Search tips
Search criteria

Results 1-25 (1216273)

Clipboard (0)

Related Articles

1.  Transcription factor TEAD4 regulates expression of Myogenin and the unfolded protein response genes during C2C12 cell differentiation 
Cell Death and Differentiation  2011;19(2):220-231.
The TEAD (1–4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes.
PMCID: PMC3263497  PMID: 21701496
MYOD1; ER-stress; myoblast fusion; Chromatin immunoprecipitation; RNA-seq
2.  Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE 
Breast Cancer Research : BCR  2000;2(4):311-320.
The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells.
The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce three times more transformed foci in soft agar than C1 variants (both IIIb), whereas full length FGFR2 and FGFR1 (both IIIc variants) showed no transforming activity [4].
Previous studies [5,6] have found amplification and overexpression of FGFR2 in 5-10% of primary breast cancer specimens. A recent study [7] done using a tissue array consisting of 372 primary breast cancer specimens found a 5% incidence of FGFR2 amplification. To our knowledge, none of the HBC cell lines studied thus far have an FGFR2 gene amplification, although overexpression of FGFR2 message and protein has been documented for some breast cancer cell lines [6,8,9].
SUM-52PE is a breast cancer cell line previously isolated in our laboratory that grows under serum-free and epidermal growth factor-free conditions, has high levels of tyrosine-phosphorylated membrane proteins, and has the capacity to invade and grow under anchorage-independent conditions [10,11,12]. This cell line exhibits all of the important hallmarks of transformed, highly malignant cells. Therefore, SUM-52PE was used as a model to study the diversity of FGFR2 expression in a breast cancer cell line that has true amplification and overexpression of FGFR2.
This study was conducted to examine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Subsequent sequencing and characterization of individual FGFR2 variants cloned from the SUM-52PE cell line was completed to determine the complexity of FGFR2 alternative splicing in the context of a highly metastatic breast cancer cell line.
Southern, Northern and Western blot analyses were done in order to determine the degree of FGFR2 amplification and overexpression in the breast cancer cell line SUM-52PE. Individual FGFR2 variants were cloned out of SUM-52PE using FGFR2-specific primers in a reverse transcription (RT) polymerase chain reaction (PCR). FGFR2 cDNAs were characterized by restriction fragment analysis, sequencing and transient transfection into 293 cells to examine the protein expression of each FGFR2 clone.
The results of the Southern blot showed that there was a 12-fold amplification of FGFR2 in the SUM-52PE cell line. Northern blot analysis of SUM-52PE showed FGFR2 transcripts to be highly overexpressed compared with other breast cancer cell lines and normal HME cells. Several overexpressed bands of approximately 6.3, 5.0, 4.0, and 2.8kb were observed in SUM-52PE cells. The most prominent band, at 2.8kb, was so abundant that it was difficult to discern other individual bands clearly. Western blot analysis showed that both normal HME and HBC cells expressed two FGFR2 variants of 95 and 135kDa. The SUM-52PE cell line greatly overexpressed not only these two polypeptides, as compared with HME and HBC cells, but also overexpressed two unique variants of FGFR2 - 85 and 109kDa polypeptides - as well as several smaller polypeptides in the 46-53kDa range. The antibody used in Western blot analysis only recognizes FGFR2 isoforms that express the C1 carboxyl termini, therefore greatly underestimating the actual number of different FGFR2 variants that are overexpressed in this cell line.
PCR was performed to determine the proportion of C1/C2 variants as compared with C3 variants in the SUM-52PE cell line. Results of this analysis indicated the presence of all three types of variants in this cell line, although the C1/C2 variants were predominant as compared with the C3 variants in SUM-52PE.
Four different FGFR2-C1 clones were isolated and sequenced from SUM-52PE cells, which differed in their signal sequence, first Ig-like loop, and acid box. Two FGFR2-C2 clones were isolated from the SUM-52PE cell line, which were identical to each other except for the variable expression of the number of Ig-like domains (two or three). Three C3 clones were isolated and sequenced, two of which have not previously been described in the literature. Clone C3-#3 contained two Ig-like domains, but no acid box. C3-#5 was missing the first two Ig-like domains and the acid box, but did contain the third Ig-like domain.
There is an extensive amount of evidence implicating erbB-2, a gene that is overexpressed in approximately 30% of breast cancer cases, as a breast cancer gene [13]. The identification of other breast oncogenes that function in the remaining 70% of cases is an ongoing challenge, as is establishing a causal role for such oncogenes in HME cell transformation.
