Search tips
Search criteria

Results 1-25 (654686)

Clipboard (0)

Related Articles

1.  Glycerol-3-Phosphate Acyltransferase Contributes to Triacylglycerol Biosynthesis, Lipid Droplet Formation, and Host Invasion in Metarhizium robertsii 
Applied and Environmental Microbiology  2013;79(24):7646-7653.
Enzymes involved in the triacylglycerol (TAG) biosynthesis have been well studied in the model organisms of yeasts and animals. Among these, the isoforms of glycerol-3-phosphate acyltransferase (GPAT) redundantly catalyze the first and rate-limiting step in glycerolipid synthesis. Here, we report the functions of mrGAT, a GPAT ortholog, in an insect-pathogenic fungus, Metarhizium robertsii. Unlike in yeasts and animals, a single copy of the mrGAT gene is present in the fungal genome and the gene deletion mutant is viable. Compared to the wild type and the gene-rescued mutant, the ΔmrGAT mutant demonstrated reduced abilities to produce conidia and synthesize TAG, glycerol, and total lipids. More importantly, we found that mrGAT is localized to the endoplasmic reticulum and directly linked to the formation of lipid droplets (LDs) in fungal cells. Insect bioassay results showed that mrGAT is required for full fungal virulence by aiding fungal penetration of host cuticles. Data from this study not only advance our understanding of GPAT functions in fungi but also suggest that filamentous fungi such as M. robertsii can serve as a good model to elucidate the role of the glycerol phosphate pathway in fungal physiology, particularly to determine the mechanistic connection of GPAT to LD formation.
PMCID: PMC3837804  PMID: 24077712
2.  Redundant Systems of Phosphatidic Acid Biosynthesis via Acylation of Glycerol-3-Phosphate or Dihydroxyacetone Phosphate in the Yeast Saccharomyces cerevisiae 
Journal of Bacteriology  1999;181(5):1458-1463.
In the yeast Saccharomyces cerevisiae lipid particles harbor two acyltransferases, Gat1p and Slc1p, which catalyze subsequent steps of acylation required for the formation of phosphatidic acid. Both enzymes are also components of the endoplasmic reticulum, but this compartment contains additional acyltransferase(s) involved in the biosynthesis of phosphatidic acid (K. Athenstaedt and G. Daum, J. Bacteriol. 179:7611–7616, 1997). Using the gat1 mutant strain TTA1, we show here that Gat1p present in both subcellular fractions accepts glycerol-3-phosphate and dihydroxyacetone phosphate as a substrate. Similarly, the additional acyltransferase(s) present in the endoplasmic reticulum can acylate both precursors. In contrast, yeast mitochondria harbor an enzyme(s) that significantly prefers dihydroxyacetone phosphate as a substrate for acylation, suggesting that at least one additional independent acyltransferase is present in this organelle. Surprisingly, enzymatic activity of 1-acyldihydroxyacetone phosphate reductase, which is required for the conversion of 1-acyldihydroxyacetone phosphate to 1-acylglycerol-3-phosphate (lysophosphatidic acid), is detectable only in lipid particles and the endoplasmic reticulum and not in mitochondria. In vivo labeling of wild-type cells with [2-3H, U-14C]glycerol revealed that both glycerol-3-phosphate and dihydroxyacetone phosphate can be incorporated as a backbone of glycerolipids. In the gat1 mutant and the 1-acylglycerol-3-phosphate acyltransferase slc1 mutant, the dihydroxyacetone phosphate pathway of phosphatidic acid biosynthesis is slightly preferred as compared to the wild type. Thus, mutations of the major acyltransferases Gat1p and Slc1p lead to an increased contribution of mitochondrial acyltransferase(s) to glycerolipid synthesis due to their substrate preference for dihydroxyacetone phosphate.
PMCID: PMC93534  PMID: 10049376
3.  Phylogenetic Analysis of Glycerol 3-Phosphate Acyltransferases in Opisthokonts Reveals Unexpected Ancestral Complexity and Novel Modern Biosynthetic Components 
PLoS ONE  2014;9(10):e110684.
Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of ‘fungal’ orthologs in the basal taxa of the holozoa and ‘animal’ orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.
