PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (883977)

Clipboard (0)
None

Related Articles

1.  Anti-inflammatory Effect of Docosahexaenoic Acid on Cytokine-Induced Adhesion Molecule Expression in Human Retinal Vascular Endothelial Cells 
Purpose.
Docosahexaenoic acid (DHA22:6n3), the principal n3-polyunsaturated fatty acid (PUFA) in the retina, has been shown to have a pronounced anti-inflammatory effect in numerous in vivo and in vitro studies. Despite the importance of vascular inflammation in diabetic retinopathy, the anti-inflammatory role of DHA22:6n3 in cytokine-stimulated human retinal vascular endothelial cells (hRVECs) has not been addressed.
Methods.
Cytokine-induced expression of cell adhesion molecules (CAMs) was assessed by Western blot. The effect of DHA22:6n3 on cytokine-induced nuclear factor (NF)-κB signaling was analyzed by Western blot analysis and electrophoretic mobility shift assay (EMSA).
Results.
Stimulation of hRVECs with VEGF165, TNFα, or IL-1β for 6 to 24 hours caused significant induction of intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Pretreatment of the cells with 100 μM of BSA-bound DHA22:6n3 for 24 hours remarkably inhibited cytokine-induced CAM expression. IL-1β, TNFα, and VEGF165 induced nuclear translocation and binding of p65 and p50 NF-κB isoforms to the VCAM-1 promoter. DHA22:6n3 pretreatment inhibited cytokine-induced NF-κB binding by 25% to 40%. Moreover, DHA22:6n3 diminished IL-1β induced phosphorylation of the inhibitor of nuclear factor (NF)-κB (I-κBα), thus preventing its degradation.
Conclusions.
IL-1β, TNFα, and VEGF165 induced CAM expression in hRVECs through activation of the NF-κB pathway. DHA22:6n3 inhibited cytokine induced CAM expression through suppression of NF-κB nuclear translocation and upstream I-κBα phosphorylation and degradation. DHA22:6n3 could be an important anti-inflammatory agent in the face of increased cytokine production and CAM expression in the diabetic retina.
doi:10.1167/iovs.05-0601
PMCID: PMC1378111  PMID: 16249517
2.  Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Downregulation of Sphingomyelinases by Docosahexaenoic Acid 
DHA downregulates basal and cytokine-induced ASMase and NSMase activity in human retinal endothelial cells, and inhibition of sphingomyelinases in endothelial cells prevents cytokine-induced inflammatory response.
Purpose.
The authors have previously demonstrated that DHA inhibits cytokine-induced inflammation in human retinal endothelial cells (HRECs), the resident vasculature affected by diabetic retinopathy. However, the anti-inflammatory mechanism of docosahexaenoic acid (DHA) is still not well understood. Sphingolipids represent a major component of membrane microdomains, and ceramide-enriched microdomains appear to be a prerequisite for inflammatory cytokine signaling. Acid sphingomyelinase (ASMase) and neutral sphingomyelinase (NSMase) are key regulatory enzymes of sphingolipid metabolism, promoting sphingomyelin hydrolysis to proinflammatory ceramide. The authors address the hypothesis that DHA inhibits cytokine-induced inflammatory signaling in HRECs by downregulating sphingomyelinases.
Methods.
ASMase and NSMase activity was determined by sphingomyelinase assay in primary cultures of HRECs. The expression of ASMase, NSMase, ICAM-1, and VCAM-1 was assessed by quantitative PCR and Western blot analysis. Gene silencing of ASMase and NSMase was obtained by siRNA treatment.
Results.
Inflammatory cytokines TNFα and IL-1β induced cellular adhesion molecule (CAM) expression and rapid increase in ASMase and NSMase activity in HRECs. DHA decreased basal and cytokine-induced ASMase and NSMase expression and activity and the upregulation of CAM expression. Anti-inflammatory effects of DHA on cytokine-induced CAM expression were mimicked by inhibition/gene silencing of ASMase and NSMase. The sphingomyelinase pathway rather than ceramide de novo synthesis pathway was important for inflammatory signaling in HRECs.
Conclusions.
