PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (693240)

Clipboard (0)
None

Related Articles

1.  The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration 
Biomaterials  2008;29(19):2849-2857.
Implant osseointegration, defined as bone apposition and functional fixation, is a requisite for clinical success in orthopaedic and dental applications, many of which are restricted by implant loosening. Modification of implants to present bioactive motifs such as the RGD cell-adhesive sequence from fibronectin (FN) represents a promising approach in regenerative medicine. However, these biomimetic strategies have yielded only marginal enhancements in tissue healing in vivo. In this study, clinical-grade titanium implants were grafted with a non-fouling oligo(ethylene glycol)-substituted polymer coating functionalized with controlled densities of ligands of varying specificity for target integrin receptors. Biomaterials presenting the α5β1-integrin-specific FN fragment FNIII7–10 enhanced osteoblastic differentiation in bone marrow stromal cells compared to unmodified titanium and RGD-presenting surfaces. Importantly, FNIII7–10-functionalized titanium significantly improved functional implant osseointegration compared to RGD-functionalized and unmodified titanium in vivo. This study demonstrates that bioactive coatings that promote integrin binding specificity regulate marrow-derived progenitor osteoblastic differentiation and enhance healing responses and functional integration of biomedical implants. This work identifies an innovative strategy for the rational design of biomaterials for regenerative medicine.
doi:10.1016/j.biomaterials.2008.03.036
PMCID: PMC2397448  PMID: 18406458
2.  Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings 
Background
The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue.
Methods
We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells.
Results
Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt.
Conclusion
We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix. The coated nanosprings enhance normal human osteoblasts cellular behaviors needed for improving osseointegration of orthopedic materials. Thus, metal-coated nanosprings represent a novel biomaterial that could be exploited for improving success rates of orthopedic implant procedures.
doi:10.1186/1477-3155-10-6
PMCID: PMC3276422  PMID: 22284364
nanosprings; nanomaterials; osteoblasts; osseointegration; calcification; bone regeneration
3.  The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces 
Biomaterials  2009;30(10):1898-1909.
Integrin-binding peptides increase cell adhesion to naive hydroxyapatite (HA), however, in the body, HA becomes rapidly modified by protein adsorption. Previously we reported that, when combined with an adsorbed protein layer, RGD peptides interfered with cell adhesion to HA. In the current study we evaluated mesenchymal stem cell (MSC) interactions with HA disks coated with the collagen-mimetic peptides, DGEA, P15 and GFOGER. MSCs adhered equally well to disks coated with DGEA, P15, or collagen I, and all three substrates, but not GFOGER, supported greater cell adhesion than uncoated HA. When peptide-coated disks were overcoated with proteins from serum or the tibial microenvironment, collagen mimetics did not inhibit MSC adhesion, as was observed with RGD, however neither did they enhance adhesion. Given that activation of collagen-selective integrins stimulates osteoblastic differentiation, we monitored osteocalcin secretion and alkaline phosphatase activity from MSCs adherent to DGEA or P15-coated disks. Both of these osteoblastic markers were upregulated by DGEA and P15, in the presence and absence of differentiation-inducing media. Finally, bone formation on HA tibial implants was increased by the collagen-mimetics. Collectively these results suggest that collagen-mimetic peptides improve osseointegration of HA, most probably by stimulating osteoblastic differentiation, rather than adhesion, of MSCs.