FGFR1 and FGFR2, previously established oncogenes, were found to be amplified within large amplicons on 8p11 and 10q26, respectively, in the breast cancer cell line SUM-52PE [14]. Previous studies have shown that the FGFR2 gene is amplified in about 5-10% of breast cancer cases.
Our results showed that SUM-52PE cells overexpressed many alternatively spliced isoforms of FGFR2 at both the transcript and protein level as compared with normal HME cells. The variability in FGFR2 isoform expression is complex and involves exon IIIb/c, which encodes the second half of the third Ig-like loop; variations in the carboxyl terminal end of the receptor, involving the C1/C2 or C3 domains; and variable expression of the Ig-like loops and acid box in the extracellular portion of the receptor. The characterization of three unique FGFR2 isoforms that were cloned from SUM-52PE may build on the findings of others concerning the transforming potential of FGFR2 variants [4]. In particular, because it has been demonstrated that expression of C3-IIIb variants may have more transforming activity than C1-IIIb variants, differences between the three C3 clones we have isolated may provide information regarding the influence of particular structural domains on transforming potential.
Ongoing studies are aimed at characterizing the transforming ability of FGFR2 isoforms obtained from SUM-52PE cells by transducing these genes into normal HME cells. By overexpressing FGFR2 isoforms in a physiologically relevant system, we hope to determine the isoform(s) that acts in a dominant way in the process of cell transformation, and to determine whether different regions present in individual clones drive specific phenotypes associated with transformation.
PMCID: PMC13919  PMID: 11056689
alternative splicing; breast cancer; fibroblast growth factor receptor; receptor tyrosine kinase; SUM-52PE
3.  MyoD- and nerve-dependent maintenance of MyoD expression in mature muscle fibres acts through the DRR/PRR element 
MyoD is a transcription factor implicated in the regulation of adult muscle gene expression. Distinguishing the expression of MyoD in satellite myoblasts and muscle fibres has proved difficult in vivo leading to controversy over the significance of MyoD expression within adult innervated muscle fibres. Here we employ the MD6.0-lacZ transgenic mouse, in which the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD drives lacZ, to show that MyoD is present and transcriptionally active in many adult muscle fibres.
In culture, MD6.0-lacZ expresses in myotubes but not myogenic cells, unlike endogenous MyoD. Reporter expression in vivo is in muscle fibre nuclei and is reduced in MyoD null mice. The MD6.0-lacZ reporter is down-regulated both in adult muscle fibres by denervation or muscle disuse and in cultured myotubes by inhibition of activity. Activity induces and represses MyoD through the DRR and PRR, respectively. During the postnatal period, accumulation of β-galactosidase correlates with maturation of innervation. Strikingly, endogenous MyoD expression is up-regulated in fibres by complete denervation, arguing for a separate activity-dependent suppression of MyoD requiring regulatory elements outside the DRR/PRR.
The data show that MyoD regulation is more complex than previously supposed. Two factors, MyoD protein itself and fibre activity are required for essentially all expression of the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD in adult fibres. We propose that modulation of MyoD positive feedback by electrical activity determines the set point of MyoD expression in innervated fibres through the DRR/PRR element.
PMCID: PMC2259323  PMID: 18215268
4.  TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle 
TEAD1 (TEA domain family member 1) is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown.
In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1.
Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.
PMCID: PMC3025863  PMID: 21211055
5.  Alteration of TEAD1 Expression Levels Confers Apoptotic Resistance through the Transcriptional Up-Regulation of Livin 
PLoS ONE  2012;7(9):e45498.
TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway.
Methodology/Principal Findings
We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process.
Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.
PMCID: PMC3454436  PMID: 23029054
6.  Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes 
Arthritis Research & Therapy  2011;13(4):R130.
Cartilage degeneration driven by catabolic stimuli is a critical pathophysiological process in osteoarthritis (OA). We have defined fibroblast growth factor 2 (FGF-2) as a degenerative mediator in adult human articular chondrocytes. Biological effects mediated by FGF-2 include inhibition of proteoglycan production, up-regulation of matrix metalloproteinase-13 (MMP-13), and stimulation of other catabolic factors. In this study, we identified the specific receptor responsible for the catabolic functions of FGF-2, and established a pathophysiological connection between the FGF-2 receptor and OA.