This study provides a novel potential mechanism for the anti-inflammatory effect of DHA in HRECs. DHA downregulates the basal and cytokine-induced ASMase and NSMase expression and activity level in HRECs, and inhibition of sphingomyelinases in endothelial cells prevents cytokine-induced inflammatory response.
doi:10.1167/iovs.09-4731
PMCID: PMC2891477  PMID: 20071681
3.  Docosahexaenoic Acid Improves the Nitroso-Redox Balance and Reduces VEGF-Mediated Angiogenic Signaling in Microvascular Endothelial Cells 
The poorly understood mechanism by which ω-3 polyunsaturated fatty acids (PUFAs) reduce the severity of ocular vasoproliferative disorders was investigated. The authors demonstrate that ω-3 PUFAs, in particular docosahexaenoic acid (DHA), can improve the nitroso-redox balance by modulating the production of nitric oxide and superoxide. In addition, they provide evidence that ω-3 PUFAs also blunt growth factor signaling and displace eNOS from caveolae microdomains. Results suggests a dual benefit of ω-3 PUFAs in the treatment of ocular diseases by maintaining the prosurvival effects of NO in the early degenerative phase of ischemic retinopathies and reducing the severity of VEGF-mediated signaling in the late proliferative phase.
Purpose.
Disturbances to the cellular production of nitric oxide (NO) and superoxide (O2−) can have deleterious effects on retinal vascular integrity and angiogenic signaling. Dietary agents that could modulate the production of these signaling molecules from their likely enzymatic sources, endothelial nitric oxide synthase (eNOS) and NADPH oxidase, would therefore have a major beneficial effect on retinal vascular disease. The effect of ω-3 polyunsaturated fatty acids (PUFAs) on angiogenic signaling and NO/superoxide production in retinal microvascular endothelial cells (RMECs) was investigated.
Methods.
Primary RMECs were treated with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) for 48 hours. RMEC migration was determined by scratch-wound assay, proliferation by the incorporation of BrdU, and angiogenic sprouting using a three-dimensional model of in vitro angiogenesis. NO production was quantified by Griess assay, and phospho-eNOS accumulation and superoxide were measured using the fluorescent probe dihydroethidine. eNOS localization to caveolin-rich microdomains was determined by Western blot analysis after subfractionation on a linear sucrose gradient.
Results.
DHA treatment increased nitrite and decreased superoxide production, which correlated with the displacement of eNOS from caveolar subdomains and colocalization with the negative regulator caveolin-1. In addition, both ω-3 PUFAs demonstrated reduced responsiveness to VEGF-stimulated superoxide and nitrite release and significantly impaired endothelial wound healing, proliferation, and angiogenic sprout formation.
Conclusions.
DHA improves NO bioavailability, decreases O2− production, and blunts VEGF-mediated angiogenic signaling. These findings suggest a role for ω-3 PUFAs, particularly DHA, in maintaining vascular integrity while reducing pathologic retinal neovascularization.
doi:10.1167/iovs.10-5339
PMCID: PMC3055780  PMID: 20702831
4.  N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function 
PLoS ONE  2013;8(1):e55177.
Objective
The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs). We propose that n-3 polyunsaturated fatty acid (PUFA) deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM) and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs.
Research Design and Methods
Type 2 diabetic rats on control or docosahexaenoic acid (DHA)-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL)-1β, IL-6, intracellular adhesion molecule (ICAM)-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined.
Results
DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation.
Conclusions
In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.
doi:10.1371/journal.pone.0055177
PMCID: PMC3558503  PMID: 23383097
5.  Bioactive dietary long chain fatty acids: Emerging mechanisms of action 
The British journal of nutrition  2008;100(6):1152-1157.
The plasma membrane of all eukaryotic cells contain heterogeneous self organizing intrinsically unstable liquid ordered domains or lipid assemblies in which key signal transduction proteins are localized. These assemblies are classified as “lipid rafts” (10–200 nm), which are composed mostly of cholesterol and sphingolipid microdomains and therefore do not integrate well into the fluid phospholipid bilayers. In addition, caveolae represent a subtype of lipid raft macrodomain that form flask-shaped membrane invaginations containing structural proteins, i.e., caveolins. With respect to the diverse biological effects of long chain polyunsaturated fatty acids (PUFA), increasing evidence suggests that n-3 PUFA and perhaps conjugated fatty acids uniquely alter the basic properties of cell membranes. Because of its polyunsaturation, docosahexaenoic acid (DHA) and possibly conjugated linoleic acid (CLA) are sterically incompatible with sphingolipid and cholesterol and, therefore, appear to alter lipid raft behavior and protein function. This review examines the evidence indicating that dietary sources of n-3 PUFA can profoundly alter the biochemical make up of lipid rafts/caveolae microdomains, thereby influencing cell signaling, protein trafficking, and cell cytokinetics.
