PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (757346)

Clipboard (0)
None

Related Articles

1.  Evidence for Caspase Effects on Release of Cytochrome c and AIF in a Model of Ischemia in Cortical Neurons 
Neuroscience letters  2009;469(2):179-183.
Neuronal apoptosis following ischemia can be mediated by a caspase-dependent pathway, which involves the mitochondrial release of cytochrome c that initiates a cascade of caspase activation. In addition, there is a caspase-independent pathway, which is mediated by the release of apoptosis-inducing factor (AIF). Using caspase-inhibitor gene therapy, we investigated the roles of caspases on the mitochondrial release of cyt c and the release of AIF. Specifically, we used herpes simplex virus-1 amplicon vectors to ectopically express a viral caspase inhibitor (crmA or p35) in mixed cortical cultures exposed to oxygen/glucose deprivation. Overexpression of either crmA or p35 (but not the caspase-3 inhibitor DEVD) inhibited the release of AIF; this suggests that there can be cross-talk between the caspase-dependent and the ostensibly caspase-independent pathway. In addition, both crmA overexpression and DEVD inhibited cyt c release, suggesting a positive feedback loop involving activated caspases stimulating cyt c release.
doi:10.1016/j.neulet.2009.11.067
PMCID: PMC2826205  PMID: 19944742
Cytochrome c; Apoptosis-Inducing Factor; Oxygen Glucose Deprivation
2.  Myxoma Virus Serp2 Is a Weak Inhibitor of Granzyme B and Interleukin-1β-Converting Enzyme In Vitro and Unlike CrmA Cannot Block Apoptosis in Cowpox Virus-Infected Cells 
Journal of Virology  1999;73(8):6394-6404.
The Serp2 protein encoded by the leporipoxvirus myxoma virus is essential for full virulence (F. Messud-Petit, J. Gelfi, M. Delverdier, M. F. Amardeilh, R. Py, G. Sutter, and S. Bertagnoli, J. Virol. 72:7830–7839, 1998) and, like crmA of cowpox virus (CPV), is reported to inhibit the interleukin-1β-converting enzyme (ICE, caspase-1) (F. Petit, S. Bertagnoli, J. Gelfi, F. Fassy, C. Boucraut-Baralon, and A. Milon, J. Virol. 70:5860–5866, 1996). Serp2 and CrmA both contain Asp at the P1 position within the serpin reactive site loop and yet are only 35% identical overall. Serp2 protein was cleaved by ICE but, unlike CrmA, did not form a stable complex with ICE that was detectable by native gel electrophoresis. Attempts to covalently cross-link ICE-serpin inhibitory complexes were successful with CrmA, but no complex between ICE and Serp2 was visible after cross-linking. Purified His10-tagged Serp2 protein was a relatively poor inhibitor of ICE, with a Ki of 80 nM compared to 4 pM for CrmA. Serp2 protein resembled CrmA in that a stable complex with the serine proteinase granzyme B was detectable after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, Serp2 was less effective at inhibiting granzyme B activity (Ki = 420 nM) than CrmA (Ki = 100 nM). Finally, Serp2 was tested for the ability to replace CrmA and inhibit apoptosis in LLC-PK1 cells infected with a CPV recombinant deleted for CrmA but expressing Serp2. Unlike wild-type-CPV-infected cells, apoptosis was readily observed in cells infected with the recombinant virus, as indicated by the induction of both nuclear fragmentation and caspase-mediated cleavage of DEVD-AMC [acetyl-Asp-Glu-Val-Asp-(amino-4-methyl coumarin)]. These results indicate that Serp2 is unable to functionally substitute for CrmA within the context of CPV and that the inhibition spectra for Serp2 and CrmA are distinct.
PMCID: PMC112719  PMID: 10400732
3.  Viral Cross-Class Serpin Inhibits Vascular Inflammation and T Lymphocyte Fratricide; A Study in Rodent Models In Vivo and Human Cell Lines In Vitro 
PLoS ONE  2012;7(9):e44694.
Poxviruses express highly active inhibitors, including serine proteinase inhibitors (serpins), designed to target host immune defense pathways. Recent work has demonstrated clinical efficacy for a secreted, myxomaviral serpin, Serp-1, which targets the thrombotic and thrombolytic proteases, suggesting that other viral serpins may have therapeutic application. Serp-2 and CrmA are intracellular cross-class poxviral serpins, with entirely distinct functions from the Serp-1 protein. Serp-2 and CrmA block the serine protease granzyme B (GzmB) and cysteine proteases, caspases 1 and 8, in apoptotic pathways, but have not been examined for extracellular anti-inflammatory activity. We examined the ability of these cross-class serpins to inhibit plaque growth after arterial damage or transplant and to reduce leukocyte apoptosis. We observed that purified Serp-2, but not CrmA, given as a systemic infusion after angioplasty, transplant, or cuff-compression injury markedly reduced plaque growth in mouse and rat models in vivo. Plaque growth was inhibited both locally at sites of surgical trauma, angioplasty or transplant, and systemically at non-injured sites in ApoE-deficient hyperlipidemic mice. With analysis in vitro of human cells in culture, Serp-2 selectively inhibited T cell caspase activity and blocked cytotoxic T cell (CTL) mediated killing of T lymphocytes (termed fratricide). Conversely, both Serp-2 and CrmA inhibited monocyte apoptosis. Serp-2 inhibitory activity was significantly compromised either in vitro with GzmB antibody or in vivo in ApoE/GzmB double knockout mice. Conclusions The viral cross-class serpin, Serp-2, that targets both apoptotic and inflammatory pathways, reduces vascular inflammation in a GzmB-dependent fashion in vivo, and inhibits human T cell apoptosis in vitro. These findings indicate that therapies targeting Granzyme B and/or T cell apoptosis may be used to inhibit T lymphocyte apoptosis and inflammation in response to arterial injury.
