Search tips
Search criteria

Results 1-25 (800036)

Clipboard (0)

Related Articles

1.  Plasmonic quasicrystals with broadband transmission enhancement 
Scientific Reports  2014;4:5257.
Plasmonic quasicrystals (PlQCs), by integrating the properties of quasicrystals (rotational symmetry and long range ordering but lack translational symmetry) and surface plasmon polariton mediated effects, offer several advantages over plasmonic crystals (PlCs). For example, in PlQCs one could have broadband, polarization independent response. However, large area patterning by electron beam lithography requires precise lattice coordinates as well as a practical way to design the structures for specific spectral response. We demonstrate design and fabrication of large area quasicrystal air hole patterns of π/5 symmetry in metal film in which broadband, polarization and launch angle independent transmission enhancement is observed. We demonstrate bi-grating quasicrystals to show that designable transmission response is possible over visible to near infrared wavelength regions with about 15 times enhancement. These would be useful in many applications like energy harvesting, nonlinear optics and quantum plasmonics.
PMCID: PMC4052717  PMID: 24918659
2.  Diffraction with a coherent X-ray beam: dynamics and imaging 
Techniques for coherent X-ray scattering measurements are detailed. Applications in the study of the dynamics of fluctuations and in lensless high-resolution imaging are described.
Methods for carrying out coherent X-ray scattering experiments are reviewed. The brilliance of the available synchrotron sources, the characteristics of the existing optics, the various ways of obtaining a beam of controlled coherence properties and the detectors used are summarized. Applications in the study of the dynamics of speckle patterns are described. In the case of soft condensed matter, the movement of inclusions like fillers in polymers or colloidal particles can be observed and these can reflect polymer or liquid-crystal fluctuations. In hard condensed-matter problems, like phase transitions, charge-density waves or phasons in quasicrystals, the study of speckle fluctuations provides new time-resolved methods. In the domain of lensless imaging, the coherent beam gives the modulus of the sample Fourier transform. If oversampling conditions are fulfilled, the phase can be obtained and the image in the direct space can be reconstructed. The forthcoming improvements of all these techniques are discussed.
PMCID: PMC2525861  PMID: 17301470
coherent X-ray beams; dynamics of fluctuations; lensless imaging; small-angle set-ups
3.  Novel hybrid organic/inorganic 2D quasiperiodic PC: from diffraction pattern to vertical light extraction 
Nanoscale Research Letters  2011;6(1):371.
Recently, important efforts have been dedicated to the realization of a fascinating class of new photonic materials or metamaterials, known as photonic quasicrystals (PQCs), in which the lack of the translational symmetry is compensated by rotational symmetries not achievable by the conventional periodic crystals. As ever, more advanced functionality is demanded and one strategy is the introduction of non-linear and/or active functionality in photonic materials. In this view, core/shell nanorods (NRs) are a promising active material for light-emitting applications. In this article a two-dimensional (2D) hybrid a 2D octagonal PQC which consists of air rods in an organic/inorganic nanocomposite is proposed and experimentally demonstrated. The nanocomposite was prepared by incorporating CdSe/CdS core/shell NRs into a polymer matrix. The PQC was realized by electron beam lithography (EBL) technique. Scanning electron microscopy, far field diffraction and spectra measurements are used to characterize the experimental structure. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of a narrow red emissions band at 690 nm with a full width at half-maximum (FWHM) of 21.5 nm. The original characteristics of hybrid materials based on polymers and colloidal NRs, able to combine the unique optical properties of the inorganic moiety with the processability of the host matrix, are extremely appealing in view of their technological impact on the development of new high performing optical devices such as organic light-emitting diodes, ultra-low threshold lasers, and non-linear devices.
PACS: 81.07.Pr Organic-inorganic hybrid nanostructures, 81.16.-c Methods of nanofabrication and processing, 42.70.Qs Photonic band-gap materials.
PMCID: PMC3211462  PMID: 21711884
4.  2D quasiperiodic plasmonic crystals 
Scientific Reports  2012;2:681.
Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model.