doi:10.1016/j.biomaterials.2008.12.053
PMCID: PMC3679919  PMID: 19157536
Bioadsorption; Bone Tissue Engineering; Cell Adhesion; Hydroxyapatite; Collagen; Peptide
4.  Osseointegration of Titanium Prostheses on the Stapes Footplate 
The success of middle ear reconstructive surgery depends on stable coupling between the prosthesis and residual ossicles. To establish a stable fixed point on the stapes footplate for subsequent prosthesis reconstruction, a titanium footplate anchor was coated with osteoinductive substances to induce a controlled osseointegration on the footplate. Various studies have shown that collagen-based matrices with and without bone growth and differentiation factors can induce and enhance bone formation and consequently increase implant stability. The ears of 23 one-year-old Merino sheep (n = 46) were divided into five groups and implanted with a specially designed footplate anchor. The surface of each implant was modified by applying a collagenous matrix (collagen I or II) either with immobilized bone morphogenic protein (BMP-4) or transforming growth factor-ß, respectively, to stimulate osteoblastic activation and differentiation on the stapes footplate with subsequent osseointegration. Polychrome labeling was used to assess new bone formation and remodeling during the study. After study termination on day 84, synchrotron radiation-based computed microtomography and histomorphometry were used to identify bone implant contact. Eight implants showed radiographical and/or histological evidence of integration by newly formed bone. An osseointegration could histologically be proven in two of these eight specimens, and additional ectopic bone formations were seen in another 21 specimens. In all animals, bone turnover on the footplate was proven by polychrome labeling. This study proves the general ability to induce a controlled osseointegration of titanium implants biologically activated with artificial extracellular matrices on their surfaces on the stapes footplate in a mammalian organism.
doi:10.1007/s10162-009-0202-y
PMCID: PMC2862917  PMID: 20066460
tympanoplasty; reconstruction; animal study; growth factors; implant coating
5.  Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite 
Metals  2014;4(4):549-569.
The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical semiconductors, stress transfer, additives with low thermal PMC processing and new coating possibilities.
doi:10.3390/met4040549
PMCID: PMC4307950  PMID: 25635227
titanium; composite; bisphenol polymer; carbon fiber; osseointegration; corrosion; infection; estrogen; microbiocircuit; semiconductor
6.  Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants 
Integrin-mediated cell adhesion to biomolecules adsorbed onto biomedical devices regulates device integration and performance. Because of the central role of integrin-fibronectin (FN) interactions in osteoblastic function and bone formation, we evaluated the ability of fibronectin-inspired biomolecular coatings to promote osteoblastic differentiation and implant osseointegration. Notably, these biomolecular coatings relied on physical adsorption of FN-based ligands onto biomedical-grade titanium as a simple, clinically-translatable strategy to functionalize medical implants. Surfaces coated with a recombinant fragment of FN spanning the central cell binding domain enhanced osteoblastic differentiation and mineralization in bone marrow stromal cell cultures and increased implant osseointegration in a rat cortical bone model compared to passively adsorbed RGD peptides, serum proteins, and full-length FN. Differences in biological responses correlated with integrin binding specificity and signaling among surface coatings. This work validates a simple, clinically-translatable, surface biofunctionalization strategy to enhance biomedical device integration.
doi:10.1111/j.1582-4934.2008.00476.x
PMCID: PMC2819599  PMID: 18752639
fibronectin; osseointegration; coating; integrins; biomimetic; implant
7.  Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells 
BioMed Research International  2014;2014:742180.
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.
doi:10.1155/2014/742180
PMCID: PMC4177732  PMID: 25295270
8.  UV- Killed Staphylococcus aureus Enhances Adhesion and Differentiation of Osteoblasts on Bone-associated Biomaterials 
Titanium alloys (Ti) are the preferred material for orthopaedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix. Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. While UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the above properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In the present study, osteoblast adhesion, proliferation, and mineralized extracellular matrix synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.
doi:10.1002/jbm.a.32890
PMCID: PMC2943998  PMID: 20725968
Titanium implant surfaces; Osseointegration; Staphylococcus aureus; Calvarial osteoblasts; Osteoblast differentiation
9.  Reality of Dental Implant Surface Modification: A Short Literature Review 
Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.
doi:10.2174/1874120701408010114
PMCID: PMC4231373  PMID: 25400716
Anodic oxidation; BMP; fluoride; functional peptide; hydrophilicity; implant surface; SLA; surface modification.
10.  In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants 
PLoS ONE  2013;8(3):e57564.
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.
doi:10.1371/journal.pone.0057564
PMCID: PMC3590211  PMID: 23483914
11.  Adherent Lipopolysaccharide Inhibits the Osseointegration of Orthopaedic Implants by Impairing Osteoblast Differentiation 
Bone  2012;52(1):93-101.