doi:10.1017/S0007114508992576
PMCID: PMC2648819  PMID: 18492298
membrane rafts; omega-3 fatty acids; conjugated fatty acids; microdomains
6.  DHA Supplementation: Current Implications in Pregnancy and Childhood 
Dietary supplementation with (ω)-3 long chain fatty acids including docosahexaenoic acid (DHA) has increased in popularity in recent years and adequate DHA supplementation during pregnancy and early childhood is of clinical importance. Some evidence has been built for the neuro-cognitive benefits of supplementation with long chain polyunsaturated fatty acids (LCPUFA) such as DHA during pregnancy; however, recent data indicate that the anti-inflammatory properties may be of at least equal significance. Adequate DHA availability in the fetus/infant optimizes brain and retinal maturation in part by influencing neurotransmitter pathways. The anti-inflammatory properties of LCPUFA are largely mediated through modulation of signaling either directly through binding to receptors or through changes in lipid raft formation and receptor presentation. Our goal is to review the current findings on DHA supplementation, specifically in pregnancy and infant neurodevelopment, as a pharmacologic agent with both preventative and therapeutic value. Given the overall benefits of DHA, maternal and infant supplementation may improve neurological outcomes especially in vulernable populations. However, optimal composition of the supplement and dosing and treatment strategies still need to be determined to lend support for routine supplementation.
doi:10.1016/j.phrs.2012.12.003
PMCID: PMC3602397  PMID: 23266567
DHA; long chain fatty acids; natural products; lipids; omega-3
7.  The Influence of Dietary Docosahexaenoic Acid and Arachidonic Acid on Central Nervous System Polyunsaturated Fatty Acid Composition 
Numerous studies on perinatal long chain polyunsaturated fatty acid nutrition have clarified the influence of dietary docosahexaenoic acid (DHA) and arachidonic acid (ARA) on central nervous system PUFA concentrations. In humans, omnivorous primates, and piglets, DHA and ARA plasma and red blood cells concentrations rise with dietary preformed DHA and ARA. Brain and retina DHA are responsive to diet while ARA is not. DHA is at highest concentration cells and tissues associated with high energy consumption, consistent with high DHA levels in mitochondria and synaptosomes. DHA is a substrate for docosanoids, signaling compounds of intense current interest. The high concentration in tissues with high rates of oxidative metabolism may be explained by a critical role related to oxidative metabolism.
doi:10.1016/j.plefa.2007.10.016
PMCID: PMC2174532  PMID: 18023566
8.  Alteration of EGFR Spatiotemporal Dynamics Suppresses Signal Transduction 
PLoS ONE  2012;7(6):e39682.
The epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA. Membrane incorporation of DHA into immortalized colonocytes altered the lateral organization of EGFR. DHA additionally increased EGFR phosphorylation but paradoxically suppressed downstream signaling. Assessment of the EGFR-Ras-ERK1/2 signaling cascade identified Ras GTP binding as the locus of the DHA-induced disruption of signal transduction. DHA also antagonized EGFR signaling capacity by increasing receptor internalization and degradation. DHA suppressed cell proliferation in an EGFR-dependent manner, but cell proliferation could be partially rescued by expression of constitutively active Ras. Feeding chronically-inflamed, carcinogen-injected C57BL/6 mice a fish oil containing diet enriched in DHA recapitulated the effects on the EGFR signaling axis observed in cell culture and additionally suppressed tumor formation. We conclude that DHA-induced alteration in both the lateral and subcellular localization of EGFR culminates in the suppression of EGFR downstream signal transduction, which has implications for the molecular basis of colon cancer prevention by DHA.
doi:10.1371/journal.pone.0039682
PMCID: PMC3384615  PMID: 22761867
9.  Docosahexaenoic Acid Alters the Size and Distribution of Cell Surface Microdomains 
Biochimica et biophysica acta  2007;1778(2):466-471.