doi:10.1371/journal.pone.0044694
PMCID: PMC3458838  PMID: 23049756
4.  Activation of Caspases in Pig Kidney Cells Infected with Wild-Type and CrmA/SPI-2 Mutants of Cowpox and Rabbitpox Viruses 
Journal of Virology  1998;72(5):3524-3533.
The cowpox virus (CPV) CrmA and the equivalent rabbitpox virus (RPV) SPI-2 proteins have anti-inflammatory and antiapoptosis activity by virtue of their ability to inhibit caspases, including the interleukin-1β-converting enzyme (ICE; caspase-1). Infection of LLC-PK1 pig kidney cells with a CPV CrmA mutant, but not with wild-type (wt) CPV, results in the induction of many of the morphological features of apoptosis (C. A. Ray and D. J. Pickup, Virology 217:384–391, 1996). In our study, LLC-PK1 cells infected with CPVΔcrmA, but not those infected with wt CPV, showed induction of poly(ADP-ribose) polymerase (PARP)- and lamin A-cleaving activities and processing of the CPP32 (caspase-3) precursor to a mature 18-kDa form. Surprisingly, infection of LLC-PK1 cells with either wt RPV (despite the presence of the SPI-2 protein) or RPVΔSPI-2 resulted in cleavage activity against PARP and lamin A and the appearance of the mature subunit of CPP32/caspase-3. The biotinylated specific peptide inhibitor Ac-Tyr-Val-Lys(biotinyl)-Asp-2,6-dimethylbenzoyloxymethylketone [AcYV(bio)KD-aomk] labeled active caspase subunits of 18, 19, and 21 kDa in extracts from LLC-PK1 cells infected with CPVΔcrmA, wt RPV, or RPVΔSPI-2 but not wt CPV. Mixed infection of LLC-PK1 cells with wt RPV and wt CPV gave no PARP-cleaving activity, and all PARP cleavage mediated by SPI-2 and CrmA mutants of RPV and CPV, respectively, could be eliminated by coinfection with wt CPV. These results suggest that the RPV SPI-2 and CPV CrmA proteins are not functionally equivalent and that CrmA, but not SPI-2 protein, can completely prevent apoptosis in LLC-PK1 cells under these conditions.
PMCID: PMC109571  PMID: 9557631
5.  Sindbis Virus Induces Apoptosis through a Caspase-Dependent, CrmA-Sensitive Pathway 
Journal of Virology  1998;72(1):452-459.
Sindbis virus infection of cultured cells and of neurons in mouse brains leads to programmed cell death exhibiting the classical characteristics of apoptosis. Although the mechanism by which Sindbis virus activates the cell suicide program is not known, we demonstrate here that Sindbis virus activates caspases, a family of death-inducing proteases, resulting in cleavage of several cellular substrates. To study the role of caspases in virus-induced apoptosis, we determined the effects of specific caspase inhibitors on Sindbis virus-induced cell death. CrmA (a serpin from cowpox virus) and zVAD-FMK (N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone) inhibited Sindbis virus-induced cell death, suggesting that cellular caspases facilitate apoptosis induced by Sindbis virus. Furthermore, CrmA significantly increased the rate of survival of infected mice. These inhibitors appear to protect cells by inhibiting the cellular death pathway rather than impairing virus replication or by inhibiting the nsP2 and capsid viral proteases. The specificity of CrmA indicates that the Sindbis virus-induced death pathway is similar to that induced by Fas or tumor necrosis factor alpha rather than being like the death pathway induced by DNA damage. Taken together, these data suggest a central role for caspases in Sindbis virus-induced apoptosis.
PMCID: PMC109394  PMID: 9420245
6.  The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis 
According to current understanding, cytoplasmic events including activation of protease cascades and mitochondrial permeability transition (PT) participate in the control of nuclear apoptosis. However, the relationship between protease activation and PT has remained elusive. When apoptosis is induced by cross-linking of the Fas/APO-1/CD95 receptor, activation of interleukin-1β converting enzyme (ICE; caspase 1) or ICE-like enzymes precedes the disruption of the mitochondrial inner transmembrane potential (ΔΨm). In contrast, cytosolic CPP32/ Yama/Apopain/caspase 3 activation, plasma membrane phosphatidyl serine exposure, and nuclear apoptosis only occur in cells in which the ΔΨm is fully disrupted. Transfection with the cowpox protease inhibitor crmA or culture in the presence of the synthetic ICE-specific inhibitor Ac-YVAD.cmk both prevent the ΔΨm collapse and subsequent apoptosis. Cytosols from anti-Fas–treated human lymphoma cells accumulate an activity that induces PT in isolated mitochondria in vitro and that is neutralized by crmA or Ac-YVAD.cmk. Recombinant purified ICE suffices to cause isolated mitochondria to undergo PT-like large amplitude swelling and to disrupt their ΔΨm. In addition, ICE-treated mitochondria release an apoptosis-inducing factor (AIF) that induces apoptotic changes (chromatin condensation and oligonucleosomal DNA fragmentation) in isolated nuclei in vitro. AIF is a protease (or protease activator) that can be inhibited by the broad spectrum apoptosis inhibitor Z-VAD.fmk and that causes the proteolytical activation of CPP32. Although Bcl-2 is a highly efficient inhibitor of mitochondrial alterations (large amplitude swelling + ΔΨm collapse + release of AIF) induced by prooxidants or cytosols from ceramide-treated cells, it has no effect on the ICE-induced mitochondrial PT and AIF release. These data connect a protease activation pathway with the mitochondrial phase of apoptosis regulation. In addition, they provide a plausible explanation of why Bcl-2 fails to interfere with Fas-triggered apoptosis in most cell types, yet prevents ceramide- and prooxidant-induced apoptosis.
