .08). Both AMT and CLAU had similar low rates of recurrence (2 recurrences in 43 patients and 4 in 46, respectively), and the RR was not significant (RR, 1.88; 95% CI, 0.37–9.5; P = .45). Since sample sizes in the included studies were small, failure to detect a significant difference between LSCT and AMT or MMC could be the result of type II error. Limbal stem cell transplantation as an adjuvant to excision is a relatively safe procedure as long-term complications were rare (< 2%).
GRADE Quality of Evidence
Nonpterygium Limbal Stem Cell Deficiency
The evidence for the analyses related to nonpterygium LSCD was based on 3 prospective and 7 retrospective case series. Thus, the GRADE quality of evidence is very low, and any estimate of effect is very uncertain.
The analyses examining LSCT as an adjuvant treatment option for pterygium were based on 6 RCTs. The quality of evidence for the overall body of evidence for each treatment option comparison was assessed using the GRADE approach. In each of the comparisons, the quality of evidence was downgraded due to serious or very serious limitations in study quality (individual study quality was assessed using the Jadad scale, and an assessment of allocation concealment and the degree of loss to follow-up), which resulted in low- to moderate-quality GRADE evidence ratings (low-quality evidence for the CLAU and AMT and CLAU and MMC comparisons, and moderate-quality evidence for the CLAU and CAU comparison).
Ontario Health System Impact Analysis
Nonpterygium Limbal Stem Cell Deficiency
Since 1999, Ontario’s out-of-country (OOC) program has approved and reimbursed 8 patients for LSCTs and 1 patient for LSCT consultations. Similarly, most Canadian provinces have covered OOC or out-of-province LSCTs. Several corneal experts in Ontario have the expertise to perform LSCTs.
As there are no standard guidelines for LSCT, patients who receive transplants OOC may not receive care aligned with the best evidence. To date, many of the patients from Ontario who received OOC LSCTs received concurrent AMTs, and the evidence from this analysis questions the use of this procedure. In addition, 1 patient received a cultured LSCT, a procedure that is considered investigational. Many patients with LSCD have bilateral disease and therefore require allogeneic transplants. These patients will require systemic and topical immunosuppression for several years after the transplant, perhaps indefinitely. Thus, systemic side effects associated with immunosuppression are a potential concern, and patients must be monitored regularly.
Amniotic membrane transplantation is a common addition to many ocular surface reconstruction procedures, including LSCT. Amniotic membranes are recovered from human placentas from planned, uneventful caesarean sections. Before use, serological screening of the donor’s blood should be conducted. However, there is still a theoretical risk of disease transmission associated with this procedure.
Financial Impact
For the patients who were reimbursed for OOC LSCTs, the average cost of LSCT per eye was $18,735.20 Cdn (range, $8,219.54–$33,933.32). However, the actual cost per patient is much higher as these costs do not include consultations and follow-up visits, multiple LSCTs, and any additional procedures (e.g., corneal transplants) received during the course of treatment OOC. When these additional costs were considered, the average cost per patient was $57,583 Cdn (range, $8,219.54–$130,628.20).
The estimated average total cost per patient for performing LSCT in Ontario is $2,291.48 Cdn (range, $951.48–$4,538.48) including hospital and physician fees. This cost is based on the assumption that LSCT is technically similar to a corneal transplant, an assumption which needs to be verified. The cost does not include corneal transplantations, which some proportion of patients receiving a LSCT will require within several months of the limbal transplant.
Pterygium recurrence rates after surgical excision are high, ranging from 24% to 89%. However, according to clinical experts, the rate of recurrence is low in Ontario. While there is evidence that the prevalence of pterygium is higher in the “pterygium belt,” there was no evidence to suggest different recurrence rates or disease severity by location or climate.
Nonpterygium Limbal Stem Cell Deficiency
Successful LSCTs result in corneal re-epithelialization and improved vision in patients with LSCD. However, patients who received concurrent AMT had poorer long-term corneal surface improvements. Conjunctival-limbal autologous transplantation is the treatment option of choice, but if it is not possible, living-related or cadaveric allogeneic transplants can be used. The benefits of LSCT outweigh the risks and burdens, as shown in Executive Summary Table 1. According to GRADE, these recommendations are strong with low- to very low-quality evidence.