Summary
We recently generated nutritional data suggesting that chemoprotective dietary n-3 polyunsaturated fatty acids (n-3 PUFA) are capable of displacing acylated proteins from lipid raft microdomains in vivo (Ma et al., FASEB J. 18:1040, 2004; Fan et al., J. Immunol. 173:6151, 2004). A primary source of very long chain n-3 PUFA in the diet is derived from fish enriched with docosahexaenoic acid (DHA, 22:6n-3). In this study, we sought to determine the effect of DHA on cell surface microdomain organization in situ. Using immuno-gold electron microscopy of plasma membrane sheets coupled with spatial point analysis of validated microdomain markers, morphologically featureless microdomains were visualized in HeLa cells at high resolution. Clustering of probes within cholesterol-dependent (GFP-tH) versus cholesterol-independent (GFP-tK) nanoclusters was differentially sensitive to n-3 PUFA treatment of cells. Univariate K-function analysis of GFP-tH (5 nm gold) revealed a significant increase in clustering (p<0.05) by pre-treatment with DHA and linoleic acid (LA, 18:2Δ9,12) compared to control fatty acids; whereas LA significantly (p<0.05) reduced GFP-tK clustering. These novel data suggest that the plasma membrane organization of inner leaflets is fundamentally altered by PUFA-enrichment. We speculate that our findings may help define a new paradigm to better understand the complexity of n-3 PUFA modulation of signaling networks.
doi:10.1016/j.bbamem.2007.11.003
PMCID: PMC2244794  PMID: 18068112
Dynamic domains; nanoclusters; omega-3 fatty acid; microdomains
10.  Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells 
Background
Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3) and eicosapentaenoic acid (EPA, 20:5 ω-3). The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs) α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood.
Methods
RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF) secretion were evaluated.
Results
Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA) and α-linolenic acid (ALA), while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed high-glucose-induced VEGF secretion by RF/6A cells.
Conclusions
These results suggest that EFAs such as ALA and LA may have beneficial action in the prevention of high glucose-induced cellular damage.
doi:10.1186/1476-511X-11-90
PMCID: PMC3475048  PMID: 22781401
α-linolenic acid; Diabetic retinopathy; Oxidative stress; Membrane fluidity
11.  Enhanced Production of Docosahexaenoic Acid in Mammalian Cells 
PLoS ONE  2014;9(5):e96503.
Docosahexaenoic acid (DHA), one of the important polyunsaturated fatty acids (PUFA) with pharmaceutical and nutraceutical effects, may be obtained through diet or synthesized in vivo from dietary a-linolenic acid (ALA). However, the acumulation of DHA in human body or other mammals relies on the intake of high dose of DHA for a certain period of time, and the bioconversion of dietary ALA to DHA is very limited. Therefore the mammalian cells are not rich in DHA. Here, we report a new technology for increased prodution of DHA in mammalian cells. By using transient transfection method, Siganus canaliculatus Δ4 desaturase was heterologously expressed in chinese hamster ovary (CHO) cells, and simultaneously, mouse Δ6-desaturase and Δ5-desaturase were overexpressed. The results demonstrated that the overexpression of Δ6/Δ5-desaturases significantly enhanced the ability of transfected cells to convert the added ALA to docosapentaenoic acid (DPA) which in turn get converted into DHA directly and efficiently by the heterologously expressed Δ4 desaturase. This technology provides the basis for potential utility of these gene constructs in the creation of transgenic livestock for increased production of DHA/related products to meet the growing demand of this important PUFA.
doi:10.1371/journal.pone.0096503
PMCID: PMC4008533  PMID: 24788769
12.  Acrolein-derived DNA adduct formation in human colon cancer cells: its role in apoptosis induction by docosahexaenoic acid 
Chemical research in toxicology  2009;22(5):798-806.