PMCID: PMC2198951  PMID: 9206994
7.  SPI-1-Dependent Host Range of Rabbitpox Virus and Complex Formation with Cathepsin G Is Associated with Serpin Motifs 
Journal of Virology  1999;73(11):8999-9010.
Serpins are a superfamily of serine proteinase inhibitors which function to regulate a number of key biological processes including fibrinolysis, inflammation, and cell migration. Poxviruses are the only viruses known to encode functional serpins. While some poxvirus serpins regulate inflammation (myxoma virus SERP1 and cowpox virus [CPV] crmA/SPI-2) or apoptosis (myxoma virus SERP2 and CPV crmA/SPI-2), the function of other poxvirus serpins remains unknown. The rabbitpox virus (RPV) SPI-1 protein is 47% identical to crmA and shares all of the serpin structural motifs. However, no serpin-like activity has been demonstrated for SPI-1 to date. Earlier we showed that RPV with the SPI-1 gene deleted, unlike wild-type virus, fails to grow on A549 or PK15 cells (A. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:306–314, 1994). Here we demonstrate that in the absence of a functional SPI-1 protein, infected nonpermissive cells which exhibit the morphological features of apoptosis fail to activate terminal caspases or cleave the death substrates PARP or lamin A. We show that SPI-1 forms a stable complex in vitro with cathepsin G, a member of the chymotrypsin family of serine proteinases, consistent with serpin activity. SPI-1 reactive-site loop (RSL) mutations of the critical P1 and P14 residues abolish this activity. Viruses containing the SPI-1 RSL P1 or P14 mutations also fail to grow on A549 or PK15 cells. These results suggest that the full virus host range depends on the serpin activity of SPI-1 and that in restrictive cells SPI-1 inhibits a proteinase with chymotrypsin-like activity and may function to inhibit a caspase-independent pathway of apoptosis.
PMCID: PMC112932  PMID: 10516006
8.  Vaccinia Virus Infection Disarms the Mitochondrion-Mediated Pathway of the Apoptotic Cascade by Modulating the Permeability Transition Pore 
Journal of Virology  2001;75(23):11437-11448.
Many viruses have evolved strategies that target crucial components within the apoptotic cascade. One of the best studied is the caspase 8 inhibitor, crmA/Spi-2, encoded by members of the poxvirus family. Since many proapoptotic stimuli induce apoptosis through a mitochondrion-dependent, caspase 8-independent pathway, we hypothesized that vaccinia virus would encode a mechanism to directly modulate the mitochondrial apoptotic pathway. In support of this, we observed that Jurkat cells, which undergo Fas-mediated apoptosis exclusively through the mitochondrial route, were resistant to Fas-induced death following infection with a crmA/Spi-2-deficient strain of vaccinia virus. In addition, vaccinia virus-infected cells subjected to the proapoptotic stimulus staurosporine exhibited decreased levels of both cytochrome c released from the mitochondria and caspase 3 activation. In all cases we found that the loss of the mitochondrial membrane potential, which occurs as a result of opening the multimeric permeability transition pore complex, was prevented in vaccinia virus-infected cells. Moreover, vaccinia virus infection specifically inhibited opening of the permeability transition pore following treatment with the permeability transition pore ligand atractyloside and t-butylhydroperoxide. These studies indicate that vaccinia virus infection directly impacts the mitochondrial apoptotic cascade by influencing the permeability transition pore.
doi:10.1128/JVI.75.23.11437-11448.2001
PMCID: PMC114730  PMID: 11689625
9.  Apoptosis-Inducing Factor: Structure, Function, and Redox Regulation 
Antioxidants & Redox Signaling  2011;14(12):2545-2579.
Abstract
Apoptosis-inducing factor (AIF) is a flavin adenine dinucleotide-containing, NADH-dependent oxidoreductase residing in the mitochondrial intermembrane space whose specific enzymatic activity remains unknown. Upon an apoptotic insult, AIF undergoes proteolysis and translocates to the nucleus, where it triggers chromatin condensation and large-scale DNA degradation in a caspase-independent manner. Besides playing a key role in execution of caspase-independent cell death, AIF has emerged as a protein critical for cell survival. Analysis of in vivo phenotypes associated with AIF deficiency and defects, and identification of its mitochondrial, cytoplasmic, and nuclear partners revealed the complexity and multilevel regulation of AIF-mediated signal transduction and suggested an important role of AIF in the maintenance of mitochondrial morphology and energy metabolism. The redox activity of AIF is essential for optimal oxidative phosphorylation. Additionally, the protein is proposed to regulate the respiratory chain indirectly, through assembly and/or stabilization of complexes I and III. This review discusses accumulated data with respect to the AIF structure and outlines evidence that supports the prevalent mechanistic view on the apoptogenic actions of the flavoprotein, as well as the emerging concept of AIF as a redox sensor capable of linking NAD(H)-dependent metabolic pathways to apoptosis. Antioxid. Redox Signal. 14, 2545–2579.