Osseointegration is the process by which an orthopaedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopaedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopaedic implants and if adherent bacterial debris inhibits the osseointegration of orthopaedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopaedic implants.
doi:10.1016/j.bone.2012.09.011
PMCID: PMC3513552  PMID: 22995462
orthopaedic implants; osseointegration; osteoblasts; bacterial debris; lipopolysaccharide
12.  Surface Contaminants Inhibit Osseointegration in a Novel Murine Model 
Bone  2011;49(5):923-930.
Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopaedic implants after sterilization procedures and affect osseointegration. The goals of this study were to develop a murine model of osseointegration in order to determine whether removing surface contaminants enhances osseointegration. To develop the murine model, titanium alloy implants were implanted into a unicortical pilot hole in the mid-diaphysis of the femur and osseointegration was measured over a five week time course. Histology, backscatter scanning electron microscopy and x-ray energy dispersive spectroscopy showed areas of bone in intimate physical contact with the implant, confirming osseointegration. Histomorphometric quantification of bone-to-implant contact and peri-implant bone and biomechanical pullout quantification of ultimate force, stiffness and work to failure increased significantly over time, also demonstrating successful osseointegration. We also found that a rigorous cleaning procedure significantly enhances bone-to-implant contact and biomechanical pullout measures by two-fold compared with implants that were autoclaved, as recommended by the manufacturer. The most likely interpretation of these results is that surface contaminants inhibit osseointegration. The results of this study justify the need for the development of better detection and removal techniques for contaminants on orthopaedic implants and other medical devices.
doi:10.1016/j.bone.2011.07.013
PMCID: PMC3200470  PMID: 21801863
contaminants; osseointegration; murine; histomorphometry; biomechanical testing
13.  Strain driven fast osseointegration of implants 
Background
Although the bone's capability of dental implant osseointegration has clinically been utilised as early as in the Gallo-Roman population, the specific mechanisms for the emergence and maintenance of peri-implant bone under functional load have not been identified. Here we show that under immediate loading of specially designed dental implants with masticatory loads, osseointegration is rapidly achieved.
Methods
We examined the bone reaction around non- and immediately loaded dental implants inserted in the mandible of mature minipigs during the presently assumed time for osseointegration. We used threaded conical titanium implants containing a titanium2+ oxide surface, allowing direct bone contact after insertion. The external geometry was designed according to finite element analysis: the calculation showed that physiological amplitudes of strain (500–3,000 ustrain) generated through mastication were homogenously distributed in peri-implant bone. The strain-energy density (SED) rate under assessment of a 1 Hz loading cycle was 150 Jm-3 s-1, peak dislocations were lower then nm.
Results
Bone was in direct contact to the implant surface (bone/implant contact rate 90%) from day one of implant insertion, as quantified by undecalcified histological sections. This effect was substantiated by ultrastructural analysis of intimate osteoblast attachment and mature collagen mineralisation at the titanium surface. We detected no loss in the intimate bone/implant bond during the experimental period of either control or experimental animals, indicating that immediate load had no adverse effect on bone structure in peri-implant bone.
Conclusion
In terms of clinical relevance, the load related bone reaction at the implant interface may in combination with substrate effects be responsible for an immediate osseointegration state.
doi:10.1186/1746-160X-1-6
PMCID: PMC1277014  PMID: 16270927
14.  Osseointegration into a Novel Titanium Foam Implant in the Distal Femur of a Rabbit 
A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement.
doi:10.1002/jbm.b.31541
PMCID: PMC2860654  PMID: 20024964
Osseointegration; bone ingrowth; titanium foam; rabbit; push-out testing
15.  Biological Functionalization of Dental Implants with Fibronectin: A Scanning Electron Microscopic Study 
Objectives
Early stages of peri-implant bone formation play an essential role in the osseointegration and long-term success of dental implants. Biological implant surface coatings are an emerging technology to enhance the attachment of the implant to the surrounding bone and stimulate bone regeneration. The purpose of this study was to determine the effect of coating the implant surface with fibronectin on osseointegration.