PMCID: PMC3512091  PMID: 23209871
5.  Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass 
Scientific Reports  2011;1:194.
The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu64.5Zr35.5 alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe “Bergman triacontahedron” packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.
PMCID: PMC3245321  PMID: 22355709
6.  Insights into plant consciousness from neuroscience, physics and mathematics: A role for quasicrystals? 
Plant Signaling & Behavior  2012;7(9):1049-1055.
There is considerable debate over whether plants are conscious and this, indeed, is an important question. Here I look at developments in neuroscience, physics and mathematics that may impact on this question. Two major concomitants of consciousness in animals are microtubule function and electrical gamma wave synchrony. Both these factors may also play a role in plant consciousness. I show that plants possess aperiodic quasicrystal structures composed of ribosomes that may enable quantum computing, which has been suggested to lie at the core of animal consciousness. Finally I look at whether a microtubule fractal suggests that electric current plays a part in conventional neurocomputing processes in plants.
PMCID: PMC3489624  PMID: 22899055
Orch-OR; consciousness; gamma wave; microtubule; quasicrystal
7.  B-DNA to Zip-DNA: Simulating a DNA Transition to a Novel Structure with Enhanced Charge-Transport Characteristics 
The journal of physical chemistry. A  2011;115(34):9377-9391.
The forced extension of a DNA segment is studied in a series of steered molecular dynamics simulations, employing a broad range of pulling forces. Throughout the entire force range, the formation of a zipper-like (zip-) DNA structure is observed. In that structure, first predicted by Lohikoski et al., the bases of the DNA strands interdigitate with each other and form a single-base aromatic stack. Similar motifs, albeit only a few base pairs in extent, have been observed in experimental crystal structures. Analysis of the dynamics of structural changes in pulled DNA shows that S-form DNA, thought to be adopted by DNA under applied force, serves as an intermediate between B-DNA and zip-DNA. Therefore, the phase transition plateau observed in force–extension curves of DNA is suggested to reflect the B-DNA to zip-DNA structural transition. Electronic structure analysis of purine bases in zip-DNA indicates a several-fold to order of magnitude increase in the π–π electronic coupling among nearest-neighbor nucleobases, compared to B-DNA. We further observe that zip-DNA does not require base pair complementarity between DNA strands, and we predict that the increased electronic coupling in zip-DNA will result in a much higher rate of charge transfer through an all-purine zip-DNA compared to B-DNA of equal length.
PMCID: PMC3615717  PMID: 21598926
8.  Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion 
Scientific Reports  2012;2:718.
Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al12W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.
PMCID: PMC3466921  PMID: 23056910
9.  Strongly linearly polarized low threshold lasing of all organic photonic quasicrystals 
Scientific Reports  2012;2:627.
Lasing is obtained from a two-dimensional (2D) Penrose photonic quasicrystal made of a low index contrast material of holographic polymer dispersed liquid crystals (H-PDLCs) that enables a substantial reduction in the optical pumping threshold. This lasing architecture further allows for excellent linear polarization characteristics as well as wide directional dependence. The pumping threshold is fivefold lower than that obtained from the 2D defect-free photonic crystals fabricated under similar conditions. These properties make H-PDLC photonic quasicrystal promising for a new type of all organic miniature lasers.
PMCID: PMC3432992  PMID: 22953048
10.  Improving experimental phases for strong reflections prior to density modification 
A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases.
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-­interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallo­graphy.
PMCID: PMC3792643  PMID: 24100322
experimental phasing; density modification; genetic algorithms
11.  Comparison of molecular dynamics and superfamily spaces of protein domain deformation 
It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space).
Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases.
Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.
PMCID: PMC2666742  PMID: 19220918
12.  Polyamide 66 microspheres metallised with in situ synthesised gold nanoparticles for a catalytic application 
Nanoscale Research Letters  2012;7(1):182.
