Search tips
Search criteria

Results 1-25 (885478)

Clipboard (0)

Related Articles

1.  The representation of sound localization cues in the barn owl's inferior colliculus 
The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation.
PMCID: PMC3394089  PMID: 22798945
sound localization; central nucleus of the inferior colliculus; auditory; plasticity; adaptation; interaural time difference; interaural level difference; frequency tuning
2.  Multiplicative Auditory Spatial Receptive Fields Created by a Hierarchy of Population Codes 
PLoS ONE  2009;4(11):e8015.
A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl's inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl's inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system.
PMCID: PMC2776990  PMID: 19956693
3.  Comparison of Midbrain and Thalamic Space-Specific Neurons in Barn Owls 
Journal of neurophysiology  2006;95(2):783-790.
Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl’s tectal representation of auditory space is different from those found in the owl’s forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels.
PMCID: PMC2532520  PMID: 16424454
4.  Binaural Gain Modulation of Spectrotemporal Tuning in the Interaural Level Difference-Coding Pathway 
The Journal of Neuroscience  2013;33(27):11089-11099.
In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals. The LLDp is unique in that it is the first place of binaural convergence in the brainstem where monaural excitatory and inhibitory inputs converge. Using binaurally uncorrelated noise and a generalized linear model, we were able to estimate the spectrotemporal tuning of excitatory and inhibitory inputs to these cells. We show that the response of LLDp neurons is highly locked to the stimulus envelope. Our data demonstrate that spectrotemporally tuned, temporally delayed inhibition enhances the reliability of envelope locking by modulating the gain of LLDp neurons' responses. The dependence of gain modulation on ILD shown here constitutes a means for space-dependent coding of stimulus identity by the initial stages of the auditory pathway.
PMCID: PMC3718367  PMID: 23825414
5.  Noise Reduction of Coincidence Detector Output by the Inferior Colliculus of the Barn Owl 
A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons.
PMCID: PMC2492673  PMID: 16738236
interaural time difference; sound localization; inferior colliculus; nucleus laminaris; barn owl; pooling
6.  Axodendritic Contacts onto Calcium/Calmodulin-Dependent Protein Kinase Type II-Expressing Neurons in the Barn Owl Auditory Space Map 
In the owl midbrain, a map of auditory space is synthesized in the inferior colliculus (IC) and conveyed to the optic tectum (OT). Ascending auditory information courses through these structures via topographic axonal projections. Little is known about the molecular composition of projection neurons or their postsynaptic targets. To visualize axodendritic contacts between identified cell types, we used double-label immunohistochemistry, in vivo retrograde tracing, in vitro anterograde tracing, high-resolution confocal microscopy, three-dimensional reconstruction and fly-through visualization. We discovered a major class of IC neurons that strongly expressed calcium/calmodulin-dependent protein kinase type II, α subunit (CaMKII). The distribution of these cells within the IC was mostly restricted to the external nucleus of the IC (ICX), in which the auditory space map is assembled. A large proportion of ICX-OT projection neurons were CaMKII positive. In addition to being the principal outputs, CaMKII cells were in direct contact with axonal boutons emanating from the main source of input to ICX, the lateral shell of the central nucleus of the inferior colliculus (ICCls). Numerous sites of putative synaptic contact were found on the somata, proximal dendrites, and distal dendrites. Double-label immunoelectron microscopy confirmed the existence of synapses between ICCls axons and the dendrites of CaMKII cells. Collectively, our data indicate that CaMKII ICX neurons are a cellular locus for the computation of auditory space-specific responses. Because the ICCls-ICX projection is physically altered during experience-dependent plasticity, these results lay the groundwork for probing microanatomical rearrangements that may underlie plasticity and learning.
PMCID: PMC1489181  PMID: 15944389
convergence; dendrite; development; sound localization; synapse
7.  Improvements of Sound Localization Abilities by the Facial Ruff of the Barn Owl (Tyto alba) as Demonstrated by Virtual Ruff Removal 
PLoS ONE  2009;4(11):e7721.