The apoptotic effects of docosahexaenoic acid (DHA) and other ω-3 polyunsaturated fatty acids (PUFAs) have been documented in cell and animal studies. The molecular mechanism by which DHA induces apoptosis is unclear. Although there is no direct evidence, some studies have suggested that DNA damage generated through lipid peroxidation may be involved. Our previous studies showed that DHA, because it is high degree of unsaturation, can give rise to the acrolein-derived 1,N2-propanodeoxyguanosine (Acr-dG) as a major class of DNA adducts via lipid oxidation. As a first step to investigate the possible role of oxidative DNA damage in apoptosis induced by DHA, we examined the relationships between oxidative DNA damage and apoptosis caused by DHA in human colon cancer HT-29 cells. The apoptosis and oxidative DNA damage, including Acr-dG and 8-oxo-deoxyguanosine (8-oxo-dG) formation, in cells treated with DHA and ω-6 PUFAs, including arachidonic acid (AA) and linoleic acid (LA), were measured. DHA induced apoptosis in a dose- and time-dependent manner with a concentration range from 0 to 300 µM as indicated by increased caspase-3 activity and PARP cleavage. In contrast, AA and LA had little or no effect at these concentrations. The Acr-dG levels were increased in HT-29 cells treated with DHA at 240 and 300µM, and the increases were correlated with the induction of apoptosis at these concentrations, while no significant changes were observed for 8-oxo-dG. Because proteins may compete with DNA to react with Acr, we then examined the effects of BSA on the DHA induced apoptosis and oxidative DNA damage. The addition of BSA to HT-29 cell culture media significantly decreases Acr-dG levels with a concomitant decrease in the apoptosis induced by DHA. The reduced Acr-dG formation is attributed to the reaction of BSA with acrolein as indicated by increased levels of total protein carbonyls. Similar correlations between Acr-dG formation and apoptosis were observed in HT-29 cells directly incubated with 0 to 200µM of acrolein. Additionally, DHA treatment increased level of DNA strand breaks and caused cell cycle arrested at G1 phase. Taken together, these results demonstrate the parallel relationships between the Acr-dG level and apoptosis in HT-29 cells, suggesting that the formation of Acr-dG in cellular DNA may contribute to apoptosis induced by DHA.
doi:10.1021/tx800355k
PMCID: PMC2683896  PMID: 19341237
polyunsaturated fatty acids; apoptosis; chemoprevention; colon cancer; docosahexaenoic acid (DHA); arachidonic acid (AA); linoleic (LA); acrolein; 4-hydroxy-2-nonenal; cyclic deoxyguanosine adducts; oxidative DNA damage; 32P-postlabeling
13.  The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models 
Diabetes  2011;60(9):2370-2378.
OBJECTIVE
Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
RESEARCH DESIGN AND METHODS
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
RESULTS
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α–induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM−/− mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
CONCLUSIONS
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.
doi:10.2337/db10-0550
PMCID: PMC3161322  PMID: 21771974
14.  Phosphatidylserine-dependent neuroprotective signaling promoted by docosahexaenoic acid 
Enrichment of polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA, 22:6n–3), in the brain is known to be critical for optimal brain development and function. Mechanisms for DHA’s beneficial effects in the nervous system are not clearly understood at present. DHA is incorporated into the phospholipids in neuronal membranes, which in turn can influence not only the membrane chemical and physical properties but also the cell signaling involved in neuronal survival, proliferation and differentiation. Our studies have indicated that DHA supplementation promotes phosphatidylserine (PS) accumulation and inhibits neuronal cell death under challenged conditions, supporting a notion that DHA is an important neuroprotective agent. This article summarizes our findings on the DHA-mediated membrane-related signaling mechanisms that might explain some of the beneficial effects of DHA, particularly on neuronal survival.
doi:10.1016/j.plefa.2010.02.025
PMCID: PMC3383770  PMID: 20207120
15.  Docosahexaenoic Acid, Protectins and Dry Eye 
Purpose of review
To report recent data on the potential role of omega-3 fatty acids, in particular docosahexaenoic acid (DHA) and its derivatives, in the treatment of dry eye syndrome.
Recent findings
Dietary supplementation with polyunsaturated fatty acids (PUFAs) yields positive results in the improvement of dry eye signs and symptoms. Although several studies have shown this, evidence is still lacking as to which fatty acid or what combination constitutes the most effective treatment. Studies show that treatment with alpha-linoleic acid reduces dry eyeinduced inflammation. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derivatives, particularly resolvin E1 (RvE1) and neuroprotectin D1 (NPD1), appear to be responsible for DHA’s anti-inflammatory effect. This is supported in a study where topical RvE1 resulted in decreased inflammation in a mouse dry eye model. Topical administration of pigment epithelium derived factor (PEDF) in combination with DHA accelerates the regeneration of corneal nerves after their damage during corneal surgery, promoting the return of sensitivity and reducing the signs of dry eye. This combined treatment also reduces objective signs of dry eye, such as rose bengal staining.