Introduction
Multiple Forms of AIF
AIF precursor
Membrane-tethered mature AIFΔ1–54
Soluble apoptogenic AIFΔ1–102/118
AIF associated with the outer mitochondrial membrane
Splice variants AIF2, AIFsh, AIFsh2, and AIFsh3
Transcriptional Regulation
Phylogenetic Roots
Redox Properties of Recombinant AIF
Refolded murine AIFΔ1–120
Refolded human AIFsh2
Naturally folded murine AIFΔ1–53 and Δ1–101
AIF Structure
X-ray structures of murine and human AIFΔ1–120
X-ray structure of murine AIFΔ1–77
X-ray structure of reduced NAD-bound murine AIFΔ1–101
Redox-linked changes in the active site
Reorganization in the C-terminal domain
Conformational changes in the 509–559 peptide
Role of AIF in PCD
Apoptogenic effects of AIF in cell free systems and live cells
Release of mitochondrial AIF
Proteolysis of mature AIF
Release of truncated AIF into the cytoplasm
Release of AIF associated with the outer mitochondrial membrane
Cytoplasmic interactions of apoptogenic AIF
Pro-survival partners of AIF
Heat shock protein Hsp70
X-linked inhibitor of apoptosis protein
Pro-death partners of AIF
Eukaryotic translation initiation factor 3 subunit p44
T-cell ubiquitin ligand
Cyclophilin A
Phospholipid scramblase
Scythe
Nuclear effects of apoptogenic AIF
Transport of AIF to the nucleus
Interaction of AIF with DNA
Nuclear partners of AIF
Endonuclease G
Cyclophilin A
Histone H2AX
Relocation of AIF in late apoptosis
Apoptogenic properties of the AIF homologs
D. melanogaster
D. discoideum
Tetrahymena thermophila
S. cerevisiae
Vital Functions of Mitochondrial AIF
Role of AIF in mitochondrial respiration
Hq mouse phenotype
Tissue-specific AIF defects
Role of AIF in neurodegeneration, neurogenesis, and neuroprotection
AIF deficiency in lower eukaryotes
AIF and mitochondrial morphology
Mitochondrial abnormalities in telencephalon-specific AIFΔ mice
Association of AIF with the optic atrophy 1 protein
AIF isoform-specific cristae morphology
Human mitochondrial encephalomyopathy linked to the AIFΔ201 mutation
D. Involvement of AIF in regulation of cytoplasmic stress granules
Possible Redox Sensing Role of AIF
Concluding Remarks
doi:10.1089/ars.2010.3445
PMCID: PMC3096518  PMID: 20868295
10.  The Mitochondrial Permeability Transition Is Required for Tumor Necrosis Factor Alpha-Mediated Apoptosis and Cytochrome c Release 
Molecular and Cellular Biology  1998;18(11):6353-6364.
This study assesses the controversial role of the mitochondrial permeability transition (MPT) in apoptosis. In primary rat hepatocytes expressing an IκB superrepressor, tumor necrosis factor alpha (TNFα) induced apoptosis as shown by nuclear morphology, DNA ladder formation, and caspase 3 activation. Confocal microscopy showed that TNFα induced onset of the MPT and mitochondrial depolarization beginning 9 h after TNFα treatment. Initially, depolarization and the MPT occurred in only a subset of mitochondria; however, by 12 h after TNFα treatment, virtually all mitochondria were affected. Cyclosporin A (CsA), an inhibitor of the MPT, blocked TNFα-mediated apoptosis and cytochrome c release. Caspase 3 activation, cytochrome c release, and apoptotic nuclear morphological changes were induced after onset of the MPT and were prevented by CsA. Depolarization and onset of the MPT were blocked in hepatocytes expressing ΔFADD, a dominant negative mutant of Fas-associated protein with death domain (FADD), or crmA, a natural serpin inhibitor of caspases. In contrast, Asp-Glu-Val-Asp-cho, an inhibitor of caspase 3, did not block depolarization or onset of the MPT induced by TNFα, although it inhibited cell death completely. In conclusion, the MPT is an essential component in the signaling pathway for TNFα-induced apoptosis in hepatocytes which is required for both cytochrome c release and cell death and functions downstream of FADD and crmA but upstream of caspase 3.
PMCID: PMC109221  PMID: 9774651
11.  Nucleocytoplasmic Distribution of the Ovalbumin Serpin PI-9 Requires a Nonconventional Nuclear Import Pathway and the Export Factor Crm1 
Molecular and Cellular Biology  2001;21(16):5396-5407.