When sound arrives at the eardrum it has already been filtered by the body, head, and outer ear. This process is mathematically described by the head-related transfer functions (HRTFs), which are characteristic for the spatial position of a sound source and for the individual ear. HRTFs in the barn owl (Tyto alba) are also shaped by the facial ruff, a specialization that alters interaural time differences (ITD), interaural intensity differences (ILD), and the frequency spectrum of the incoming sound to improve sound localization. Here we created novel stimuli to simulate the removal of the barn owl's ruff in a virtual acoustic environment, thus creating a situation similar to passive listening in other animals, and used these stimuli in behavioral tests.
Methodology/Principal Findings
HRTFs were recorded from an owl before and after removal of the ruff feathers. Normal and ruff-removed conditions were created by filtering broadband noise with the HRTFs. Under normal virtual conditions, no differences in azimuthal head-turning behavior between individualized and non-individualized HRTFs were observed. The owls were able to respond differently to stimuli from the back than to stimuli from the front having the same ITD. By contrast, such a discrimination was not possible after the virtual removal of the ruff. Elevational head-turn angles were (slightly) smaller with non-individualized than with individualized HRTFs. The removal of the ruff resulted in a large decrease in elevational head-turning amplitudes.
The facial ruff a) improves azimuthal sound localization by increasing the ITD range and b) improves elevational sound localization in the frontal field by introducing a shift of iso–ILD lines out of the midsagittal plane, which causes ILDs to increase with increasing stimulus elevation. The changes at the behavioral level could be related to the changes in the binaural physical parameters that occurred after the virtual removal of the ruff. These data provide new insights into the function of external hearing structures and open up the possibility to apply the results on autonomous agents, creation of virtual auditory environments for humans, or in hearing aids.
PMCID: PMC2766829  PMID: 19890389
8.  A Physiologically Based Model of Interaural Time Difference Discrimination 
Interaural time difference (ITD) is a cue to the location of sounds containing low frequencies and is represented in the inferior colliculus (IC) by cells that respond maximally at a particular best delay (BD). Previous studies have demonstrated that single ITD-sensitive cells contain sufficient information in their discharge patterns to account for ITD acuity on the midline (ITD = 0). If ITD discrimination were based on the activity of the most sensitive cell available (“lower envelope hypothesis”), then ITD acuity should be relatively constant as a function of ITD. In response to broadband noise, however, the ITD acuity of human listeners degrades as ITD increases. To account for these results, we hypothesize that pooling of information across neurons is an essential component of ITD discrimination. This report describes a neural pooling model of ITD discrimination based on the response properties of ITD-sensitive cells in the IC of anesthetized cats.
Rate versus ITD curves were fit with a cross-correlation model of ITD sensitivity, and the parameters were used to constrain a population model of ITD discrimination. The model accurately predicts ITD acuity as a function of ITD for broadband noise stimuli when responses are pooled across best frequency (BF). Furthermore, ITD tuning based solely on a system of internal delays is not sufficient to predict ITD acuity in response to 500 Hz tones, suggesting that acuity is likely refined by additional mechanisms. The physiological data confirms evidence from the guinea pig that BD varies systematically with BF, generalizing the observation across species.
PMCID: PMC2041891  PMID: 15306644
auditory; binaural; hearing; inferior colliculus; localization; psychophysics
9.  Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat 
Electrophysiological studies on duration-tuned neurons (DTNs) from the mammalian auditory midbrain have typically evoked spiking responses from these cells using monaural or free-field acoustic stimulation focused on the contralateral ear, with fewer studies devoted to examining the electrophysiological properties of duration tuning using binaural stimulation. Because the inferior colliculus (IC) receives convergent inputs from lower brainstem auditory nuclei that process sounds from each ear, many midbrain neurons have responses shaped by binaural interactions and are selective to binaural cues important for sound localization. In this study, we used dichotic stimulation to vary interaural level difference (ILD) and interaural time difference (ITD) acoustic cues and explore the binaural interactions and response properties of DTNs and non-DTNs from the IC of the big brown bat (Eptesicus fuscus). Our results reveal that both DTNs and non-DTNs can have responses selective to binaural stimulation, with a majority of IC neurons showing some type of ILD selectivity, fewer cells showing ITD selectivity, and a number of neurons showing both ILD and ITD selectivity. This study provides the first demonstration that the temporally selective responses of DTNs from the vertebrate auditory midbrain can be selective to binaural cues used for sound localization in addition to having spiking responses that are selective for stimulus frequency, amplitude, and duration.