A simple concept is proposed to metallise polyamide 66 (PA66) spherulite structures with in situ synthesised gold nanoparticles (Au NPs) using a wet chemical method. This cost-effective approach, applied to produce a PA66/Au NP hybrid material, offers the advantages of controlling the nanoparticle size, the size distribution and the organic-inorganic interactions. These are the key factors that have to be controlled to construct consistent Au nanostructures which are essential for producing the catalytic activities of interest. The hybrid materials obtained are characterised by means of scanning electron microscopy, transmission electron microscopy, attenuated total reflection-Fourier transform infrared spectrometry and X-ray diffraction spectrometry. The results show that PA66 microspheres obtained via the crystallisation process are coated with Au NPs of 13 nm in size. It was found that controlling the metal coordination is the key parameter to template the Au NPs on the spherulite surfaces. The preparation processes and the key factors leading to the formation of PA66 spherulites coated with Au NPs are discussed. Moreover, the efficiency of the coated spherulites as a potential catalyst is proved by demonstrating the reduction of methylene blue via UV-visible spectrometry.
PMCID: PMC3323437  PMID: 22401661
polyamide 66; nanoparticle; catalyst; microsphere; gold; spherulites
From analysis of moderate- to small-angle x-ray diffraction patterns, in the light of similar experience with paramyosin, has been derived the following description for the structure of actin-rich filaments in "tinted" portions of the adductor muscle of the clam, Venus mercenaria: 1. Some 11 diffraction maxima, widely streaked along layer lines and occurring at moderate diffraction angles (spacings 7 to 60 A) appear to be accounted for as (hk) reflections of a net whose cell elements are, for dry material: a ≑ 82 A, b = 406 A (filament axis identity period), and γ ≑ 82° (angle between a and b axes). These reflections follow a selection rule which indicates that the net cell is non-primitive and contains 15 equivalent locations (nodes) arranged as shown in Fig. 5. An alternative net has b' = 351 A and 13 nodes per cell. 2. Another interpretation rolls the net into a large-scale helix and places the 15 (or 13) nodes along 7 (or 6) turns of a helical locus projecting 406 (or 351) A along the filament axis. Whether considered to be built of planar-net or helix-net cells, the individual filament contains a single cell width transverse to its axis. Transverse filament dimensions are, therefore, in either case similar (50 to 100 A). 3. Consideration of existing electron-optical, physicochemical, and x-ray diffraction data regarding isolated actin suggests that the net cell is built of rods, each containing in cross-section from one to four actin molecules which run parallel to or twisted about rod axes that extend at 12° to the filament axis along the (21) diagonals of the cell. Depending on monomer shape, 2 to 15 monomers furnish length to reach across two cells, and the actin molecules are built into each rod in such a way as to repeat (or nearly repeat) structure 15 (or 13) times along the double cell length. Further details of intra-rod structure cannot be suggested because of lack of wide-angle diffraction information. 4. The actin system is sensitive to treatment of the muscle with ethanol. Concentrations of 5 per cent or greater abolish the net reflections. Other solvents—water, benzene, ether, pyridine, acetone—do not alter the pattern materially. 5. Two other reflections, occurring at the first and second layer lines of an axial periodicity of about 400 A, do not clearly belong to the actin-net system. They represent either a superstructure built upon the filaments by parts of the actin molecules themselves or by incorporated other molecular species, or they arise from an additional macromolecular component (possibly myosin, or its homologues or fractions) of similar axial periodicity.
PMCID: PMC2223960  PMID: 13295312
14.  Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae 
Nucleic Acids Research  2006;34(3):917-927.
Combinatorial regulation by transcription factor complexes is an important feature of eukaryotic gene regulation. Here, we propose a new method for identification of interactions between transcription factors (TFs) that relies on the relationship of their binding sites, and we test it using Saccharomyces cerevisiae as a model system. The algorithm predicts interacting TF pairs based on the co-occurrence of their binding motifs and the distance between the motifs in promoter sequences. This allows investigation of interactions between TFs without known binding motifs or expression data. With this approach, 300 significant interactions involving 77 TFs were identified. These included more than 70% of the known protein–protein interactions. Approximately half of the detected interacting motif pairs showed strong preferences for particular distances and orientations in the promoter sequences. These one dimensional features may reflect constraints on allowable spatial arrangements for protein–protein interactions. Evidence for biological relevance of the observed characteristic distances is provided by the finding that target genes with the same characteristic distances show significantly higher co-expression than those without preferred distances. Furthermore, the observed interactions were dynamic: most of the TF pairs were not constitutively active, but rather showed variable activity depending on the physiological condition of the cells. Interestingly, some TF pairs active in multiple conditions showed preferences for different distances and orientations depending on the condition. Our prediction and characterization of TF interactions may help to understand the transcriptional regulatory networks in eukaryotic systems.