Primary human articular chondrocytes were cultured in monolayer (24 hours) or alginate beads (21 days), and stimulated with FGF-2 or FGF18, in the presence or absence of FGFR1 (FGF receptor 1) inhibitor. Proteoglycan accumulation and chondrocyte proliferation were assessed by dimethylmethylene blue (DMMB) assay and DNA assay, respectively. Expression of FGFRs (FGFR1 to FGFR4) was assessed by flow cytometry, immunoblotting, and quantitative real-time PCR (qPCR). The distinctive roles of FGFR1 and FGFR3 after stimulation with FGF-2 were evaluated using either pharmacological inhibitors or FGFR small interfering RNA (siRNA). Luciferase reporter gene assays were used to quantify the effects of FGF-2 and FGFR1 inhibitor on MMP-13 promoter activity.
Chondrocyte proliferation was significantly enhanced in the presence of FGF-2 stimulation, which was inhibited by the pharmacological inhibitor of FGFR1. Proteoglycan accumulation was reduced by 50% in the presence of FGF-2, and this reduction was successfully rescued by FGFR1 inhibitor. FGFR1 inhibitors also fully reversed the up-regulation of MMP-13 expression and promoter activity stimulated by FGF-2. Blockade of FGFR1 signaling by either chemical inhibitors or siRNA targeting FGFR1 rather than FGFR3 abrogated the up-regulation of matrix metalloproteinases 13 (MMP-13) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 5 (ADAMTS5), as well as down-regulation of aggrecan after FGF-2 stimulation. Flow cytometry, qPCR and immunoblotting analyses suggested that FGFR1 and FGFR3 were the major FGFR isoforms expressed in human articular chondrocytes. FGFR1 was activated more potently than FGFR3 upon FGF-2 stimulation. In osteoarthritic chondrocytes, FGFR3 was significantly down regulated (P < 0.05) with a concomitant increase in the FGFR1 to FGFR3 expression ratio (P < 0.05), compared to normal chondrocytes. Our results also demonstrate that FGFR3 was negatively regulated by FGF-2 at the transcriptional level through the FGFR1-ERK (extracellular signal-regulated kinase) signaling pathway in human articular chondrocytes.
FGFR1 is the major mediator with the degenerative potential in the presence of FGF-2 in human adult articular chondrocytes. FGFR1 activation by FGF-2 promotes catabolism and impedes anabolism. Disruption of the balance between FGFR1 and FGFR3 signaling ratio may contribute to the pathophysiology of OA.
PMCID: PMC3239372  PMID: 21835001
7.  MyoD Distal Regulatory Region Contains an SRF Binding CArG Element Required for MyoD Expression in Skeletal Myoblasts and during Muscle Regeneration 
Molecular Biology of the Cell  2003;14(5):2151-2162.
We show here that the distal regulatory region (DRR) of the mouse and human MyoD gene contains a conserved SRF binding CArG-like element. In electrophoretic mobility shift assays with myoblast nuclear extracts, this CArG sequence, although slightly divergent, bound two complexes containing, respectively, the transcription factor YY1 and SRF associated with the acetyltransferase CBP and members of C/EBP family. A single nucleotide mutation in the MyoD-CArG element suppressed binding of both SRF and YY1 complexes and abolished DRR enhancer activity in stably transfected myoblasts. This MyoD-CArG sequence is active in modulating endogeneous MyoD gene expression because microinjection of oligonucleotides corresponding to the MyoD-CArG sequence specifically and rapidly suppressed MyoD expression in myoblasts. In vivo, the expression of a transgenic construct comprising a minimal MyoD promoter fused to the DRR and β-galactosidase was induced with the same kinetics as MyoD during mouse muscle regeneration. In contrast induction of this reporter was no longer seen in regenerating muscle from transgenic mice carrying a mutated DRR-CArG. These results show that an SRF binding CArG element present in MyoD gene DRR is involved in the control of MyoD gene expression in skeletal myoblasts and in mature muscle satellite cell activation during muscle regeneration.
PMCID: PMC165104  PMID: 12802082
8.  Hedgehog Signaling Regulates MyoD Expression and Activity* 
The Journal of Biological Chemistry  2012;288(6):4389-4404.
Background: Hedgehog (Hh) signaling regulates skeletal myogenesis; however, the molecular mechanisms involved are not fully understood.
Results: Gli2, a transactivator of Hh signaling, associates with MyoD gene elements, regulating MyoD expression, and binds to MyoD protein, regulating its ability to induce myogenesis.