PMCID: PMC4207751  PMID: 25340523
4.  Mitochondrial glycerol-3-P acyltransferase 1 is most active in outer mitochondrial membrane but not in mitochondrial associated vesicles (MAV) 
Biochimica et biophysica acta  2007;1771(7):830-838.
Glycerol 3-phosphate acyltransferase-1 (GPAT1), catalyzes the committed step in phospholipid and triacylglycerol synthesis. Because both GPAT1 and carnitine-palmitoyltransferase 1 are located on the outer mitochondrial membrane (OMM) it has been suggested that their reciprocal regulation controls acyl-CoA metabolism at the OMM. To determine whether GPAT1, like carnitine-palmitoyltransferase 1, is enriched in both mitochondrial contact sites and OMM, and to correlate protein location and enzymatic function, we used Percoll and sucrose gradient fractionation of rat liver to obtain submitochondrial fractions. Most GPAT1 protein was present in a vesicular membrane fraction associated with mitochondria (MAV) but GPAT specific activity in this fraction was low. In contrast, highest GPAT1 specific activity was present in purified mitochondria. Contact sites from crude mitochondria, which contained markers for both endoplasmic reticulum (ER) and mitochondria, also showed high expression of GPAT1 protein but low specific activity, whereas contact sites isolated from purified mitochondria lacked ER markers and expressed highly active GPAT1. To determine how GPAT1 is targeted to mitochondria, recombinant protein was synthesized in vitro and its incorporation into crude and purified mitochondria was assayed. GPAT1 was rapidly incorporated into mitochondria, but not into microsomes. Incorporation was ATP-driven, and lack of GPAT1 removal by alkali and a chaotropic agent showed that GPAT1 had become an integral membrane protein after incorporation. These results demonstrate that two pools of GPAT1 are present in rat liver mitochondria: an active one, located in OMM and a less active one, located in membranes (ER-contact sites and mitochondrial associated vesicles) associated with both mitochondria and ER.
PMCID: PMC2230616  PMID: 17493869
Triacylglycerol synthesis; Protein targeting; Mitochondria-endoplasmic reticulum interaction
5.  Cloning and functional characterization of a novel mitochondrialN-ethylmaleimide-sensitive glycerol-3-phosphate acyltransferase (GPAT2) 
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial and rate-limiting step in glycerolipid synthesis. Several mammalian GPAT activities have been recognized, including N-ethylmaleimide (NEM)-sensitive isoforms in microsomes and mitochondria and an NEM-resistant form in mitochondrial outer membrane (GPAT1). We have now cloned a second mitochondrial isoform, GPAT2 from mouse testis. The open reading frame encodes a protein of 798 amino acids with a calculated mass of 88.8 kDa and 27% amino acid identity to GPAT1. Testis mRNA expression was 50-fold higher than in liver or brown adipose tissue, but the specific activity of NEM-sensitive GPAT in testis mitochondria was similar to that in liver. When Cos-7 cells were transiently transfected with GPAT2, NEM-sensitive GPAT activity increased 30%. Confocal microscopy confirmed a mitochondrial location. Incubation of GPAT2-transfected Cos-7 cells with trace (3 μM; 0.25μCi) [1-14C]oleate for 6 h increased incorporation of [14C]oleate into TAG 84%. In contrast, incorporation into phospholipid species was lower than in control cells. Although a polyclonal antibody raised against full-length GPAT1 detected an ∼89 kDa band in liver and testis from GPAT1 null mice and both 89 and 80 kDa bands in BAT from the knockout animals, the GPAT2 protein expressed in Cos-7 cells was only 80 kDa. In vitro translation showed a single product of 89 kDa. Unlike GPAT1, GPAT2 mRNA abundance in liver was not altered by fasting or refeeding. GPAT2 is likely to have a specialized function in testis.
PMCID: PMC2133398  PMID: 17689486
6.  Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6−/− mice 
Journal of lipid research  2008;49(4):823.
Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms identified through sequence homology, but the enzyme activity for AGPAT6 has not been confirmed. We found that in liver and brown adipose tissue from Agpat6-deficient (Agpat6−/−) mice, N-ethylmaleimide (NEM)-sensitive GPAT specific activity was 65% lower than in tissues from wild-type mice, but AGPAT specific activity was similar. Overexpression of Agpat6 in Cos-7 cells increased an NEM-sensitive GPAT specific activity, but AGPAT specific activity was not increased. Agpat6 and Gpat1 overexpression in Cos-7 cells increased the incorporation of [14C]oleate into diacylglycerol (DAG) or into DAG and TAG, respectively, suggesting that the lysophosphatidic acid, phosphatidic acid, and DAG intermediates initiated by each of these isoforms lie in different cellular pools. Together, these data show that “Agpat6−/− mice” are actually deficient in a novel NEM-sensitive GPAT, GPAT4, and indicate that the alterations in lipid metabolism in adipose tissue, liver, and mammary epithelium of these mice are attributable to the absence of GPAT4
PMCID: PMC2819352  PMID: 18192653
triacylglycerol; phospholipid; lipodystrophy; acyl-coenzyme A; steatosis; sn-l-acylglycerol-3-phosphate O-acyltransferase-deficient mice
7.  Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. 
Journal of Bacteriology  1997;179(24):7611-7616.
Lipid particles of the yeast Saccharomyces cerevisiae harbor two enzymes that stepwise acylate glycerol-3-phosphate to phosphatidic acid, a key intermediate in lipid biosynthesis. In lipid particles of the s1c1 disruptant YMN5 (M. M. Nagiec et al., J. Biol. Chem. 268:22156-22163, 1993) acylation stops after the first step, resulting in the accumulation of lysophosphatidic acid. Two-dimensional gel electrophoresis confirmed that S1c1p is a component of lipid particles. Lipid particles of a second mutant strain, TTA1 (T. S. Tillman and R. M. Bell, J. Biol. Chem. 261:9144-9149, 1986), which harbors a point mutation in the GAT gene, are essentially devoid of glycerol-3-phosphate acyltransferase activity in vitro. Synthesis of phosphatidic acid is reconstituted by combining lipid particles from YMN5 and TTA1. These results indicate that two distinct enzymes are necessary for phosphatidic acid synthesis in lipid particles: the first step, acylation of glycerol-3-phosphate, is catalyzed by a putative Gat1p; the second step, acylation of lysophosphatidic acid, requires S1c1p. Surprisingly, YMN5 and TTA1 mutants grow like the corresponding wild types because the endoplasmic reticulum of both mutants has the capacity to form a reduced but significant amount of phosphatidic acid. As a consequence, an s1c1 gat1 double mutant is also viable. Lipid particles from this double mutant fail completely to acylate glycerol-3-phosphate, whereas endoplasmic reticulum membranes harbor residual enzyme activities to synthesize phosphatidic acid. Thus, yeast contains at least two independent systems of phosphatidic acid biosynthesis.
PMCID: PMC179720  PMID: 9401016
8.  Glycerol-3-Phosphate Acyltranferase-2 Behaves as a Cancer Testis Gene and Promotes Growth and Tumorigenicity of the Breast Cancer MDA-MB-231 Cell Line 
PLoS ONE  2014;9(6):e100896.
The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2′ deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells.
PMCID: PMC4072688  PMID: 24967918
9.  Mitochondrial Glycerol-3-Phosphate Acyltransferase-Deficient Mice Have Reduced Weight and Liver Triacylglycerol Content and Altered Glycerolipid Fatty Acid Composition 
Molecular and Cellular Biology  2002;22(23):8204-8214.
Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT−/− mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT−/− liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT−/− liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production.
PMCID: PMC134068  PMID: 12417724
10.  Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition 
Biochimica et Biophysica Acta  2008;1781(6-7):352-358.
Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids.
PMCID: PMC3285559  PMID: 18522808
obesity; type 2 diabetes; lipotoxicity; diabetic cardiomyopathy; arachidonic acid
11.  Macrobrachium borellii Hepatopancreas Contains a Mitochondrial Glycerol-3-Phosphate Acyltransferase Which Initiates Triacylglycerol Biosynthesis 
Lipids  2009;44(4):337.