PMCID: PMC1361616  PMID: 16464824
15.  ‘Broken symmetries’ in macromolecular crystallography: phasing from unmerged data 
Site-specific radiation damage and anisotropy of anomalous scattering can induce intensity differences in symmetry-related reflections. If the data are kept unmerged, these symmetry-breaking effects can become a source of phase information.
The space-group symmetry of a crystal structure imposes a point-group symmetry on its diffraction pattern, giving rise to so-called symmetry-equivalent reflections. Instances in macromolecular crystallography are discussed in which the sym­metry in reciprocal space is broken, i.e. where symmetry-related reflections are no longer equivalent. Such a situation occurs when the sample suffers from site-specific radiation damage during the X-ray measurements. Another example of broken symmetry arises from the polarization anisotropy of anomalous scattering. In these cases, the genuine intensity differences between symmetry-related reflections can be exploited to yield phase information in the structure-solution process. In this approach, the usual separation of the data merging and phasing steps is abandoned. The data are kept unmerged down to the Harker construction, where the symmetry-breaking effects are explicitly modelled and refined and become a source of supplementary phase information.
PMCID: PMC2852309  PMID: 20382998
broken symmetry; phasing; radiation damage; polarization anisotropy
16.  A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS 
Journal of Applied Crystallography  2013;46(Pt 4):874-881.
Three-dimensional reciprocal space mapping by X-ray and electron diffraction [namely grazing-incidence X-ray diffraction (GIXD), reflection high-energy electron diffraction (RHEED) and grazing-incidence small-angle X-ray scattering (GISAXS)] was used to explore the internal structure and shape of differently oriented epitaxial Co/CaF2 facetted nanoparticles.
In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.
PMCID: PMC3769055  PMID: 24046491
cobalt-on-fluorite nanoparticles; grazing-incidence X-ray diffraction (GIXD); reflection high-energy electron diffraction (RHEED); grazing-incidence small-angle X-ray scattering (GISAXS); epitaxial growth; three-dimensional reciprocal space mapping
17.  Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds 
As tertiary structure is currently available only for a fraction of known protein families, it is important to assess what parts of sequence space have been structurally characterized. We consider protein domains whose structure can be predicted by sequence similarity to proteins with solved structure and address the following questions. Do these domains represent an unbiased random sample of all sequence families? Do targets solved by structural genomic initiatives (SGI) provide such a sample? What are approximate total numbers of structure-based superfamilies and folds among soluble globular domains?
To make these assessments, we combine two approaches: (i) sequence analysis and homology-based structure prediction for proteins from complete genomes; and (ii) monitoring dynamics of the assigned structure set in time, with the accumulation of experimentally solved structures. In the Clusters of Orthologous Groups (COG) database, we map the growing population of structurally characterized domain families onto the network of sequence-based connections between domains. This mapping reveals a systematic bias suggesting that target families for structure determination tend to be located in highly populated areas of sequence space. In contrast, the subset of domains whose structure is initially inferred by SGI is similar to a random sample from the whole population. To accommodate for the observed bias, we propose a new non-parametric approach to the estimation of the total numbers of structural superfamilies and folds, which does not rely on a specific model of the sampling process. Based on dynamics of robust distribution-based parameters in the growing set of structure predictions, we estimate the total numbers of superfamilies and folds among soluble globular proteins in the COG database.