Conclusion: Hh signaling is linked to MyoD gene expression and MyoD protein function.
Significance: Novel mechanistic insight is gained into the Hh-regulated myogenesis.
The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.
PMCID: PMC3567689  PMID: 23266826
Development; Embryonic Stem Cell; Gene Expression; Myogenesis; Skeletal Muscle; Transcription; Gli; Hedgehog Signaling; MEF2; MyoD
9.  Osteocyte-Specific Deletion of Fgfr1 Suppresses FGF23 
PLoS ONE  2014;9(8):e104154.
Increases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1)-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO)-null mice (Hyp;Fgfr1Dmp1-cKO) with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost), phosphate regulating endopeptidase on X chromosome (PHEX or Phex), matrix extracellular phosphoglycoprotein (Mepe), and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH)2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml), an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl) and 1,25(OH)2D (121±23 to 192±34 pg/ml) levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK−), PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF23 by both transcriptional and post-transcriptional mechanisms. This may serve to link local bone metabolism with systemic phosphate and vitamin D homeostasis.
PMCID: PMC4121311  PMID: 25089825
10.  Essential Role of TEA Domain Transcription Factors in the Negative Regulation of the MYH 7 Gene by Thyroid Hormone and Its Receptors 
PLoS ONE  2014;9(4):e88610.
MYH7 (also referred to as cardiac myosin heavy chain β) gene expression is known to be repressed by thyroid hormone (T3). However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation) remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation) have been elucidated in detail. Two MCAT (muscle C, A, and T) sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs). Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR) β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD) of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.
PMCID: PMC4004540  PMID: 24781449
11.  Allele-specific regulation of FGFR2 expression is cell type-dependent and may increase breast cancer risk through a paracrine stimulus involving FGF10 
SNPs rs2981582 and rs2981578, located in a linkage disequilibrium block (LD block) within intron 2 of the fibroblast growth factor receptor 2 gene (FGFR2), are associated with a mildly increased breast cancer risk. Allele-specific regulation of FGFR2 mRNA expression has been reported previously, but the molecular basis for the association of these variants with breast cancer has remained elusive to date.
mRNA levels of FGFR2 and three fibroblast growth factor genes (FGFs) were measured in primary fibroblast and epithelial cell cultures from 98 breast cancer patients and correlated to their rs2981578 genotype. The phosphorylation levels of downstream FGFR2 targets, FGF receptor substrate 2α (FRS2α) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), were quantified in skin fibroblasts exposed to FGF2. Immunohistochemical markers for angiogenesis and lymphocytic infiltrate were semiquantitatively assessed in 25 breast tumors.
The risk allele of rs2981578 was associated with increased FGFR2 mRNA levels in skin fibroblasts, but not in skin epithelial cell cultures. FGFR2 mRNA levels in skin fibroblasts and breast fibroblasts correlated strongly in the patients from whom both cultures were available. Tumor-derived fibroblasts expressed, on average, eight times more FGFR2 mRNA than the corresponding fibroblasts from normal breast tissue. Fibroblasts with higher FGFR2 mRNA expression showed more FRS2α and ERK1/2 phosphorylation after exposure to FGF2. In fibroblasts, higher FGFR2 expression correlated with higher FGF10 expression. In 25 breast tumors, no associations between breast tumor characteristics and fibroblast FGFR2 mRNA levels were found.
The influence of rs2981578 genotypes on FGFR2 mRNA expression levels is cell type-dependent. Expression differences correlated well with signaling levels of the FGFR2 pathway. Our results suggest that the increased breast cancer risk associated with SNP rs2981578 is due to increased FGFR2 signaling activity in stromal fibroblasts, possibly also involving paracrine FGF10 signaling.
PMCID: PMC3236336  PMID: 21767389
12.  A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. 
Molecular and Cellular Biology  1994;14(3):1870-1885.