Proteinase inhibitor 9 (PI-9) is a human serpin present in the cytoplasm of cytotoxic lymphocytes and epithelial cells. It inhibits the cytotoxic lymphocyte granule proteinase granzyme B (graB) and is thought to protect cytotoxic lymphocytes and bystander cells from graB-mediated apoptosis. Following uptake into cells, graB promotes DNA degradation, rapidly translocating to the nucleus, where it binds a nuclear component. PI-9 should therefore be found in cytotoxic lymphocyte and bystander cell nuclei to ensure complete protection against graB. Here we demonstrate by microscopy and subcellular fractionation experiments that PI-9 is present in the nuclei of human cytotoxic cells, endothelial cells, and epithelial cells. We also show that the related serpins, PI-6, monocyte neutrophil elastase inhibitor (MNEI), PI-8, plasminogen activator inhibitor 2 (PAI-2), and the viral serpin CrmA exhibit similar nucleocytoplasmic distributions. Because these serpins lack classical nuclear localization signals and are small enough to diffuse through nuclear pores, we investigated whether import occurs actively or passively. Large (∼70 kDa) chimeric proteins comprising PI-9, PI-6, PI-8, MNEI, or PAI-2 fused to green fluorescent protein (GFP) show similar nucleocytoplasmic distributions to the parent proteins, indicating that nuclear import is active. By contrast, CrmA-GFP is excluded from nuclei, indicating that CrmA is not actively imported. In vitro nuclear transport assays show that PI-9 accumulates at a rate above that of passive diffusion, that it requires cytosolic factors but not ATP, and that it does not bind an intranuclear component. Furthermore, PI-9 is exported from nuclei via a leptomycin B-sensitive pathway, implying involvement of the export factor Crm1p. We conclude that the nucleocytoplasmic distribution of PI-9 and related serpins involves a nonconventional nuclear import pathway and Crm1p.
doi:10.1128/MCB.21.16.5396-5407.2001
PMCID: PMC87262  PMID: 11463822
12.  Enhanced Cell Death in MeCP2 Null Cerebellar Granule Neurons Exposed to Excitotoxicity and Hypoxia 
Neuroscience  2007;150(3):563-574.
Rett syndrome (RTT) is associated with mutations in the transcriptional repressor gene MeCP2. Although the clinical and neuropathological signs of RTT suggest disrupted synaptic function, the specific role of MeCP2 in postmitotic neurons remains relatively unknown. We examined whether MeCP2 deficiency in central neurons contributes to the neuropathogenesis in RTT. Primary cerebellar granule neuronal cultures from wildtype (WT) and MeCP2−/− mice were exposed to NMDA and AMPA-induced excitotoxicity and hypoxic-ischemic insult. The magnitude of cell death in MeCP2−/− cells after excitotoxicity and hypoxia was greater than in the WT littermate control cultures and occurred after shorter exposures that usually, in the WT, would not cause cell death. Pretreatment with the growth factor fibroblast growth factor 1 (FGF-1) under conditions at which WT cells showed complete neuroprotection, only partially protected MeCP2−/−cells. To elucidate specifically the effects of MeCP2 knockout (KO) on cell death, we examined two death cascade pathways. MeCP2−/− neurons exposed to 6 h of hypoxia exhibited enhanced activation of the proapoptotic caspase-3 and increased mitochondrial release of AIF compared to WT neurons, which did not show significant changes. However, pretreatment with the caspase inhibitor ZVAD-FMK had little or no effect on AIF release and its subcellular translocation to the nucleus, suggesting caspase-independent AIF release and their independent contribution to hypoxia-induced cell death. Reintroduction of intact MeCP2 gene in MeCP2−/− cells or MeCP2 gene silencing by MeCP2siRNA in WT cells further confirmed the differential sensitivity of the WT and MeCP2−/− cells and suggest a direct role of MeCP2 in cell death. These results clearly demonstrate increased cell death occurred in neurons lacking MeCP2 expression via both caspase- and AIF-dependent apoptotic mechanisms. Our findings suggest a novel, yet unknown, role for MeCP2 in central neurons in the control of neuronal response to cell death.
doi:10.1016/j.neuroscience.2007.09.076
PMCID: PMC2227264  PMID: 17997046
apoptosis; apoptosis inducing factor; cell death; cerebellar granule neurons; hypoxia; excitotoxicity; caspase-3; MeCP2 knockout
13.  Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats 
Cardiovascular Research  2009;85(1):28-37.
Aims
The caspases are thought to be central mediators of the apoptotic program, but recent data indicate that apoptosis may also be mediated by caspase-independent mechanisms such as apoptosis-inducing factor (AIF). The role of AIF-induced apoptosis in heart, however, is currently not well understood. The aim of this study was to investigate the presence of and conditions for AIF-induced cardiac apoptosis in vitro.
Methods and results
Hypertrophic cardiomyocyte (H-CM) cultures were prepared from the hearts of Dahl salt-sensitive rats fed a high salt diet. Apoptotic stimulation induced by hypoxia/reoxygenation or staurosporine (1 µM) enhanced AIF release in H-CMs compared with non-hypertrophic cardiomyocytes (N-CMs). Caspase inhibition using zVAD.fmk (25 µM) or overexpression of CrmA using recombinant adenovirus only partially protected N-CMs from apoptosis (63 ± 0.93%) and provided no significant protection against apoptosis in hypertrophic cells (23 ± 1.03%). On the other hand, poly-ADP-ribose polymerase inhibition using 4-AN (20 µM) during apoptotic stimulation blocked the release of AIF from mitochondria and significantly improved cell viability in hypertrophied cardiomyocytes (74 ± 1.18%).