PMCID: PMC4050336  PMID: 24959149
auditory neurophysiology; binaural hearing; dichotic stimulation; Eptesicus fuscus; sound localization
10.  Preservation of Spectrotemporal Tuning Between the Nucleus Laminaris and the Inferior Colliculus of the Barn Owl 
Journal of neurophysiology  2007;97(5):3544-3553.
Performing sound recognition is a task that requires an encoding of the time-varying spectral structure of the auditory stimulus. Similarly, computation of the interaural time difference (ITD) requires knowledge of the precise timing of the stimulus. Consistent with this, low-level nuclei of birds and mammals implicated in ITD processing encode the ongoing phase of a stimulus. However, the brain areas that follow the binaural convergence for the computation of ITD show a reduced capacity for phase locking. In addition, we have shown that in the barn owl there is a pooling of ITD-responsive neurons to improve the reliability of ITD coding. Here we demonstrate that despite two stages of convergence and an effective loss of phase information, the auditory system of the anesthetized barn owl displays a graceful transition to an envelope coding that preserves the spectrotemporal information throughout the ITD pathway to the neurons of the core of the central nucleus of the inferior colliculus.
PMCID: PMC2532515  PMID: 17314241
11.  Population-wide bias of surround suppression in auditory spatial receptive fields of the owl’s midbrain 
The physical arrangement of receptive fields (RFs) within neural structures is important for local computations. Nonuniform distribution of tuning within populations of neurons can influence emergent tuning properties, causing bias in local processing. This issue was studied in the auditory system of barn owls. The owl’s external nucleus of the inferior colliculus (ICx) contains a map of auditory space where the frontal region is overrepresented. We measured spatiotemporal RFs of ICx neurons using spatial white noise. We found a population-wide bias in surround suppression such that suppression from frontal space was stronger. This asymmetry increased with laterality in spatial tuning. The bias could be explained by a model of lateral inhibition based on the overrepresentation of frontal space observed in ICx. The model predicted trends in surround suppression across ICx that matched the data. Thus, the uneven distribution of spatial tuning within the map could explain the topography of time-dependent tuning properties. This mechanism may have significant implications for the analysis of natural scenes by sensory systems.
PMCID: PMC3447633  PMID: 22855796
Sound localization; spatiotemporal receptive field; inferior colliculus; barn owl; surround bias
12.  Neural coding of ITD with bilateral cochlear implants: Effects of congenital deafness 
Human bilateral cochlear implant users do poorly on tasks involving interaural time differences (ITD), a cue which provides important benefits to the normal hearing, especially in challenging acoustic environments. Yet the precision of neural ITD coding in acutely-deafened, bilaterally-implanted cats is essentially normal (Smith and Delgutte, J. Neurosci. 27:6740–6750). One explanation for this discrepancy is that the extended periods of binaural deprivation typically experienced by cochlear implant users degrades neural ITD sensitivity, either by impeding normal maturation of the neural circuitry or by altering it later in life. To test this hypothesis, we recorded from single units in inferior colliculus (IC) of two groups of bilaterally-implanted, anesthetized cats that contrast maximally in binaural experience: acutely-deafened cats, which had normal binaural hearing until experimentation, and congenitally deaf white cats, which received no auditory inputs until the experiment. Rate responses of only half as many neurons showed significant ITD sensitivity to low-rate pulse trains in congenitally deaf cats compared to acutely deafened cats. For neurons that were ITD sensitive, ITD tuning was broader and best ITDs were more variable in congenitally deaf cats, leading to poorer ITD coding within the naturally-occurring range. A signal detection model constrained by the observed physiology supports the idea that the degraded neural ITD coding resulting from deprivation of binaural experience contributes to poor ITD discrimination by human implantees.