The set of currently solved protein structures allows for structure prediction in approximately a third of sequence-based domain families. The choice of targets for structure determination is biased towards domains with many sequence-based homologs. The growing SGI output in the future should further contribute to the reduction of this bias. The total number of structural superfamilies and folds in the COG database are estimated as ~4000 and ~1700. These numbers are respectively four and three times higher than the numbers of superfamilies and folds that can currently be assigned to COG proteins.
PMCID: PMC1444916  PMID: 16549009
18.  Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation 
Nanoscale Research Letters  2011;6(1):586.
Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions.
PMCID: PMC3240672  PMID: 22067075
The Journal of Cell Biology  1967;32(2):289-295.
The fine structure of Bombyx mori silk fibroin was investigated by electron microscopy and X-ray diffraction techniques. Examination of silk fibers fragmented with ultrasonic radiation and negatively stained revealed the presence of ribbon-like filaments of well-defined lateral dimensions. Analysis of the breadths of the equatorial reflections in the X-ray diffraction pattern of fibroin yielded similar dimensions for the lateral extent of the crystallites. It is concluded that the crystalline material in B. mori silk fibroin is in the form of ribbon-like filaments of considerable length parallel to the fiber axis and of lateral dimensions approximately 20 x 60 A.
PMCID: PMC2107248  PMID: 10976222
20.  High-resolution study of (222, 113) three-beam diffraction in Ge 
Good agreement between the high-resolution experimental results for (222, 113) three-beam diffraction in Ge and computer simulations based on the dynamical multiple diffraction theory are presented.
The results of high-resolution analysis of the (222, >113) three-beam diffraction in Ge are presented. For monochromatization and angular collimation of the incident synchrotron beam a multi-crystal arrangement in a dispersive setup in both vertical and horizontal planes was used in an attempt to experimentally approach plane-wave incident conditions. Using this setup, for various azimuthal angles the polar angular curves which are very close to theoretical computer simulations for the plane monochromatic wave were measured. The effect of the strong two-beam 222 diffraction was observed for the first time with the maximum reflectivity close to 60% even though the total reflection of the incident beam into a forbidden reflection was not achieved owing to absorption. The structure factor of the 222 reflection in Ge was experimentally determined.
PMCID: PMC3121237  PMID: 21694480
dynamical diffraction; multiple diffraction; synchrotron radiation; plane waves; X-ray optics
21.  Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison 
BMC Systems Biology  2012;6:53.
Complete transcriptional regulatory network inference is a huge challenge because of the complexity of the network and sparsity of available data. One approach to make it more manageable is to focus on the inference of context-specific networks involving a few interacting transcription factors (TFs) and all of their target genes.
We present a computational framework for Bayesian statistical inference of target genes of multiple interacting TFs from high-throughput gene expression time-series data. We use ordinary differential equation models that describe transcription of target genes taking into account combinatorial regulation. The method consists of a training and a prediction phase. During the training phase we infer the unobserved TF protein concentrations on a subnetwork of approximately known regulatory structure. During the prediction phase we apply Bayesian model selection on a genome-wide scale and score all alternative regulatory structures for each target gene. We use our methodology to identify targets of five TFs regulating Drosophila melanogaster mesoderm development. We find that confident predicted links between TFs and targets are significantly enriched for supporting ChIP-chip binding events and annotated TF-gene interations. Our method statistically significantly outperforms existing alternatives.
Our results show that it is possible to infer regulatory links between multiple interacting TFs and their target genes even from a single relatively short time series and in presence of unmodelled confounders and unreliable prior knowledge on training network connectivity. Introducing data from several different experimental perturbations significantly increases the accuracy.
PMCID: PMC3527261  PMID: 22647244
Bayesian inference; Gene regulation; Transcription factor; Gene regulatory network; Systems biology
22.  Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition 
Crystal Growth & Design  2010;10(4):1725-1729.