Mammals express four isoforms of glycerol-3-phosphate acyltransferase (GPAT). The mitochondrial isoform GPAT1 may have been the acyltransferase that appeared first in evolution. The hepatopancreas of the crustacean Macrobrachium borellii has a high capacity for triacylglycerol (TAG) biosynthesis and storage. In order to understand the mechanism of glycerolipid biosynthesis in M. borellii, we investigated its hepatopancreas GPAT activity. In hepatopancreas mitochondria, we identified a GPAT activity with characteristics similar to those of mammalian GPAT1. The activity was resistant to inactivation by SH-reactive N-ethylmaleimide, it was activated by polymyxin-B, and its preferred substrate was palmitoyl-CoA. The reaction products were similar to those of mammalian GPAT1. A 70-kDa protein band immunoreacted with an anti-rat liver GPAT1 antibody. Surprisingly, we did not detect high GPAT specific activity in hepato-pancreas microsomes. GPAT activity in microsomes was consistent with mitochondrial contamination, and its properties were similar to those of the mitochondrial activity. In microsomes, TAG synthesis was not dependent on the presence of glycerol-3 phosphate as a substrate, and the addition of monoacylglycerol as a substrate increased TAG synthesis 2-fold. We conclude that in M. borellii the de novo triacylglycerol biosynthetic pathway can be completed in the mitochondria. In contrast, TAG synthesis in the ER may function via the monoacylglycerol pathway.
PMCID: PMC2823129  PMID: 19130111
Triacylglycerol; Crustacean; Glycerolipid synthesis
12.  Glycerol-3-Phosphate Acyltransferase-2 Is Expressed in Spermatic Germ Cells and Incorporates Arachidonic Acid into Triacylglycerols 
PLoS ONE  2012;7(8):e42986.
De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT). In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid.
Methods and Results
Incubation of GPAT2-transfected CHO-K1 cells with [1-14C]arachidonate for 3 h increased incorporation of [14C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2's role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein.
These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.
PMCID: PMC3414494  PMID: 22905194
13.  Glycerol-3-Phosphate Acyltransferase 1 Deficiency in ob/ob Mice Diminishes Hepatic Steatosis but Does Not Protect Against Insulin Resistance or Obesity 
Diabetes  2010;59(6):1321-1329.
Hepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis. We asked whether ob/ob mice lacking Gpat1 would have reduced hepatic steatosis and improved insulin sensitivity.
Hepatic lipids, insulin sensitivity, and hepatic insulin signaling were compared in lean (Lep+/?), lean-Gpat1−/−, ob/ob (Lepob/ob), and ob/ob-Gpat1−/− mice.
Compared with ob/ob mice, the lack of Gpat1 in ob/ob mice reduced hepatic triacylglycerol (TAG) and diacylglycerol (DAG) content 59 and 74%, respectively, but increased acyl-CoA levels. Despite the reduction in hepatic lipids, fasting glucose and insulin concentrations did not improve, and insulin tolerance remained impaired. In both ob/ob and ob/ob-Gpat1−/− mice, insulin resistance was accompanied by elevated hepatic protein kinase C-ε activation and blunted insulin-stimulated Akt activation.
These results suggest that decreasing hepatic steatosis alone does not improve insulin resistance, and that factors other than increased hepatic DAG and TAG contribute to hepatic insulin resistance in this genetically obese model. They also show that the SREBP1-mediated induction of hepatic steatosis in ob/ob mice requires Gpat1.
PMCID: PMC2874692  PMID: 20200319
14.  Hepatic Overexpression of Glycerol-sn-3-phosphate Acyltransferase 1 in Rats Causes Insulin Resistance* 
Fatty liver is commonly associated with insulin resistance and type 2 diabetes, but it is unclear whether triacylglycerol accumulation or an excess flux of lipid intermediates in the pathway of triacyglycerol synthesis are sufficient to cause insulin resistance in the absence of genetic or diet-induced obesity. To determine whether increased glycerolipid flux can, by itself, cause hepatic insulin resistance, we used an adenoviral construct to overexpress glycerol-sn-3-phosphate acyltransferase-1 (Ad-GPAT1), the committed step in de novo triacylglycerol synthesis. After 5–7 days, food intake, body weight, and fat pad weight did not differ between Ad-GPAT1 and Ad-enhanced green fluorescent protein control rats, but the chow-fed Ad-GPAT1 rats developed fatty liver, hyperlipidemia, and insulin resistance. Liver was the predominant site of insulin resistance; Ad-GPAT1 rats had 2.5-fold higher hepatic glucose output than controls during a hyperinsulinemic-euglycemic clamp. Hepatic diacylglycerol and lysophosphatidate were elevated in Ad-GPAT1 rats, suggesting a role for these lipid metabolites in the development of hepatic insulin resistance, and hepatic protein kinase Cε was activated, providing a potential mechanism for insulin resistance. Ad-GPAT1-treated rats had 50% lower hepatic NF-κB activity and no difference in expression of tumor necrosis factor-α and interleukin-β, consistent with hepatic insulin resistance in the absence of increased hepatic inflammation. Glycogen synthesis and uptake of 2-deoxyglucose were reduced in skeletal muscle, suggesting mild peripheral insulin resistance associated with a higher content of skeletal muscle triacylglycerol. These results indicate that increased flux through the pathway of hepatic de novo triacylglycerol synthesis can cause hepatic and systemic insulin resistance in the absence of obesity or a lipogenic diet.