Conclusion
A caspase-dependent, apoptotic pathway is important for N-CM death, whereas a caspase-independent, AIF-mediated pathway plays a critical role in H-CMs.
doi:10.1093/cvr/cvp261
PMCID: PMC2791051  PMID: 19633014
Apoptosis-inducing factor; Caspase; Cardiomyocytes; Hypertrophy; PARP
14.  Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury 
Neurobiology of Disease  2012;46(3):745-758.
Neuronal programmed cell death (PCD) contributes to delayed tissue damage after traumatic brain injury (TBI). Both caspase-dependent and caspase-independent mechanisms have been implicated, with the latter including apoptosis inducing factor (AIF). The peptidyl-proplyl isomerase Cyclophilin A (CypA) transports AIF from the cytosol to the nucleus, a key step for AIF-dependent cell death. We compared the effects of single versus combined inhibition of caspase and AIF pathways in a mouse controlled cortical impact (CCI) model, by examining the effects of CypA gene knockout (CypA−/−), caspase inhibition with a pan-caspase inhibitor (boc-aspartyl(OMe)-fluoromethylketone, BAF), or combined modulation. TBI caused caspase activation as well as translocation of AIF to the nucleus. Markers of caspase activation including caspase-specific fodrin cleavage fragments and number of FLIVO positive cells were reduced in BAF-treated CypA+/+ mice, whereas markers of AIF activation including AIF/H2AX interaction and AIF translocation to the nucleus were attenuated in CypA−/− mice. Each single intervention, (CypA−/− or BAF-treated CypA+/+) reduced the number of apoptotic cells (TUNEL-positive) in the cortex and improved long-term sensorimotor function; CypA−/− also attenuated microglial activation after injury. Importantly, BAF-treated CypA−/− mice, showed greater effects than either intervention alone on multiple outcomes including: reduction in TUNEL-positive cells, decrease in neuroinflammation, improved motor and cognitive recovery, and attenuation of lesion volume and neuronal loss in the hippocampus. Using two in vitro neuronal cell death models known to induce AIF-mediated PCD, we also showed that neurons from CypA−/− animals were protected and that effects were unrelated to caspase activation. These data indicate that AIF-mediated and caspase-dependent pathways contribute independently and in parallel to secondary injury after TBI, and suggest that combined therapeutic strategies directed at multiple PCD pathways may provide superior neuroprotection than those directed at single mechanisms.
doi:10.1016/j.nbd.2012.03.018
PMCID: PMC3352990  PMID: 22426396
Traumatic Brain Injury; Apoptosis Inducing Factor; Caspase; Cyclophilin A
15.  Neuroprotective Actions of Ovarian Hormones Without Insult in the Raphe Region of Rhesus Macaques 
Neuroscience  2008;154(2):720-731.
Using a nonhuman primate model of surgical menopause, our laboratory has shown that ovarian hormone treatment (HT) improves serotonin neural function in the dorsal raphe nucleus (DRN). We further hypothesize that HT may increase serotonin neuronal resilience. Recent data from microarray analysis indicated that HT regulates gene expression in pathways that lead to apoptosis. In this study, we questioned whether HT alters protein expression in caspase-dependent and independent pathways. Ovariectomized monkeys received Silastic implants containing placebo (empty), estrogen (E) or E+ progesterone (P). A small block of the midbrain containing the DRN was dissected and subjected to subcellular fractionation, yielding cytosolic, nuclear and mitochondrial fractions( (n=4/group). The pro-apoptotic protein, JNK1 and its phosphorylation were decreased by E+P treatment in the cytosolic fraction. Downstream of JNK are proteins in the caspase-dependent and independent pathways. First, in the caspase-dependent pathway, cytoplasmic and mitochondrial fractions were immunoblotted for Bcl-2 family members, cytochrome c, Apaf1 and XIAP. However, the expression of these proteins did not differ among treatments. Pro-caspase 3 was decreased by E+P, but there was no evidence of active caspase in any group. Then, we examined the involvement of a protein in the caspase-independent pathway, called apoptosis-inducing factor (AIF). AIF mRNA (n=3/group) and AIF mitochondrial protein tended to decrease with hormone treatment. However, AIF protein in the nuclear fractions in E+P treated monkeys was significantly reduced. This indicates that HT is reducing the translocation of AIF from mitochondria to nucleus, thus inhibiting AIF-mediated apoptosis. AIF was immunocytochemically localized to large serotonin-like neurons of the dorsal raphe. This data suggests that in the absence of global trauma or ischemia, HT may act through the caspase-independent pathway to promote neuroprotection in the serotonin system.
doi:10.1016/j.neuroscience.2008.03.056
PMCID: PMC2487674  PMID: 18486349
16.  Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α–Induced Shock 
Molecular Medicine  2012;18(1):577-586.
Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.
doi:10.2119/molmed.2011.00423
PMCID: PMC3388137  PMID: 22371307
17.  Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8 
The Journal of Experimental Medicine  2008;205(9):1967-1973.