PMCID: PMC3025489  PMID: 20962228
binaural hearing; electric stimulation; congenital deafness; cochlear implant; inferior colliculus; ITD
13.  Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls 
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magnocellularis (NM). NA and NM receive input from bifurcating auditory nerve fibers and initiate processing pathways specialized in encoding interaural time (ITD) and level (ILD) differences, respectively. We found that NA neurons, though unable to accurately encode stimulus phase, lock more strongly to the stimulus envelope than NM units. The spectrotemporal receptive fields (STRFs) of NA neurons exhibit a pre-excitatory suppressive field. Using multilinear regression analysis and computational modeling, we show that this feature of STRFs can account for enhanced across-trial response reliability, by locking spikes to the stimulus envelope. Our findings indicate a dichotomy in envelope coding between the time and intensity processing pathways as early as at the level of the cochlear nuclei. This allows the ILD processing pathway to encode envelope information with greater fidelity than the ITD processing pathway. Furthermore, we demonstrate that the properties of the neurons’ STRFs can be quantitatively related to spike timing reliability.
PMCID: PMC3059808  PMID: 21368035
Nucleus angularis; STRF; spectrotemporal tuning; cochlear nuclei; barn owl; response reliability
14.  The Neural Representation of Interaural Time Differences in Gerbils Is Transformed from Midbrain to Cortex 
The Journal of Neuroscience  2014;34(50):16796-16808.
Interaural time differences (ITDs) are the dominant cue for the localization of low-frequency sounds. While much is known about the processing of ITDs in the auditory brainstem and midbrain, there have been relatively few studies of ITD processing in auditory cortex. In this study, we compared the neural representation of ITDs in the inferior colliculus (IC) and primary auditory cortex (A1) of gerbils. Our IC results were largely consistent with previous studies, with most cells responding maximally to ITDs that correspond to the contralateral edge of the physiological range. In A1, however, we found that preferred ITDs were distributed evenly throughout the physiological range without any contralateral bias. This difference in the distribution of preferred ITDs in IC and A1 had a major impact on the coding of ITDs at the population level: while a labeled-line decoder that considered the tuning of individual cells performed well on both IC and A1 responses, a two-channel decoder based on the overall activity in each hemisphere performed poorly on A1 responses relative to either labeled-line decoding of A1 responses or two-channel decoding of IC responses. These results suggest that the neural representation of ITDs in gerbils is transformed from IC to A1 and have important implications for how spatial location may be combined with other acoustic features for the analysis of complex auditory scenes.
PMCID: PMC4261102  PMID: 25505332
auditory cortex; inferior colliculus; interaural time differences; population coding; spatial hearing
15.  The discrimination of interaural level difference sensitivity functions: development of a taxonomic data template for modelling 
BMC Neuroscience  2013;14:114.
A major cue for the position of a high-frequency sound source in azimuth is the difference in sound pressure levels in the two ears, Interaural Level Differences (ILDs), as a sound is presented from different positions around the head. This study aims to use data classification techniques to build a descriptive model of electro-physiologically determined neuronal sensitivity functions for ILDs. The ILDs were recorded from neurons in the central nucleus of the Inferior Colliculus (ICc), an obligatory midbrain auditory relay nucleus. The majority of ICc neurons (~ 85%) show sensitivity to ILDs but with a variety of different forms that are often difficult to unambiguously separate into different information-bearing types. Thus, this division is often based on laboratory-specific and relatively subjective criteria. Given the subjectivity and non-uniformity of ILD classification methods in use, we examined if objective data classification techniques for this purpose. Our key objectives were to determine if we could find an analytical method (A) to validate the presence of four typical ILD sensitivity functions as is commonly assumed in the field, and (B) whether this method produced classifications that mapped on to the physiologically observed results.
The three-step data classification procedure forms the basic methodology of this manuscript. In this three-step procedure, several data normalization techniques were first tested to select a suitable normalization technique to our data. This was then followed by PCA to reduce data dimensionality without losing the core characteristics of the data. Finally Cluster Analysis technique was applied to determine the number of clustered data with the aid of the CCC and Inconsistency Coefficient values.