Material and methods
The experiment was conducted on a total of twelve New Zealand white mature male rabbits, weight between 2.5–4 kg. Twenty four pure titanium implants were used in this study. Each rabbits received two implants, one implant in each tibia; the implant in the right limb was coated with fibronectin (experimental group), whilst on the contralateral side the implants were placed without coating (control group). Six rabbits were sacrificed for Scanning Electron Microscopic evaluation after 4 and 8 week healing periods.
Results
The results of the present study demonstrating the mean gap distance between the bone and implant was greater in the control group compared to fibronection group at both observation periods however, the difference between these two groups was not statistically significant.
Conclusion
Thus, it could be suggested that the biological functionalization of dental implants with fibronectin, may influence the integration or biocompatibility and bonding of the implant to the surrounding bone.
PMCID: PMC4039585  PMID: 24899880
Dental implant; Osseointegration; Biofunctionalization; Extracellular matrix; Fibronectin
16.  Extracellular matrix-mimetic adhesive biomaterials for bone repair 
Limited osseointegration of current orthopaedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with ECM proteins or ECM-derived peptides or protein fragments which engage integrins and direct osteoblast adhesion and differentiation. This review discusses 1) bone ECM composition and key integrins implicated in osteogenic differentiation, 2) the use of implants functionalized with ECM-mimetic peptides/protein fragments, and 3) growth-factor derived peptides to promote the mechanical fixation of implants to bone and to enhance bone healing within large defects.
doi:10.1002/jbm.a.32979
PMCID: PMC3059117  PMID: 21105174
17.  Techniques for dental implant nanosurface modifications 
PURPOSE
Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants.
MATERIALS AND METHODS
A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis.
RESULTS
Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness.
CONCLUSION
Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures.
doi:10.4047/jap.2014.6.6.498
PMCID: PMC4279049  PMID: 25558347
Intelligent surfaces; Sputtering; Superhydrophillic; Chemical vapor deposition; Osseointegration; Engineered surface
18.  A Silver Ion-doped Calcium Phosphate-based Ceramic Nanopowder-coated Prosthesis Increased Infection Resistance 
Background
Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants.
Questions/purposes
We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses.
Methods
We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits’ knees. Before implantation, 5 × 102 colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation.
Results
Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses.
Conclusions
Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants.
Clinical Relevance
Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.
doi:10.1007/s11999-013-2894-x
PMCID: PMC3705076  PMID: 23463287
19.  Osseointegration of zirconia implants: an SEM observation of the bone-implant interface 
Head & Face Medicine  2008;4:25.
Background
The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level.
Methods
A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface.
Results
Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography.
Conclusion
The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.
doi:10.1186/1746-160X-4-25
PMCID: PMC2583968  PMID: 18990214
20.  Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating 
STATEMENT OF PROBLEM
The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface.
PURPOSE
The purpose of this study was to evaluate the osteoblast precursor response to titanium - 10 tantalum - 10 niobium (Ti-Ta-Nb) alloy and its sputtered coating.
MATERIAL AND METHODS
Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days.
RESULTS
The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups.
CONCLUSIONS
It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.
doi:10.4047/jap.2009.1.1.56
PMCID: PMC2994675  PMID: 21165256
Implant; Ti-Ta-Nb; Cell response; Sputter; Nanoscale; Osteoblast
21.  Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating 
Acta Orthopaedica  2011;82(4):499-503.
Background and purpose
Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance.
Materials and methods
We placed AD-coated and non-coated titanium implants (Ra ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface.
Results
4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group.
Interpretation
We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings.
doi:10.3109/17453674.2011.579522
PMCID: PMC3237044  PMID: 21504369
22.  Effects of Coating a Titanium Alloy with Fibronectin on the Expression of Osteoblast Gene Markers in the MC3T3 Osteoprogenitor Cell Line 
Purpose
A number of environmental and patient-related factors contribute to implant failure. A significant fraction of these failures can be attributed to limited osseointegration resulting from poor bone healing responses. The overall goal of this study was to determine whether surface treatment of a titanium-aluminum-vanadium alloy (Ti-6Al-4V) implant material with a biomimetic protein coating could promote the differentiation of attached osteoblastic cells. The specific aims of the study were to investigate whether osteoprogenitor cells cultured on a rigorously cleaned implant specimen showed a normal pattern of differentiation and whether preadsorbed fibronectin accelerated or enhanced osteoblast differentiation.