The cytokine interleukin (IL)-1β is a key mediator of the inflammatory response and has been implicated in the pathophysiology of acute and chronic inflammation. IL-1β is synthesized in response to many stimuli as an inactive pro–IL-1β precursor protein that is further processed by caspase-1 into mature IL-1β, which is the secreted biologically active form of the cytokine. Although stimulation of membrane-bound Toll-like receptors (TLRs) up-regulates pro–IL-1β expression, activation of caspase-1 is believed to be mainly initiated by cytosolic Nod-like receptors. In this study, we show that polyinosinic:polycytidylic acid (poly[I:C]) and lipopolysaccharide stimulation of macrophages induces pro–IL-1β processing via a Toll/IL-1R domain–containing adaptor-inducing interferon-β–dependent signaling pathway that is initiated by TLR3 and TLR4, respectively. Ribonucleic acid interference (RNAi)–mediated knockdown of the intracellular receptors NALP3 or MDA5 did not affect poly(I:C)-induced pro–IL-1β processing. Surprisingly, poly(I:C)- and LPS-induced pro–IL-1β processing still occurred in caspase-1–deficient cells. In contrast, pro–IL-1β processing was inhibited by caspase-8 peptide inhibitors, CrmA or vFLIP expression, and caspase-8 knockdown via RNAi, indicating an essential role for caspase-8. Moreover, recombinant caspase-8 was able to cleave pro–IL-1β in vitro at exactly the same site as caspase-1. These results implicate a novel role for caspase-8 in the production of biologically active IL-1β in response to TLR3 and TLR4 stimulation.
doi:10.1084/jem.20071632
PMCID: PMC2526192  PMID: 18725521
18.  THP-1 Cell Apoptosis in Response to Mycobacterial Infection  
Infection and Immunity  2003;71(1):254-259.
We previously reported that Mycobacterium tuberculosis infection primes human alveolar macrophages (HAM) for tumor necrosis factor alpha (TNF-α)-mediated apoptosis and that macrophage apoptosis is associated with killing internalized bacilli. Virulent mycobacterial strains elicit much less apoptosis than attenuated strains, implying that apoptosis is a defense against intracellular infection. The present study evaluated the potential for phorbol myristate acetate-differentiated THP-1 cells to mimic this response of primary macrophages. Consistent with the behavior of alveolar macrophages, attenuated M. tuberculosis H37Ra and Mycobacterium bovis BCG strongly induce THP-1 apoptosis, which requires endogenous TNF. THP-1 apoptosis is associated with reduced viability of infecting BCG. In contrast, virulent wild-type M. tuberculosis H37Rv and M. bovis do not increase THP-1 apoptosis over baseline. BCG induced early activation of caspase 10 and 9, followed by caspase 3. In contrast, wild-type M. bovis infection failed to activate any caspases in THP-1 cells. BCG-induced THP-1 apoptosis is blocked by retroviral transduction with vectors expressing crmA but not bcl-2. We conclude that differentiated THP-1 cells faithfully model the apoptosis response of HAM. Analysis of the THP-1 cell response to infection with virulent mycobacteria suggests that TNF death signals are blocked proximal to initiator caspase activation, at the level of TNF receptor 1 or its associated intracytoplasmic adaptor complex. Interference with TNF death signaling may be a virulence mechanism that allows M. tuberculosis to circumvent innate defenses leading to apoptosis of infected host cells.
doi:10.1128/IAI.71.1.254-259.2003
PMCID: PMC143334  PMID: 12496173
19.  Suppression of Akt Signaling Induces Fas Ligand Expression: Involvement of Caspase and Jun Kinase Activation in Akt-Mediated Fas Ligand Regulation 
Molecular and Cellular Biology  2002;22(2):680-691.
Fas and Fas ligand (FasL) expression has been detected in chronic vascular lesions, and Fas-mediated apoptosis of vascular smooth muscle cells (VSMC) may influence the integrity of the atherosclerotic plaque. Here we report that FasL is not expressed by normal VSMC, but its expression is upregulated by stresses that induce apoptosis, including serum deprivation, exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and ablation of Akt signaling. Conversely, constitutive activation of Akt signaling diminished FasL expression in VSMC cultures exposed to low-mitogen media or wortmannin. Under conditions of suppressed PI 3-kinase/Akt signaling, VSMC apoptosis was partially inhibited by treatment with neutralizing antibody against FasL. Suppression of Akt signaling increased the activity of c-Jun N-terminal kinase, and transduction of dominant-negative c-Jun inhibited FasL induction under these conditions. Diminished Akt signaling promoted the cleavage of caspase 3, and both caspase 3 cleavage and FasL induction were inhibited by transduction of dominant-negative caspase 9 or the caspase 8 inhibitor CrmA. Similarly, induction of FasL by the Akt-regulated forkhead transcription factor FKHRL1 was dependent upon caspase and c-Jun activation. Taken together, these results indicate that the sequential activation of caspase 3 and c-Jun participates in the induction of FasL under conditions of suppressed Akt signaling or FKHRL1 activation and that FasL participates in a positive-feedback loop to promote cell death under conditions of cellular stress.
doi:10.1128/MCB.22.2.680-691.2002
PMCID: PMC139747  PMID: 11756562
20.  Sex Differences in Caspase Activation after Experimental Stroke 
Background and purpose
Over the past five years, experimental data has emerged that ischemia-induced cell death pathways may differ in males and females. Cell death in males is triggered by Poly(ADP-ribose) polymerase (PARP) activation and nuclear translocation of apoptosis-inducing factor (AIF). We have previously shown that interference with this pathway benefits males but not females after an experimental stroke. In contrast caspase activation may be the major pathway activated after ischemic injury in females. The aim of this study is to examine whether sex differences exist in caspase activation in adult mice after stroke and to determine if interference with stroke-induced caspase activation preferentially protects females.