Benefits, Risks, and Burdens – Nonpterygium Limbal Stem Cell Deficiency
Short- and long-term improvement in corneal surface (stable, normal corneal epithelium and decreased vascularization and opacity)
Improvement in vision (visual acuity and functional vision)
Long-term complications are experienced by 8% to 16% of patients
Risks associated with long-term immunosuppression for recipients of allogeneic grafts
Potential risk of induced LSCD in donor eyes
High cost of treatment (average cost per patient via OOC program is $57,583; estimated cost of procedure in Ontario is $2,291.48)
Costs are expressed in Canadian dollars.
GRADE of recommendation: Strong recommendation, low-quality or very low-quality evidence
benefits clearly outweigh risks and burdens
case series studies
strong, but may change if higher-quality evidence becomes available
Conjunctival-limbal autologous transplantations significantly reduced the risk of pterygium recurrence compared with CAU. No other comparison yielded statistically significant results, but CLAU reduced the risk of recurrence compared with MMC. However, the benefit of LSCT in Ontario is uncertain as the severity and recurrence of pterygium in Ontario is unknown. The complication rates suggest that CLAU is a safe treatment option to prevent the recurrence of pterygium. According to GRADE, given the balance of the benefits, risks, and burdens, the recommendations are very weak with moderate quality evidence, as shown in Executive Summary Table 2.
Benefits, Risks, and Burdens – Pterygium
Reduced recurrence; however, if recurrence is low in Ontario, this benefit might be minimal
Long-term complications rare
Increased cost
GRADE of recommendation: Very weak recommendations, moderate quality evidence.
uncertainty in the estimates of benefits, risks, and burden; benefits, risks, and burden may be closely balanced
very weak, other alternatives may be equally reasonable
PMCID: PMC3377549  PMID: 23074512
25.  Spry1 and Spry2 are necessary for eyelid closure 
Developmental biology  2013;383(2):10.1016/j.ydbio.2013.09.014.
Sproutys (Sprys) are downstream targets and negative feedback regulators of the FGF-Ras-ERK signaling pathway. Our previous studies have shown that Spry1 and Spry2, through negative modulation of FGF-ERK signaling, allow lens vesicle separation from the overlying ectoderm and regulate corneal epithelial proliferation. Here we show that Spry1 and Spry2 are necessary for eyelid closure. Murine palpebral conjunctival epithelial cells that differentiate as inner eyelids and adjacent mesenchymal cells express Spry1 and Spry2 prior to eyelid closure. Conditional deletion of both Spry1 and Spry2, but not either one alone, in the ocular surface epithelial cells result in the “EOB” (eyes open at birth) phenotype suggesting redundant roles for these proteins during eyelid closure. Spry mutant eyelids show increased proliferation of conjunctival epithelial cells with concomitant induction of FGF targets, Erm, Pea3 and Dusp6 and elevated ERK phosphorylation. Peridermal cells at the leading edge of Spry-mutant eyelids showed reduced c-Jun, but not ERK, phosphorylation, reduced F-actin polymerization and reduced motility in vitro. Spry mutant eyelids also showed disruptions in epithelial mesenchymal interactions reflected in the enhanced mesenchymal Spry1 and Spry4 expression, disaggregation of BMP4-positive mesenchymal cells and loss of Shh in the eyelid epithelium. Spry mutant eyelids also showed increased Wnt signaling and reduced expression of Foxc1 and Foxc2, two transcription factors previously shown to be necessary for eyelid closure. Collectively, our results show that conjunctival epithelial Spry1 and Spry2 redundantly promote eyelid closure by a) stimulating ERK-independent, c-Jun-mediated peridermal migration, b) suppressing conjunctival epithelial proliferation through FGF-ERK signaling, c) mediating conjunctival epithelial-mesenchymal interactions and d) maintaining expression of Foxc1 and Foxc2.
PMCID: PMC3857020  PMID: 24055172
eyelids; Sprouty; FGF; ERK; c-Jun; Wnt; Foxc1; Foxc2

Results 1-25 (1280296)