We report epitaxial growth and structures of SrFeO2.5 (SFO) films on SrTiO3 (STO) (001) and (111) substrates by pulsed-laser deposition. Reflection high-energy electron diffraction intensity oscillations were observed during the initial growth on both substrates, reflecting a layer-by-layer growth mode of the formula unit cell. It was found that the films were stabilized with a monoclinic structure that was derived from the original orthorhombic structure of bulk Brownmillerite. Using an X-ray reciprocal space mapping technique, in-plane domain structures and the orientation relationship were investigated. In addition, the impact of laser spot area on the epitaxial structures was studied. For the films grown on the (001) STO, the orientation relationship was robust against the change of the laser spot area: SFO(001)//STO(001) and SFO(100)//STO(100) for the out-of-plane and the in-plane, respectively, with the [001] axis tilted toward the 4-fold a- and b-axes by ∼1.4°, whereas nearly (111)-oriented films were obtained on the (111) STO, exhibiting a complicated manner of tilting that depended on laser spot area. The observed variation in tilting configurations can be understood in terms of possible atomic arrangements at the SFO/STO interface. These results present a guide to control the heteroepitaxial growth and structure of (111)-oriented noncubic perovskites.
The epitaxial structures of SrFeO2.5 films grown on SrTiO3 (001) and (111) substrates by PLD are reported. A layer-by-layer growth mode was achieved in the initial stage on both substrates. The films were stabilized with a monoclinic structure, where we identified the in-plane domain structures and orientation relationship. Our study presents a guide to control the heteroepitaxy of (111)-oriented noncubic perovskites.
PMCID: PMC2851191  PMID: 20383295
23.  Autoindexing the diffraction patterns from crystals with a pseudotranslation 
Lattice patterns containing alternating strong and weak reflections can be identified by a targeted search for the weak signals, permitting a wider range of diffraction patterns to be indexed automatically.
Rotation photographs can be readily indexed if enough candidate Bragg spots are identified to properly sample the reciprocal lattice. However, while automatic indexing algorithms are widely used for macromolecular data processing, they can produce incorrect results in special situations where a subset of Bragg spots is systematically overlooked. This is a potential outcome in cases where a noncrystallographic translational symmetry operator closely mimics an exact crystallo­graphic translation. In these cases, a visual inspection of the diffraction image will reveal alternating strong and weak reflections. However, reliable detection of the weak-intensity reflections by software requires a systematic search for a diffraction signal targeted at specific reciprocal-space locations calculated a priori by considering all possible pseudotranslations. Care must be exercised to distinguish between true lattice diffraction and spurious signals contributed by neighboring overlapping Bragg spots, non-Bragg diffraction and noise. Such procedures have been implemented within the autoindexing program LABELIT and applied to known cases from publicly available data sets. Routine use of this type of signal search adds only a few seconds to the typical run time for autoindexing. The program can be downloaded from
PMCID: PMC2685732  PMID: 19465769
subgroups; sublattices; cosets; noncrystallographic symmetry
24.  Active impedance metasurface with full 360° reflection phase tuning 
Scientific Reports  2013;3:3059.
Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas.
PMCID: PMC3808812  PMID: 24162366
25.  Formal Modeling and Analysis of the MAL-Associated Biological Regulatory Network: Insight into Cerebral Malaria 
PLoS ONE  2012;7(3):e33532.
The discrete modeling formalism of René Thomas is a well known approach for the modeling and analysis of Biological Regulatory Networks (BRNs). This formalism uses a set of parameters which reflect the dynamics of the BRN under study. These parameters are initially unknown but may be deduced from the appropriately chosen observed dynamics of a BRN. The discrete model can be further enriched by using the model checking tool HyTech along with delay parameters. This paves the way to accurately analyse a BRN and to make predictions about critical trajectories which lead to a normal or diseased response. In this paper, we apply the formal discrete and hybrid (discrete and continuous) modeling approaches to characterize behavior of the BRN associated with MyD88-adapter-like (MAL) – a key protein involved with innate immune response to infections. In order to demonstrate the practical effectiveness of our current work, different trajectories and corresponding conditions that may lead to the development of cerebral malaria (CM) are identified. Our results suggest that the system converges towards hyperinflammation if Bruton's tyrosine kinase (BTK) remains constitutively active along with pre-existing high cytokine levels which may play an important role in CM pathogenesis.
PMCID: PMC3316585  PMID: 22479409

Results 1-25 (800036)