PMCID: PMC2819346  PMID: 17389595
15.  The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae. 
Journal of Bacteriology  1992;174(17):5702-5710.
The presence of the acyl dihydroxyacetone phosphate (acyl DHAP) pathway in yeasts was investigated by examining three key enzyme activities of this pathway in Saccharomyces cerevisiae. In the total membrane fraction of S. cerevisiae, we confirmed the presence of both DHAP acyltransferase (DHAPAT; Km = 1.27 mM; Vmax = 5.9 nmol/min/mg of protein) and sn-glycerol 3-phosphate acyltransferase (GPAT; Km = 0.28 mM; Vmax = 12.6 nmol/min/mg of protein). The properties of these two acyltransferases are similar with respect to thermal stability and optimum temperature of activity but differ with respect to pH optimum (6.5 for GPAT and 7.4 for DHAPAT) and sensitivity toward the sulfhydryl blocking agent N-ethylmaleimide. Total membrane fraction of S. cerevisiae also exhibited acyl/alkyl DHAP reductase (EC activity, which has not been reported previously. The reductase has a Vmax of 3.8 nmol/min/mg of protein for the reduction of hexadecyl DHAP (Km = 15 microM) by NADPH (Km = 20 microM). Both acyl DHAP and alkyl DHAP acted as substrates. NADPH was the specific cofactor. Divalent cations and N-ethylmaleimide inhibited the enzymatic reaction. Reductase activity in the total membrane fraction from aerobically grown yeast cells was twice that from anaerobically grown cells. Similarly, DHAPAT and GPAT activities were also greater in aerobically grown yeast cells. The presence of these enzymes, together with the absence of both ether glycerolipids and the ether lipid-synthesizing enzyme (alkyl DHAP synthase) in S. cerevisiae, indicates that non-ether glycerolipids are synthesized in this organism via the acyl DHAP pathway.
PMCID: PMC206518  PMID: 1512203
16.  Triacylglycerol Synthesis Enzymes Mediate Lipid Droplet Growth by Relocalizing from the ER to Lipid Droplets 
Developmental cell  2013;24(4):384-399.
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
PMCID: PMC3727400  PMID: 23415954
17.  Regulation of Triglyceride Metabolism II. Function of mitochondrial GPAT1 in the regulation of triacylglycerol biosynthesis and insulin action 
GPAT1, one of four known glycerol-3-phosphate acyltransferase isoforms, is located on the mitochondrial outer membrane, allowing reciprocal regulation with carnitine palmitoyltransferase-1. GPAT1 is upregulated transcriptionally by insulin and SREBP-1c and downregulated acutely by AMP-activated protein kinase, consistent with a role in triacylglycerol synthesis. Knockout and overexpression studies suggest that GPAT1 is critical for the development of hepatic steatosis and that steatosis initiated by overexpression of GPAT1 causes hepatic, and perhaps also peripheral, insulin resistance. Future questions include the function of GPAT1 in relation to the other GPAT isoforms and whether the lipid intermediates synthesized by GPAT and downstream enzymes in the pathway of glycerolipid biosynthesis participate in intracellular signaling pathways.
PMCID: PMC2819211  PMID: 17158253
insulin resistance; diacylglycerol; lysophosphatidate; sterol regulatory element binding protein; hepatic steatosis
18.  GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET 
The Journal of General Physiology  2009;134(6):489-521.