The outcome of a three-step analytical data classification process was the identification of seven distinctive forms of ILD functions. These seven ILD function classes were found to map to the four “known” ideal ILD sensitivity function types, namely: Sigmoidal-EI, Sigmoidal-IE, Peaked, and Insensitive, ILD functions, and variations within these classes. This indicates that these seven templates can be utilized in future modelling studies.
We developed a taxonomy of ILD sensitivity functions using a methodological data classification approach. The number and types of generic ILD function patterns found with this method mapped well on to our electrophysiologically determined ILD sensitivity functions. While a larger data set of the latter functions may bring a more robust outcome, this good mapping is encouraging in providing a principled method for classifying such data sets, and could be well extended to other such neuronal sensitivity functions, such as contrast tuning in vision.
PMCID: PMC4126173  PMID: 24099094
16.  Bilateral matching of frequency tuning in neural cross-correlators of the owl 
Biological cybernetics  2009;100(6):521-531.
Sound localization requires comparison between the inputs to the left and right ears. One important aspect of this comparison is the differences in arrival time to each side, also called interaural time difference (ITD).A prevalent model of ITD detection, consisting of delay lines and coincidence-detector neurons, was proposed by Jeffress (J Comp Physiol Psychol 41:35–39, 1948). As an extension of the Jeffress model, the process of detecting and encoding ITD has been compared to an effective cross-correlation between the input signals to the two ears. Because the cochlea performs a spectrotemporal decomposition of the input signal, this cross-correlation takes place over narrow frequency bands. Since the cochlear tonotopy is arranged in series, sounds of different frequencies will trigger neural activity with different temporal delays. Thus, the matching of the frequency tuning of the left and right inputs to the cross-correlator units becomes a ‘timing’ issue. These properties of auditory transduction gave theoretical support to an alternative model of ITD-detection based on a bilateral mismatch in frequency tuning, called the ‘stereausis’ model. Here we first review the current literature on the owl’s nucleus laminaris, the equivalent to the medial superior olive of mammals, which is the site where ITD is detected. Subsequently, we use reverse correlation analysis and stimulation with uncorrelated sounds to extract the effective monaural inputs to the cross-correlator neurons. We show that when the left and right inputs to the cross-correlators are defined in this manner, the computation performed by coincidence-detector neurons satisfies conditions of cross-correlation theory. We also show that the spectra of left and right inputs are matched, which is consistent with predictions made by the classic model put forth by Jeffress.
PMCID: PMC2719282  PMID: 19396457
Barn owl; Interaural time difference; Cross-correlation; Coincidence detection; Cochlear delays; Sound localization; Nucleus laminaris; Stereausis
17.  Maps of interaural time difference in the chicken’s brainstem nucleus laminaris 
Biological cybernetics  2008;98(6):541-559.
Animals, including humans, use interaural time differences (ITDs) that arise from different sound path lengths to the two ears as a cue of horizontal sound source location. The nature of the neural code for ITD is still controversial. Current models differentiate between two population codes: either a map-like rate-place code of ITD along an array of neurons, consistent with a large body of data in the barn owl, or a population rate code, consistent with data from small mammals. Recently, it was proposed that these different codes reflect optimal coding strategies that depend on head size and sound frequency. The chicken makes an excellent test case of this proposal because its physical pre-requisites are similar to small mammals, yet it shares a more recent common ancestry with the owl. We show here that, like in the barn owl, the brainstem nucleus laminaris in mature chickens displayed the major features of a place code of ITD. ITD was topographically represented in the maximal responses of neurons along each isofrequency band, covering approximately the contralateral acoustic hemisphere. Furthermore, the represented ITD range appeared to change with frequency, consistent with a pressure gradient receiver mechanism in the avian middle ear. At very low frequencies, below400 Hz, maximal neural responses were symmetrically distributed around zero ITD and it remained unclear whether there was a topographic representation. These findings do not agree with the above predictions for optimal coding and thus revive the discussion as to what determines the neural coding strategies for ITDs.
PMCID: PMC3170859  PMID: 18491165
Auditory; Hearing; Sound localization; Sensory
18.  Trading of interaural differences in high-rate Gabor click trains 
Hearing research  2010;268(1-2):202-212.