The slow/cardiac troponin C (cTnC) gene is expressed in three distinct striated muscle lineages: cardiac myocytes, embryonic fast skeletal myotubes, and adult slow skeletal myocytes. We have reported previously that cTnC gene expression in cardiac muscle is regulated by a cardiac-specific promoter/enhancer located in the 5' flanking region of the gene (bp -124 to +1). In this report, we demonstrate that the cTnC gene contains a second distinct and independent transcriptional enhancer which is located in the first intron. This second enhancer is skeletal myotube specific and is developmentally up-regulated during the differentiation of myoblasts to myotubes. This enhancer contains three functionally important nuclear protein binding sites: a CACCC box, a MEF-2 binding site, and a previously undescribed nuclear protein binding site, designated MEF-3, which is also present in a large number of skeletal muscle-specific transcriptional enhancers. Unlike most skeletal muscle-specific transcriptional regulatory elements, the cTnC enhancer does not contain a consensus binding site (CANNTG) for the basic helix-loop-helix (bHLH) family of transcription factors and does not directly bind MyoD-E12 protein complexes. Despite these findings, the cTnC enhancer can be transactivated by overexpression of the myogenic bHLH proteins, MyoD and myogenin, in C3H10T1/2 (10T1/2) cells. Electrophoretic mobility shift assays demonstrated changes in the patterns of MEF-2, CACCC, and MEF-3 DNA binding activities following the conversion of 10T1/2 cells into myoblasts and myotubes by stable transfection with a MyoD expression vector. In particular, MEF-2 binding activity was up-regulated in 10T1/2 cells stably transfected with a MyoD expression vector only after these cells fused and differentiated into skeletal myotubes. Taken together, these results demonstrated that distinct lineage-specific transcriptional regulatory elements control the expression of a single myofibrillar protein gene in fast skeletal and cardiac muscle. In addition, they show that bHLH transcription factors can indirectly transactivate the expression of some muscle-specific genes.
PMCID: PMC358545  PMID: 8114720
13.  Comparative in silico analysis identifies bona fide MyoD binding sites within the Myocyte Stress 1 gene promoter 
Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative in silico analysis coupled with an experimental promoter characterisation to delineate these mechanisms.
Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in ms1 mRNA. An in silico comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with ms1 promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the ms1 promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, α and β). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs α and β correlates with the temporal induction in ms1 mRNA.
These findings suggest that the tissue specific and differentiation dependent up-regulation in ms1 mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the ms1 5' upstream sequence. We believe, through its activation of ms1, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.
PMCID: PMC2408591  PMID: 18489770
14.  Targeting Wild-Type and Mutationally Activated FGFR4 in Rhabdomyosarcoma with the Inhibitor Ponatinib (AP24534) 
PLoS ONE  2013;8(10):e76551.
Rhabdomyosarcoma (RMS) is the most common childhood soft tissue sarcoma. Despite advances in modern therapy, patients with relapsed or metastatic disease have a very poor clinical prognosis. Fibroblast Growth Factor Receptor 4 (FGFR4) is a cell surface tyrosine kinase receptor that is involved in normal myogenesis and muscle regeneration, but not commonly expressed in differentiated muscle tissues. Amplification and mutational activation of FGFR4 has been reported in RMS and promotes tumor progression. Therefore, FGFR4 is a tractable therapeutic target for patients with RMS. In this study, we used a chimeric Ba/F3 TEL-FGFR4 construct to test five tyrosine kinase inhibitors reported to specifically inhibit FGFRs in the nanomolar range. We found ponatinib (AP24534) to be the most potent FGFR4 inhibitor with an IC50 in the nanomolar range. Ponatinib inhibited the growth of RMS cells expressing wild-type or mutated FGFR4 through increased apoptosis. Phosphorylation of wild-type and mutated FGFR4 as well as its downstream target STAT3 was also suppressed by ponatinib. Finally, ponatinib treatment inhibited tumor growth in a RMS mouse model expressing mutated FGFR4. Therefore, our data suggests that ponatinib is a potentially effective therapeutic agent for RMS tumors that are driven by a dysregulated FGFR4 signaling pathway.
PMCID: PMC3790700  PMID: 24124571
15.  Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo 
PLoS ONE  2009;4(3):e4973.
Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.
PMCID: PMC2656614  PMID: 19319192
16.  Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin 
Nucleic Acids Research  2008;36(12):3916-3925.