The mouse γ-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [3H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images. Nine constructs were functionally indistinguishable from wild-type mGAT1 and provided information about normal mGAT1 assembly and trafficking. The remainder had compromised [3H]GABA uptake due to observable oligomerization and/or trafficking deficits; the data help to determine regions of mGAT1 sequence involved in these processes. Acceptor photobleach FRET detected mGAT1 oligomerization, but richer information was obtained from analyzing the distribution of all-pixel NFRET amplitudes. We also analyzed such distributions restricted to cellular subregions. Distributions were fit to either two or three Gaussian components. Two of the components, present for all mGAT1 constructs that oligomerized, may represent dimers and high-order oligomers (probably tetramers), respectively. Only wild-type functioning constructs displayed three components; the additional component apparently had the highest mean NFRET amplitude. Near the cell periphery, wild-type functioning constructs displayed the highest NFRET. In this subregion, the highest NFRET component represented ∼30% of all pixels, similar to the percentage of mGAT1 from the acutely recycling pool resident in the plasma membrane in the basal state. Blocking the mGAT1 C terminus postsynaptic density 95/discs large/zona occludens 1 (PDZ)-interacting domain abolished the highest amplitude component from the NFRET distributions. Disrupting the actin cytoskeleton in cells expressing wild-type functioning transporters moved the highest amplitude component from the cell periphery to perinuclear regions. Thus, pixel-by-pixel NFRET analysis resolved three distinct forms of GAT1: dimers, high-order oligomers, and transporters associated via PDZ-mediated interactions with the actin cytoskeleton and/or with the exocyst.
PMCID: PMC2806419  PMID: 19948998
19.  Aralia cordata Inhibits Triacylglycerol Biosynthesis in HepG2 Cells 
Journal of Medicinal Food  2013;16(12):1108-1114.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step in triacylglycerol (TAG) and phospholipid biosynthesis, and has been considered as one of the drug targets for treating hepatic steatosis, insulin resistance, and other metabolic disorders. The aim of this study was to investigate the GPAT inhibitors from natural products and to evaluate their effects. The methanol extract of Aralia cordata roots showed a strong inhibitory effect on the human GPAT1 activity. A further bioactivity-guided approach led to the isolation of ent-pimara-8(14),15-dien-19-oic acid, (PA), one of the major compounds of A. cordata, which suppressed the GPAT1 activity with IC50 value of 60.5 μM. PA markedly reduced de novo lysophosphatidic acid synthesis through inhibition of GPAT activity and therefore significantly decreased synthesis of TAG in the HepG2 cells. These results suggest that PA as well as A. cordata root extract could be beneficial in controlling lipid metabolism.
PMCID: PMC3868379  PMID: 24283275
Aralia cordata; ent-pimara-8(14),15-dien-19-oic acid; glycerol-3-phosphate acyltransferase; lysophophatidic acid; triacylglycerol
20.  sn-Glycerol-3-phosphate acyltransferases in plants 
Plant Signaling & Behavior  2011;6(11):1695-1699.
sn-Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA). LPA is an important intermediate for the formation of different types of acyl-lipids, such as extracellular lipid polyesters, storage and membrane lipids. Three types of GPAT have been found in plants, localizing to the plastid, endoplasmic reticulum, and mitochondria. These GPATs are involved in several lipid biosynthetic pathways and play important biological roles in plant development. In the present review, we will focus on the recent progress in studying the physiological functions of GPATs and their metabolic roles in glycerolipid biosynthesis.