In this study, combinations of interaraural time differences (ITD) and interaural level differences (ILD) were applied to trains of 4000 Hz Gabor clicks (Gaussian-filtered impulses) and presented to listeners over headphones. ITD / ILD equivalence functions, or “trading ratios” (TR) were estimated using two different procedures: a “closed-loop” procedure in which subjects adjusted (via head-turn) the ILD of a target click train to counteract the effects of an imposed ITD, and an “open-loop” procedure in which subjects indicated (also via head-turn) the lateral position of click trains containing independent combinations of ITD and ILD. For both tasks, TR values increasingly favored ILD over ITD as inter-click interval (ICI) decreased from 10 to 2 ms. Subsequent analysis confirmed that this change reflected a loss of sensitivity to envelope ITD at short ICI rather than a gain in sensitivity to ILD, consistent with prior studies demonstrating rate-limited processing of ongoing envelope ITD. Significant intersubject differences in the data included two subjects whose TR values obtained under both procedures were consistently lower (greater influence of ITD) than other subjects', and did not vary with ICI. Such differences suggest that multiple mechanisms of ITD/ILD combination may be utilized to varying degrees by individual listeners. By at least one of those mechanisms, ITD sensitivity (but not ILD sensitivity) is limited to low modulation rates.
PMCID: PMC2923247  PMID: 20547218
binaural hearing; time-intensity trading; onset dominance; rate limitation
19.  Cross-Correlation in the Auditory Coincidence Detectors of Owls 
Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory.
PMCID: PMC2637928  PMID: 18685035
barn owl; interaural time difference; cross-correlation; coincidence detection; sound localization; nucleus laminaris
20.  Sensitivity to Interaural Time Differences in the Inferior Colliculus with Bilateral Cochlear Implants 
Bilateral cochlear implantation attempts to increase performance over a monaural prosthesis by harnessing the binaural processing of the auditory system. Although many bilaterally implanted human subjects discriminate interaural time differences (ITDs), a major cue for sound localization and signal detection in noise, their performance is typically poorer than that of normal-hearing listeners. We developed an animal model of bilateral cochlear implantation to study neural ITD sensitivity for trains of electric current pulses delivered via bilaterally implanted intracochlear electrodes. We found that a majority of single units in the inferior colliculus of acutely deafened, anesthetized cats are sensitive to ITD and that electric ITD tuning is as sharp as found for acoustic stimulation with broadband noise in normal-hearing animals. However, the sharpness and shape of ITD tuning often depended strongly on stimulus intensity; some neurons had dynamic ranges of ITD sensitivity as low as 1 dB. We also found that neural ITD sensitivity was best at pulse rates below 100 Hz and decreased with increasing pulse rate. This rate limitation parallels behavioral ITD discrimination in bilaterally implanted individuals. The sharp neural ITD sensitivity found with electric stimulation at the appropriate intensity is encouraging for the prospect of restoring the functional benefits of binaural hearing in bilaterally implanted human subjects and suggests that neural plasticity resulting from previous deafness and deprivation of binaural experience may play a role in the poor ITD discrimination with current bilateral implants.
PMCID: PMC2041852  PMID: 17581961
binaural hearing; electric stimulation; neural prosthesis; cochlear implant; inferior colliculus; ITD
21.  Neuronal specializations for the processing of interaural difference cues in the chick 
Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs), and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD) and the interaural level difference (ILD), respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA) are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp). Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM), and ITD is processed in the nucleus laminaris (NL). In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON) and local inhibitory neurons that follow monosynaptic to NM activity.
PMCID: PMC4023016  PMID: 24847212
brainstem auditory nucleus; interaural difference cues; SON; tonic inhibition; phasic inhibition
22.  Sensitivity of Inferior Colliculus Neurons to Interaural Time Differences in the Envelope Versus the Fine Structure With Bilateral Cochlear Implants 
Journal of neurophysiology  2008;99(5):2390-2407.
Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) neurons with sinusoidally AM pulse trains. ITD was introduced independently to the AM and/or carrier pulses to measure the relative efficacy of envelope and fine structure for delivering ITD information. We found that many IC cells are sensitive to ITD in both the envelope (ITDenv) and fine structure (ITDfs) for appropriate modulation frequencies and carrier rates. ITDenv sensitivity was generally similar to that seen in normal-hearing animals with AM tones. ITDenv tuning generally improved with increasing modulation frequency up to the maximum modulation frequency that elicited a sustained response in a neuron (tested ≤Hz). ITDfs sensitivity was present in about half the neurons for 1,000 pulse/s (pps) carriers and was nonexistent at 5,000 pps. The neurons that were sensitive to ITDfs at 1,000 pps were those that showed the best ITD sensitivity to low-rate pulse trains. Overall, the best ITD sensitivity was found for ITD contained in the fine structure of a moderate rate AM pulse train (1,000 pps). These results suggest that the interaural timing of current pulses should be accurately controlled in a bilateral cochlear implant processing strategy that provides salient ITD cues.
PMCID: PMC2570106  PMID: 18287556
23.  Are Interaural Time and Level Differences Represented by Independent or Integrated Codes in the Human Auditory Cortex? 
Sound localization is important for orienting and focusing attention and for segregating sounds from different sources in the environment. In humans, horizontal sound localization mainly relies on interaural differences in sound arrival time and sound level. Despite their perceptual importance, the neural processing of interaural time and level differences (ITDs and ILDs) remains poorly understood. Animal studies suggest that, in the brainstem, ITDs and ILDs are processed independently by different specialized circuits. The aim of the current study was to investigate whether, at higher processing levels, they remain independent or are integrated into a common code of sound laterality. For that, we measured late auditory cortical potentials in response to changes in sound lateralization elicited by perceptually matched changes in ITD and/or ILD. The responses to the ITD and ILD changes exhibited significant morphological differences. At the same time, however, they originated from overlapping areas of the cortex and showed clear evidence for functional coupling. These results suggest that the auditory cortex contains an integrated code of sound laterality, but also retains independent information about ITD and ILD cues. This cue-related information might be used to assess how consistent the cues are, and thus, how likely they would have arisen from the same source.
PMCID: PMC3901864  PMID: 24218332
electroencephalography (EEG); adaptation; horizontal sound localization; spatial hearing
24.  Congenital and Prolonged Adult-Onset Deafness Cause Distinct Degradations in Neural ITD Coding with Bilateral Cochlear Implants 
Bilateral cochlear implant (CI) users perform poorly on tasks involving interaural time differences (ITD), which are critical for sound localization and speech reception in noise by normal-hearing listeners. ITD perception with bilateral CI is influenced by age at onset of deafness and duration of deafness. We previously showed that ITD coding in the auditory midbrain is degraded in congenitally deaf white cats (DWC) compared to acutely deafened cats (ADC) with normal auditory development (Hancock et al., J. Neurosci, 30:14068). To determine the relative importance of early onset of deafness and prolonged duration of deafness for abnormal ITD coding in DWC, we recorded from single units in the inferior colliculus of cats deafened as adults 6 months prior to experimentation (long-term deafened cats, LTDC) and compared neural ITD coding between the three deafness models. The incidence of ITD-sensitive neurons was similar in both groups with normal auditory development (LTDC and ADC), but significantly diminished in DWC. In contrast, both groups that experienced prolonged deafness (LTDC and DWC) had broad distributions of best ITDs around the midline, unlike the more focused distributions biased toward contralateral-leading ITDs present in both ADC and normal-hearing animals. The lack of contralateral bias in LTDC and DWC results in reduced sensitivity to changes in ITD within the natural range. The finding that early onset of deafness more severely degrades neural ITD coding than prolonged duration of deafness argues for the importance of fitting deaf children with sound processors that provide reliable ITD cues at an early age.
PMCID: PMC3642270  PMID: 23462803
binaural hearing; congenital deafness; inferior colliculus; cochlear implants; ITD
25.  Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl 
Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation.
PMCID: PMC3821004  PMID: 24265615
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl

Results 1-25 (885478)