Summary
No firm recommendations can be made regarding optimal dietary supplementation of essential fatty acids that benefit dry eye patients. Based on animal data and preliminary human studies, DHA and its derivatives appear to be a safe, effective topical treatment for dry eye patients. This may result from their role in the resolution of inflammation and the regeneration of damaged corneal nerves.
doi:10.1097/MCO.0b013e328342bb1a
PMCID: PMC3971926  PMID: 21157308
Dry eye; docosahexaenoic acid; omega-3 fatty acids; omega-6 fatty acids; corneal nerves; neuroprotectin D1
16.  Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis 
Nutrients  2013;5(8):3151-3162.
Polyunsaturated fatty acids (PUFAs), especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL) in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.
doi:10.3390/nu5083151
PMCID: PMC3775247  PMID: 23945674
polyunsaturated fatty acid; docosahexaenoic acid; osteoclast
17.  Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids 
Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease.
doi:10.1016/j.plefa.2012.03.004
PMCID: PMC3391319  PMID: 22464052
18.  Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress 
Free Radical Biology & Medicine  2012;52(9):1786-1795.
Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca2+ release and entry of extracellular Ca2+. Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca2+ uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca2+-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.
Highlights
► DHA induces ROS production, cell cycle arrest, UPR and apoptosis in hPASMC. ► Ca2+ and mitochondria are required for DHA-mediated induction of ROS. ► DHA alters cellular lipid composition and decreases ΔΨm and cellular ATP content. ► Free radical scavenger Tempol counteracts DHA effects in hPASMC.
doi:10.1016/j.freeradbiomed.2012.02.036
PMCID: PMC3482662  PMID: 22391221
ATF6, activating transcription factor 6; DHA, docosahexaenoic acid; ΔΨm, mitochondrial membrane potential; eIF2α, eukaryotic initiation factor 2α; ER, endoplasmic reticulum; FCS, fetal calf serum; hPASMC, human pulmonary artery smooth muscle cell; HSPA5, heat shock 70-kDa protein 5; IRE1α, inositol-requiring enzyme 1α; n-3 PUFA, n-3 polyunsaturated fatty acid; PERK, protein kinase RNA-like endoplasmic reticulum kinase; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PTP, permeability transition pore; ROS, reactive oxygen species; TG, triglyceride; UPR, unfolded protein response; XBP-1, X-box binding protein 1; Oxidative stress; Unfolded protein response; n-3 polyunsaturated fatty acid; Apoptosis; Mitochondria; Cell cycle; Free radicals
19.  Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases 
Background
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are functionally the most important omega-3 polyunsaturated fatty acids (PUFAs). Oral supply of these fatty acids increases their levels in plasma and cell membranes, often at the expense of the omega-6 PUFAs arachidonic acid (ARA) and linoleic acid. This results in an altered pattern of lipid mediator production to one which is less pro-inflammatory. We investigated whether short term intravenous supply of omega-3 PUFAs could change the levels of EPA, DHA, ARA and linoleic acid in plasma and erythrocytes in patients with hepatic colorectal metastases.
Methods
Twenty patients were randomised to receive a 72 hour infusion of total parenteral nutrition with (treatment group) or without (control group) omega-3 PUFAs. EPA, DHA, ARA and linoleic acid were measured in plasma phosphatidylcholine (PC) and erythrocytes at several times points up to the end of infusion and 5 to 12 days (mean 9 days) after stopping the infusion.
Results
The treatment group showed increases in plasma PC EPA and DHA and erythrocyte EPA and decreases in plasma PC and erythrocyte linoleic acid, with effects most evident late in the infusion period. Plasma PC and erythrocyte EPA and linoleic acid all returned to baseline levels after the 5–12 day washout. Plasma PC DHA remained elevated above baseline after washout.
Conclusions
Intravenous supply of omega-3 PUFAs results in a rapid increase of EPA and DHA in plasma PC and of EPA in erythrocytes. These findings suggest that infusion of omega-3 PUFAs could be used to induce a rapid effect especially in targeting inflammation.