PMCID: PMC3329339  PMID: 22057337
Arabidopsis; glycerolipid; GPAT; lipid biosynthesis; lipid polyester
21.  Leishmania Dihydroxyacetonephosphate Acyltransferase LmDAT is Important for Ether Lipid Biosynthesis but not for the Integrity of Detergent Resistant Membranes 
Glycerolipid biosynthesis in Leishmania initiates with the acylation of glycerol-3-phosphate by a single glycerol-3-phosphate acyltransferase, LmGAT, or of dihydroxyacetonephosphate by a dihydroxyacetonephosphate acyltransferase, LmDAT. We previously reported that acylation of the precursor dihydroxyacetonephosphate rather than glycerol-3-phosphate is the physiologically relevant pathway for Leishmania parasites. We demonstrated that LmDAT is important for normal growth, survival during the stationary phase, and for virulence. Here, we assessed the role of LmDAT in glycerolipid metabolism and metacyclogenesis. LmDAT was found to be implicated in the biosynthesis of ether glycerolipids, including the ether-lipid derived virulence factor lipophosphoglycan and glycosylphosphatidylinositol-anchored proteins. The null mutant produced longer lipophosphoglycan molecules that were not released in the medium, and augmented levels of glycosylphosphatidylinositol-anchored proteins. In addition, the integrity of detergent resistant membranes was not affected by the absence of the LmDAT gene. Further, our genetic analyses strongly suggest that LmDAT was colethal with the glycerol-3-phosphate acyltransferase encoding gene LmGAT, implying that Leishmania expresses only two acyltransferases that initiate the biosynthesis of its cellular glycerolipids. Last, despite the fact that LmDAT is important for virulence the null mutant still exhibited the typical characteristics of metacyclics.
PMCID: PMC2764253  PMID: 19720088
Leishmania; Ether glycerolipid; Lipophosphoglycan; Detergent resistant membranes; Metacyclogenesis
22.  Lysophosphatidic Acid Activates Peroxisome Proliferator Activated Receptor-γ in CHO Cells That Over-Express Glycerol 3-Phosphate Acyltransferase-1 
PLoS ONE  2011;6(4):e18932.
Lysophosphatidic acid (LPA) is an agonist for peroxisome proliferator activated receptor-γ (PPARγ). Although glycerol-3-phosphate acyltransferase-1 (GPAT1) esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO) cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA) or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.
PMCID: PMC3080373  PMID: 21533082
23.  Glycerophosphate/Acylglycerophosphate Acyltransferases 
Biology  2014;3(4):801-830.
Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT) are involved in the de novo synthesis of triacylglycerol (TAG) and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/pathological roles in the metabolism of glycerolipids have been described and discussed in this review.
PMCID: PMC4280512  PMID: 25415055
acyltransferase; acyl-CoA; triacylglycerol; phospholipid; GPAT; AGPAT
24.  Recruiting a New Substrate for Triacylglycerol Synthesis in Plants: The Monoacylglycerol Acyltransferase Pathway 
PLoS ONE  2012;7(4):e35214.
Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists.
Methodology/Principal Findings
We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor.
This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.
PMCID: PMC3327653  PMID: 22523576
25.  Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. 
Journal of Bacteriology  1996;178(23):6790-6795.
In enteric bacteria, the hexitol galactitol (Gat) (formerly dulcitol) is taken up through enzyme II (II(Gat)) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), and accumulated as galactitol 1-phosphate (Gat1P). The gat genes involved in galactitol metabolism have been isolated from the wild-type isolate Escherichia coli EC3132 and cloned on a 7.8-kbp PstI DNA fragment. They comprise six complete open reading frames and one truncated open reading frame in the order gatYZABCDR'. The genes gatABC code for the proteins GatA (150 residues) and GatB (94 residues), which correspond to the hydrophilic domains IIA(Gat) and IIB(Gat), and GatC, which represents a membrane-bound transporter domain IIC(Gat) (35 kDa, 427 residues). The three polypeptides together constitute a II(Gat) of average size (671 residues). Gene gatD codes for a Gat1P-specific NAD-dependent dehydrogenase (38 kDa, 346 residues), gatZ codes for a protein (42 kDa, 378 residues) of unknown function, and gatY (31 kDa, 286 residues) codes for a D-tagatose-1,6-bisphosphate aldolase with similarity to other known ketose-bisphosphate aldolases. The truncated gatR' gene, whose product shows similarity to the glucitol repressor GutR, closely resembles a gatR gene fragment from E. coli K-12. The gat genes map in both organisms at similar positions, in E. coli K-12, where they are transcribed counterclockwise at precisely 46.7 min or 2,173 to 2,180 kbp. The genes are expressed constitutively in both strains, probably due to a mutation(s) in gatR. Transcription initiation sites for the gatYp and the gatRp promoters were determined by primer extension analysis.
PMCID: PMC178577  PMID: 8955298

Results 1-25 (654686)