Methods
Focal stroke was induced by reversible middle cerebral artery occlusion (MCAO; 90 minutes) in young and aging C57BL6 mice of both sexes. The pan-caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh) was administered at reperfusion. Histological outcomes was assessed 48 hours after MCAO. Separate cohorts were utilized for protein analysis of key cell death proteins including caspase-3, caspase-8, cytochrome C and Apoptosis Inducing Factor (AIF).
Results
Drug-treated female mice had significantly decreased infarct volumes and improved neurological deficits after stroke compared to vehicle-treated mice. Q-VD-OPh administration had no effect in male mice. The expression of cytochrome C and nuclear caspase-8 levels were increased in females after stroke.
Conclusions
Female mice had an early release of cytochrome C and enhanced caspase activation after MCAO. Caspase inhibition benefited females but not males. Sex differences exist in both the response to ischemic injury and the efficacy of neuroprotective agents.
doi:10.1161/STROKEAHA.108.538686
PMCID: PMC2674515  PMID: 19265047
MCAO; cytochrome C; caspase; sex differences; stroke
21.  dl-3-n-Butylphthalide Prevents Neuronal Cell Death after Focal Cerebral Ischemia in Mice via the JNK Pathway 
Brain research  2010;1359:216-226.
dl-3-n-Butylphthalide (NBP) has shown cytoprotective effects in animal models of stroke and has passed clinical trails as a therapeutic drug for stroke in China. Hence, as a potential clinical treatment for stroke, understanding the mechanism(s) of action of NBP is essential. This investigation aimed to delineate the cellular and molecular mechanism of NBP protection in neuronal cultures and in the ischemic brain. NBP (10 M) attenuated serum deprivation-induced neuronal apoptosis and the production of reactive oxygen species (ROS) in cortical neuronal cultures. Adult male 129 S2/sv mice were subjected to permanent occlusion of the middle cerebral artery (MCA). NBP (100 mg/kg, i.p.) administrated 2 hrs before or 1 hr after ischemia reduced ischemia-induced infarct formation, attenuated caspase-3 and caspase-9 activation in the ischemic brain. TUNEL-positive cells and mitochondrial release of cytochrome c and apoptosis-inducing-factor (AIF) in the penumbra region were reduced by NBP. The pro-apoptotic signaling mediated by phospho-JNK and p38 expression was down-regulated by NBP treatment in vitro and in vivo. It is suggested that NBP protects against ischemic damage via multiple mechanisms including mitochondria associated caspase-dependent and -independent apoptotic pathways. Previous and current studies and recent clinical trials encourage exploration of NBP as a neuroprotective drug for the treatment of ischemic stroke.
doi:10.1016/j.brainres.2010.08.061
PMCID: PMC3099257  PMID: 20800583
dl-3-n-butylphthalide; Ischemic stroke; Apoptosis; Caspase; AIF; Cytochrome C; Mitochondria; MAP kinase
22.  Cytokine Response Modifier A (CrmA) Inhibits Ceramide Formation in Response to Tumor Necrosis Factor (TNF)-α: CrmA and Bcl-2 Target Distinct Components in the Apoptotic Pathway 
Proteases are now firmly established as major regulators of the “execution” phase of apoptosis. Here, we examine the role of proteases and their relationship to ceramide, a proposed mediator of apoptosis, in the tumor necrosis factor-α (TNF-α)–induced pathway of cell death. Ceramide induced activation of prICE, the protease that cleaves the death substrate poly(ADP-ribose) polymerase. Bcl-2 inhibited ceramide-induced death, but not ceramide generation. In contrast, Cytokine response modifier A (CrmA), a potent inhibitor of Interleukin-1β converting enzyme and related proteases, inhibited ceramide generation and prevented TNF-α–induced death. Exogenous ceramide could overcome the CrmA block to cell death, but not the Bcl-2 block. CrmA, however, did not inhibit the activation of nuclear factor (NF)-κB by TNF-α, demonstrating that other signaling functions of TNF-α remain intact and that ceramide does not play a role in the activation of NF-κB. These studies support a distinct role for proteases in the signaling/activation phase of apoptosis acting upstream of ceramide formation.
PMCID: PMC2196031  PMID: 9053448
23.  Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. 
Journal of Virology  1996;70(9):6479-6485.
Vaccinia virus contains a gene, termed SPI-2 or B13R, that is closely related in its sequence to a potent inhibitor of apoptosis from cowpox virus (crmA). Infection by vaccinia virus protects HeLa cells against apoptosis that is induced by an immunoglobulin M antibody against the fas receptor or by tumor necrosis factor alpha. This effect is profoundly reduced when the SPI-2 gene is deleted. The SPI-2 gene, when transiently expressed in these cells, can also protect against apoptosis mediated by these agents. Given the similarity to crmA, it seems likely that SPI-2 functions in an analogous fashion, inhibiting the activity of ICE protease family members and blocking the onset of apoptosis.
PMCID: PMC190684  PMID: 8709286
24.  Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death 
The Journal of Cell Biology  2002;158(3):507-517.
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.
doi:10.1083/jcb.200202130
PMCID: PMC2173837  PMID: 12147675
neurodegeneration; neurons; apoptosis; p53; Bax
25.  CD40 Induces Apoptosis in Carcinoma Cells through Activation of Cytotoxic Ligands of the Tumor Necrosis Factor Superfamily 
Molecular and Cellular Biology  2000;20(15):5503-5515.
CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.
PMCID: PMC86001  PMID: 10891490

Results 1-25 (757346)