Materials and Methods
Ti-6Al-4V disks were rigorously cleaned, passivated in nitric acid, and dry heat–sterilized; some of the disks were then coated with 1 nmol/L fibronectin. MC3T3 osteoprogenitor cells were then cultured on the pretreated disks for several weeks. Quantitative real-time polymerase chain reaction was performed to measure changes over time in the mRNA levels of osteoblast genes.
Results
Fibronectin increased the peak expression of all analyzed osteoblast gene markers. “Early” genes that normally mark the proliferative phase (0 to 10 days) of osteoblastic development showed peak expression within the first 10 days after cell attachment to the titanium alloy. In contrast, “late” genes that normally mark the differentiation (10 to 20 days) and mineralization (20 to 36 days) phases of osteoblastogenesis achieved peak expression only after approximately 3 to 4 weeks of culture.
Conclusions
Osteoprogenitors cultured on a rigorously cleaned Ti-6Al-4V alloy were found to demonstrate a normal pattern of osteoblast differentiation. Preadsorbed fibronectin was observed to stimulate osteoblast differentiation during the mineralization phase of osteoblastogenesis.
PMCID: PMC3810407  PMID: 23057020
coatings; differentiation; fibronectin; metal oxides; osteoblast; real-time polymerase chain reaction
23.  An In Vitro Assessment of Fibroblast and Osteoblast Response to Alendronate-Modified Titanium and the Potential for Decreasing Fibrous Encapsulation 
Tissue Engineering. Part A  2013;19(17-18):1919-1930.
Fibrous encapsulation can impair implant osseointegration and cause implant failure but currently there are limited strategies to address this problem. Since bisphosphonates (BPs), a class of drugs widely used to treat bone diseases, was recently found to induce fibroblast apoptosis, we hypothesize that by loading BPs on titanium (Ti) implant surface, fibrous encapsulation may be inhibited with simultaneous enhancement of implant osseointegration. This strategy of local administration can also be expected to minimize the adverse side effects of BPs, which are associated with intravenous injections. To verify this hypothesis, alendronate was loaded on Ti surface via a hydroxyapatite (CaP) coating, and the effects of the loaded alendronate on fibroblast proliferation and apoptosis, and osteoblast proliferation, alkaline phosphatase (ALP) activity, and apoptosis were investigated in vitro. With a surface density of loaded alendronate 0.046 mg/cm2 or higher, fibroblast proliferation was suppressed due to increased apoptosis, while osteoblast proliferation and ALP activity increased with minimal apoptosis. In a coculture of fibroblasts and osteoblasts in a 1:1 ratio, ∼60% of the cells on these alendronate-loaded substrates were osteoblasts 1 day after cell seeding. The percentage of osteoblasts increased to about 75% 4 days after cell seeding. These results suggest that fibroblasts and osteoblasts respond differently toward the alendronate-modified substrates, and this phenomenon can potentially be capitalized to reduce fibrous encapsulation.
doi:10.1089/ten.tea.2012.0218
PMCID: PMC3725798  PMID: 23540949
24.  Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants 
The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant.
doi:10.2147/IJN.S28082
PMCID: PMC3284227  PMID: 22359461
osseointegration; dental and orthopedic implant; nanotechnology; bone–implant integration; HA; calcium phosphate
25.  The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation 
Biomaterials  2011;32(13):3395-3403.
Titanium (Ti) osseointegration is critical for the success of dental and orthopaedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in vivo.
doi:10.1016/j.biomaterials.2011.01.029
PMCID: PMC3350795  PMID: 21310480
(4 to 6) nanotopography; titanium oxide; surface roughness; titanium; bone; implant; osteoblasts

Results 1-25 (693240)