Four myogenic regulatory factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin direct muscle tissue differentiation. Heterodimers of MRFs with E-proteins activate muscle-specific gene expression by binding to E-box motifs d(CANNTG) in their promoters or enhancers. We showed previously that in contrast to the favored binding of E-box by MyoD-E47 heterodimers, homodimeric MyoD associated preferentially with quadruplex structures of regulatory sequences of muscle-specific genes. To inquire whether other MRFs shared the DNA binding preferences of MyoD, the DNA affinities of hetero- and homo-dimeric MyoD, MRF4 and Myogenin were compared. Similarly to MyoD, heterodimers with E47 of MRF4 or Myogenin bound E-box more tightly than quadruplex DNA. However, unlike homodimeric MyoD or MRF4, Myogenin homodimers associated weakly and nonpreferentially with quadruplex DNA. By reciprocally switching basic regions between MyoD and Myogenin we demonstrated dominance of MyoD in determining the quadruplex DNA-binding affinity. Thus, Myogenin with an implanted MyoD basic region bound quadruplex DNA nearly as tightly as MyoD. However, a grafted Myogenin basic region did not diminish the high affinity of homodimeric MyoD for quadruplex DNA. We speculate that the dissimilar interaction of MyoD and Myogenin with tetrahelical domains in muscle gene promoters may differently regulate their myogenic activities.
PMCID: PMC2475631  PMID: 18511462
17.  Different Tyrosine Autophosphorylation Requirements in Fibroblast Growth Factor Receptor-1 Mediate Urokinase-Type Plasminogen Activator Induction and Mitogenesis 
Molecular Biology of the Cell  1999;10(1):23-33.
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.
PMCID: PMC25151  PMID: 9880324
18.  DNA damage-activated ABL-MyoD signaling contributes to DNA repair in skeletal myoblasts 
Cell Death and Differentiation  2013;20(12):1664-1674.
Previous works have established a unique function of MyoD in the control of muscle gene expression during DNA damage response in myoblasts. Phosphorylation by DNA damage-activated ABL tyrosine kinase transiently inhibits MyoD-dependent activation of transcription in response to genotoxic stress. We show here that ABL-MyoD signaling is also an essential component of the DNA repair machinery in myoblasts exposed to genotoxic stress. DNA damage promoted the recruitment of MyoD to phosphorylated Nbs1 (pNbs1)-containing repair foci, and this effect was abrogated by either ABL knockdown or the ABL kinase inhibitor imatinib. Upon DNA damage, MyoD and pNbs1 were detected on the chromatin to MyoD target genes without activating transcription. DNA damage-mediated tyrosine phosphorylation was required for MyoD recruitment to target genes, as the ABL phosphorylation-resistant MyoD mutant (MyoD Y30F) failed to bind the chromatin following DNA damage, while retaining the ability to activate transcription in response to differentiation signals. Moreover, MyoD Y30F exhibited an impaired ability to promote repair in a heterologous system, as compared with MyoD wild type (WT). Consistently, MyoD-null satellite cells (SCs) displayed impaired DNA repair that was rescued by reintroduction of MyoD WT but not by MyoD Y30F. In addition, inhibition of ABL kinase prevented MyoD WT-mediated rescue of DNA repair in MyoD-null SCs. These results identify an unprecedented contribution of MyoD to DNA repair and suggest that ABL-MyoD signaling coordinates DNA repair and transcription in myoblasts.
PMCID: PMC3824587  PMID: 24056763
MyoD; ABL; DNA damage; chromatin; DNA repair
19.  Fibroblast Growth Factor Receptor 1 Activation in Mammary Tumor Cells Promotes Macrophage Recruitment in a CX3CL1-Dependent Manner 
PLoS ONE  2012;7(9):e45877.
Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1) in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated with high levels of tumor-associated macrophages.
PMCID: PMC3454319  PMID: 23029290
20.  Identification of a regulatory function for an orphan receptor in muscle: COUP-TF II affects the expression of the myoD gene family during myogenesis. 
Nucleic Acids Research  1995;23(8):1311-1318.
COUP-TF II is an 'orphan steroid receptor' that binds a wide variety of AGGTCA repeats and represses thyroid hormone (T3) and retinoid dependent trans-activation; however, very little is known of its functional and/or developmental role during mammalian cell differentiation. T3 and retinoids have been demonstrated to promote terminal muscle differentiation via activation of the muscle specific myoD gene family (myoD, myogenin, myf-5 and MRF-4). The myoD gene family can direct the fate of mesodermal cell lineages, repress proliferation, activate differentiation and the contractile phenotype. Hence, we investigated the expression and functional role of COUP-TF II during muscle differentiation. Proliferating C2C12 myoblasts expressed COUP-TF II mRNA which was repressed when cells were induced to differentiate into post-mitotic multinucleated myotubes by serum withdrawal. Concomitant with the decrease of COUP-TF II mRNA was the appearance of muscle specific mRNAs (e.g. myogenin, alpha-actin). We show that Escherichia coli expressed full length and truncated COUP-TF II bound in a sequence specific manner to the T3 response elements (TREs) in the myoD and myogenin regulatory HLH genes [Olson (1992) Dev. Biol. 154, 261-272]; and the TRE in the skeletal alpha-actin contractile protein gene. COUP-TF II diminished the homodimeric binding of the thyroid hormone receptor and the heterodimeric binding of thyroid hormone and retinoid X receptor complexes to these TREs. Constitutive over-expression of COUP-TF II cDNA in mouse C2C12 myogenic cells suppressed the levels of myoD mRNA and blocked the induction of myogenin mRNA, whereas constitutive expression of anti-sense COUP-TF II cDNA significantly increased the steady state levels of myoD mRNA and hyper-induced myogenin mRNA. These studies demonstrate for the first time (i) that COUP-TF II, functions as a physiologically relevant antagonistic regulator of myogenesis via direct effects on the myoD gene family and (ii) direct evidence for the developmental role of COUP-TF II during mammalian cell differentiation.