Trial registration
http://www.clinicaltrials.gov identifier NCT00942292
doi:10.1186/1476-511X-12-64
PMCID: PMC3659039  PMID: 23648075
Parenteral nutrition; Fish oil; Omega-3 fatty acids; Eicosapentaenoic acid; Docosahexaenoic acid; Arachidonic acid; Liver metastases
20.  Docosahexaenoic Acid Suppresses Neuroinflammatory Responses and Induces Heme Oxygenase-1 Expression in BV-2 Microglia: Implications of Antidepressant Effects for Omega-3 Fatty Acids 
Neuropsychopharmacology  2010;35(11):2238-2248.
Accumulating evidence suggests that the pathophysiology of depression might be associated with neuroinflammation, which could be attenuated by pharmacological treatment for depression. Omega-3 polyunsaturated fatty acids (PUFAs) are anti-inflammatory and exert antidepressant effects. The aim of this study was to identify the molecular mechanisms through which docosahexaenoic acid (DHA), the main omega-3 PUFA in the brain, modulates oxidative reactions and inflammatory cytokine production in microglial and neuronal cells. The results of this study showed that DHA reduced expressions of tumor necrosis factor-α, interleukin-6, nitric oxide synthase, and cyclo-oxygenase-2, induced by interferon-γ, and induced upregulation of heme oxygenase-1 (HO-1) in BV-2 microglia. The inhibitory effect of DHA on nitric oxide production was abolished by HO-1 inhibitor zinc protoporphyrin IX. In addition, DHA caused AKT and ERK activation in a time-dependent manner, and the DHA-induced HO-1 upregulation could be attenuated by PI-3 kinase/AKT and MEK/ERK inhibitors. DHA also increased IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation, whereas both nuclear factor-κB and IκB protease inhibitors could inhibit DHA-induced HO-1 expressions. The other major n-3 PUFA, eicosapentaenoic acid, showed similar effects of DHA on inflammation and HO-1 in repeated key experiments. In connecting with inflammation hypothesis of depression and clinical studies supporting the antidepressant effects of omega-3 PUFAs, this study provides a novel implication of the antidepressant mechanisms of DHA.
doi:10.1038/npp.2010.98
PMCID: PMC3055314  PMID: 20668435
omega-3 fatty acids; docosahexaenoic acid (DHA); heme oxygenase-1 (HO-1); antidepressant; microglia; inflammation; biological psychiatry; depression, unipolar/bipolar; molecular & cellular neurobiology; psychopharmacology; omega-3 fatty acids; docosahexaenoic acid (DHA); heme oxygenase-1 (HO-1); antidepressant; microglia, inflammation
21.  Circulating Docosahexaenoic Acid Levels Are Associated with Fetal Insulin Sensitivity 
PLoS ONE  2014;9(1):e85054.
Background
Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies.
Methods and Principal Findings
In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity.
Conclusion
Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in perinatally “programming” the susceptibility to type 2 diabetes in the offspring of gestational diabetic mothers.
doi:10.1371/journal.pone.0085054
PMCID: PMC3890289  PMID: 24454790
22.  OMEGA-3 POLYUNSATURATED FATTY ACIDS INHIBIT HEPATOCELLULAR CARCINOMA CELL GROWTH THROUGH BLOCKING β-CATENIN AND COX-2 
Molecular cancer therapeutics  2009;8(11):3046-3055.
Hepatocellular carcinoma (HCC) is a common human cancer with high mortality and currently there is no effective chemoprevention or systematic treatment. Recent evidence suggests that COX-2-derived PGE2 and Wnt/β-catenin signaling pathways are implicated in hepatocarcinogenesis. Here we report that ω-3 PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), inhibit HCC growth through simultaneously inhibition of COX-2 and β-catenin. DHA and EPA treatment resulted in a dose-dependent reduction of cell viability with cleavage of PARP, caspase-3 and caspase-9 in three human HCC cell lines (Hep3B, Huh-7, HepG2). In contrast, arachidonic acid (AA), a ω-6 PUFA, exhibited no significant effect. DHA and EPA treatment caused dephosphorylation and thus activation of GSK-3β, leading to β-catenin degradation in Hep3B cells. The GSK3-β inhibitor, LiCl, partially prevented DHA-induced β-catenin protein degradation and apoptosis. Additionally, DHA induced the formation of β-catenin/Axin/GSK-3β binding complex, which serves as a parallel mechanism for β-catenin degradation. Furthermore, DHA inhibited PGE2 signaling through downregulation of COX-2 and upregulation of the COX-2 antagonist, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Finally, the growth of HCC in vivo was significantly reduced when mouse HCCs (Hepa1–6) were inoculated into the Fat-1 transgenic mice which express a Caenorhabditis elegans desaturase converting ω-6 to ω-3 PUFAs endogenously. These findings provide important preclinical evidence and molecular insight for utilization of ω-3 PUFAs for the chemoprevention and treatment of human HCC.
doi:10.1158/1535-7163.MCT-09-0551
PMCID: PMC2783299  PMID: 19887546
hepatocellular carcinoma; omega-3 polyunsaturated fatty acid; beta-catenin; cyclooxygenase-2; prostaglandin E2; 15-PGDH
23.  Reciprocal Modulation of Surface Expression of Annexin A2 in a Human Umbilical Vein Endothelial Cell-Derived Cell Line by Eicosapentaenoic Acid and Docosahexaenoic Acid 
PLoS ONE  2014;9(1):e85045.
Background
Annexin A2 (ANXA2), a member of the annexin family of cytosolic Ca2+-binding proteins, plays a pivotal role in vascular biology. Small amounts of this protein and S100A10 protein are exposed on the surface of endothelial cells (ECs). They control fibrinolysis by recruiting tissue-type and urokinase-type plasminogen activators from the plasma. Nutritional studies indicate that two major long-chain polyunsaturated fatty acids (PUFAs), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), provide benefits for EC functions. The effects of EPA and DHA on the plasminogen/plasmin system have not been characterized.
Methodology/Principal Findings
Proteomic analysis of a cultured human umbilical vein EC-derived cell line, HUV-EC-C, showed that cell-associated ANXA2 decreased with EPA treatment and increased with DHA. A small fraction of ANXA2 was bound to the cell surface, which was also affected by these PUFAs following the same trends. Cell surface expression was negatively regulated by protein kinase C (PKC) α-mediated Ser-phosphorylation, which was up- and down-regulated by EPA and DHA, respectively. These PUFAs differentially affected a small fraction of caveolae/rafts-associated ANXA2. In addition to chymotrypsin-like activity in the serum, newly activated plasmin cleaved the ANXA2 on the cell surface at distinct sites in the N-terminal sequence. ANXA2 also bound to membranes released in the medium, which was similarly processed by these proteases. Both the PUFAs did not directly affect the release.
Conclusion/Significance
These results suggest that EPA and DHA reciprocally control cell surface location of ANXA2. Moreover, cleavage of this protein by plasmin likely resulted in autodigestion of the platform for formation of this protease. In conjunction with termination of the proteolysis by rapid inactivation of plasmin by α-2-antiplasmin and other polypeptide inhibitors, this feedback mechanism may emphasize the benefits of these PUFA in regulation of the initiation of fibrinolysis on the surface of ECs.
doi:10.1371/journal.pone.0085045
PMCID: PMC3897403  PMID: 24465474
24.  Caveolae: a regulatory platform for nutritional modulation of inflammatory diseases 
Dietary intervention strategies have proven to be an effective means of decreasing several risk factors associated with the development of atherosclerosis. Endothelial cell dysfunction influences vascular inflammation and is involved in promoting the earliest stages of lesion formation. Caveolae are lipid raft microdomains abundant within the plasma membrane of endothelial cells and are responsible for mediating receptor-mediated signal transduction. Caveolae have been implicated in the regulation of enzymes associated with several key signaling pathways capable of determining intracellular redox status. Diet and plasma-derived nutrients may modulate an inflammatory outcome by interacting with and altering caveolae-associated cellular signaling. For example, omega-3 fatty acids and several polyphenolics have been shown to improve endothelial cell function by decreasing the formation of ROS and increasing NO bioavailability, events associated with altered caveolae composition. Thus, nutritional modulation of caveolae-mediated signaling events may provide an opportunity to ameliorate inflammatory signaling pathways capable of promoting the formation of vascular diseases, including atherosclerosis.
doi:10.1016/j.jnutbio.2010.09.013
PMCID: PMC3139026  PMID: 21292468
25.  Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids 
PLoS ONE  2012;7(3):e34402.
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.
doi:10.1371/journal.pone.0034402
PMCID: PMC3316678  PMID: 22479624

Results 1-25 (883977)