PMCID: PMC306855  PMID: 7753622
21.  FGFR4 and its novel splice form in myogenic cells: interplay of glycosylation and tyrosine phosphorylation 
Journal of Cellular Physiology  2008;215(3):803-817.
The family of fibroblast growth factor receptors (FGFRs) is encoded by four distinct genes. FGFR1 and FGFR4 are both expressed during myogenesis, but whereas the function of FGFR1 in myoblast proliferation has been documented, the role of FGFR4 remains unknown. Here we report on a new splice form of FGFR4 cloned from primary cultures of mouse satellite cells. This form, named FGFR4(−16), lacks the entire exon 16, resulting in a deletion within the FGFR kinase domain. Expression of FGFR4(−16) coincided with that of wildtype FGFR4 in all FGFR4-expressing tissues examined. Moreover, expression of both FGFR4 forms correlated with the onset of myogenic differentiation, as determined in mouse C2C12 cells and in the inducible myogenic system of 10T½-MyoD-ER cell line. Both endogenous and overexpressed forms of FGFR4 exhibited N-glycosylation. In contrast to FGFR1, induced homodimerization of FGFR4 proteins did not result in receptor tyrosine phosphorylation. Surprisingly, coexpression of FGFR4 forms and a chimeric FGFR1 protein resulted in FGFR4 tyrosine phosphorylation, raising the possibility that FGFR4 phosphorylation might be enabled by a heterologous tyrosine kinase activity. Collectively, the present study reveals novel characteristics of mouse FGFR4 gene products and delineates their expression pattern during myogenesis. Our findings suggest that FGFR4 functions in a distinctly different manner than the prototype FGFR during myogenic differentiation.
PMCID: PMC3276070  PMID: 18186042
Fibroblast growth factor receptor; FGFR4; alternative splicing; N-glycosylation; tyrosine phosphorylation; myogenesis; satellite cells; SU5402; AP20187
22.  Permissive Roles of Phosphatidyl Inositol 3-Kinase and Akt in Skeletal Myocyte Maturation 
Molecular Biology of the Cell  2004;15(2):497-505.
Skeletal muscle differentiation, maturation, and regeneration are regulated by interactions between signaling pathways activated by hormones and growth factors, and intrinsic genetic programs controlled by myogenic transcription factors, including members of the MyoD and myocyte enhancer factor 2 (MEF2) families. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo, and in the maintenance and hypertrophy of mature muscle in the adult, but the precise signaling pathways responsible for these effects remain incompletely defined. To study mechanisms of IGF action in muscle, we have developed a mouse myoblast cell line termed C2BP5 that is dependent on activation of the IGF-I receptor and the phosphatidyl inositol 3-kinase (PI3-kinase)-Akt pathway for initiation of differentiation. Here, we show that differentiation of C2BP5 myoblasts could be induced in the absence of IGF action by recombinant adenoviruses expressing MyoD or myogenin, but it was reversibly impaired by the PI3-kinase inhibitor LY294002. Similar results were observed using a dominant-negative version of Akt, a key downstream component of PI3-kinase signaling, and also were seen in C3H 10T1/2 fibroblasts. Inhibition of PI3-kinase did not prevent accumulation of muscle differentiation-specific proteins (myogenin, troponin T, or myosin heavy chain), did not block transcriptional activation of E-box containing muscle reporter genes by MyoD or myogenin, and did not inhibit the expression or function of endogenous MEF2C or MEF2D. An adenovirus encoding active Akt could partially restore terminal differentiation of MyoD-expressing and LY294002-treated myoblasts, but the resultant myofibers contained fewer nuclei and were smaller and thinner than normal, indicating that another PI3-kinase-stimulated pathway in addition to Akt is required for full myocyte maturation. Our results support the idea that an IGF-regulated PI3-kinase pathway functions downstream of or in parallel with MyoD, myogenin, and MEF2 in muscle development to govern the late steps of differentiation that lead to multinucleated myotubes.
PMCID: PMC329222  PMID: 14595115
23.  Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of BC3H1 cells [published erratum appears in J Cell Biol 1990 Jun;110(6):2231] 
The Journal of Cell Biology  1990;110(4):929-937.
Two skeletal muscle-specific regulatory factors, myogenin and MyoD1, share extensive homology within a myc similarity region and have each been shown to activate the morphologic and molecular events associated with myogenesis after transfection into nonmyogenic cells. The BC3H1 muscle cell line expresses myogenin and other muscle-specific genes, but does not express MyoD1 during differentiation. BC3H1 cells also do not upregulate alpha-cardiac actin or fast myosin light chain, nor do they form multinucleate myotubes during differentiation. In this study, we examined the basis for the lack of MyoD1 expression in BC3H1 cells and investigated whether their failure to express MyoD1 is responsible for their defects in differentiation. We report that expression of an exogenous MyoD1 cDNA in BC3H1 cells was sufficient to elevate the expression of alpha-cardiac actin and fast myosin light chain, and to convert these cells to a phenotype that forms multinucleate myotubes during differentiation. Whereas myogenin and MyoD1 positively regulated their own expression in transfected 10T1/2 cells, they could not, either alone or in combination, activate MyoD1 expression in BC3H1 cells. Exposure of BC3H1 cells to 5-azacytidine also failed to activate MyoD1 expression or to rescue the cell's ability to fuse. These results suggest that BC3H1 cells may possess a defect that prevents activation of the MyoD1 gene by MyoD1 or myogenin. That an exogenous MyoD1 gene could rescue those aspects of the differentiation program that are defective in BC3H1 cells also suggests that the actions of MyoD1 and myogenin are not entirely redundant and that MyoD1 may be required for activation of the complete repertoire of events associated with myogenesis.
PMCID: PMC2116110  PMID: 1691195
24.  RhoA GTPase and Serum Response Factor Control Selectively the Expression of MyoD without Affecting Myf5 in Mouse Myoblasts 
Molecular Biology of the Cell  1998;9(7):1891-1902.
MyoD and Myf5 belong to the family of basic helix-loop-helix transcription factors that are key operators in skeletal muscle differentiation. MyoD and Myf5 genes are selectively activated during development in a time and region-specific manner and in response to different stimuli. However, molecules that specifically regulate the expression of these two genes and the pathways involved remain to be determined. We have recently shown that the serum response factor (SRF), a transcription factor involved in activation of both mitogenic response and muscle differentiation, is required for MyoD gene expression. We have investigated here whether SRF is also involved in the control of Myf5 gene expression, and the potential role of upstream regulators of SRF activity, the Rho family G-proteins including Rho, Rac, and CDC42, in the regulation of MyoD and Myf5. We show that inactivation of SRF does not alter Myf5 gene expression, whereas it causes a rapid extinction of MyoD gene expression. Furthermore, we show that RhoA, but not Rac or CDC42, is also required for the expression of MyoD. Indeed, blocking the activity of G-proteins using the general inhibitor lovastatin, or more specific antagonists of Rho proteins such as C3-transferase or dominant negative RhoA protein, resulted in a dramatic decrease of MyoD protein levels and promoter activity without any effects on Myf5 expression. We further show that RhoA-dependent transcriptional activation required functional SRF in C2 muscle cells. These data illustrate that MyoD and Myf5 are regulated by different upstream activation pathways in which MyoD expression is specifically modulated by a RhoA/SRF signaling cascade. In addition, our results establish the first link between RhoA protein activity and the expression of a key muscle regulator.
PMCID: PMC25431  PMID: 9658178
25.  Characterization of Muscle-Regulatory Gene, MyoD, from Flounder (Paralichthys olivaceus) and Analysis of Its Expression Patterns During Embryogenesis 
Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix–loop–helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.
PMCID: PMC4271811  PMID: 16362809
flounder; muscle; MyoD; myogenesis; somites

Results 1-25 (1216273)