PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1407094)

Clipboard (0)
None

Related Articles

1.  Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene 
The Journal of Experimental Medicine  2009;206(13):3131-3141.
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors.
doi:10.1084/jem.20091050
PMCID: PMC2806455  PMID: 19995953
2.  Spectra of Chromosomal Aberrations in 325 Leukemia Patients and Implications for the Development of New Molecular Detection Systems 
Journal of Korean Medical Science  2011;26(7):886-892.
This study investigated the spectrum of chromosomal abnormalities in 325 leukemia patients and developed optimal profiles of leukemic fusion genes for multiplex RT-PCR. We prospectively analyzed blood and bone marrow specimens of patients with acute leukemia. Twenty types of chromosomal abnormalities were detected in 42% from all patients by commercially available multiplex RT-PCR for detecting 28 fusion genes and in 35% by cytogenetic analysis including FISH analysis. The most common cytogenetic aberrations in acute myeloid leukemia patients was PML/PARA, followed by AML1/MGT8 and MLL1, and in acute lymphoid leukemia patients was BCR/ABL, followed by TEL/AML1 and MLL1 gene rearrangement. Among the negative results for multiplex RT-PCR, clinically significant t(3;3)(q21;q26.2), t(8;14)(q24;q32) and i(17)(q10) were detected by conventional cytogenetics. The spectrum and frequency of chromosomal abnormalities in our leukemia patients are differed from previous studies, and may offer optimal profiles of leukemic fusion genes for the development of new molecular detection systems.
doi:10.3346/jkms.2011.26.7.886
PMCID: PMC3124718  PMID: 21738341
Leukemia; Chromosomal Abnormalities; Molecular Detection System
3.  Clinical utility of FISH analysis in addition to G-banded karyotype in hematologic malignancies and proposal of a practical approach 
The Korean Journal of Hematology  2010;45(3):171-176.
Background
Fluorescence in situ hybridization (FISH) analysis can provide important information in the management of patients with hematologic malignancies. However, FISH performed in addition to G-banded karyotype can be labor-intensive and expensive. The aim of this study was to evaluate whether FISH gives additional information in the setting of adequate conventional cytogenetics in cases of hematologic malignancies.
Methods
Bone marrow aspirates were obtained from 135 patients at diagnosis (56 AML, 32 MDS, 20 ALL, and 27 MM) between 2005 and 2010. Interphase FISH was performed using the following probes: BCR/ABL1, AML1/ETO, PML/RARA, CBFB, MLL, EGR1, CEP8, and D7S486 for AML; CEP8, D20S108, EGR1, and D7S486 for MDS; BCR/ABL1, MLL, CDKN2A (p16), ETV6, and 6q21/c-myc for ALL; IgH, TP53, D13S25, IgH/CCND1, IgH/MAF, IgH/FGFR3, and 1q21/8p21 for MM. We compared the results of FISH with the corresponding aberrations identified by G-banded karyotype.
Results
Additional genetic aberrations detected by FISH (which were not identified by G-banded karyotype) were 4%, 9%, 50%, and 67% in AML, MDS, ALL, and MM, respectively. In ALL, CDKN2A and ETV6 FISH revealed additional genetic aberrations in 33% and 28% of cases, respectively. In MM, FISH was of benefit in detecting IgH, D13S25, TP53, and 1q21 rearrangements, not detected by G-banded karyotype (31%, 36%, 20%, and 40%, respectively).
Conclusion
These results suggest that performing FISH in addition to G-banded karyotype may contribute little additional genetic information in AML and MDS, whereas routine FISH analysis appears to be an efficient screening method in ALL and MM.
doi:10.5045/kjh.2010.45.3.171
PMCID: PMC2983032  PMID: 21120205
FISH; Karyotype; Acute myeloid leukemia; Myelodysplastic syndrome; Acute lymphoblastic leukemia; Multiple myeloma
4.  Incidence of Common Preleukemic Gene Fusions in Umbilical Cord Blood in Slovak Population 
PLoS ONE  2014;9(3):e91116.
The first event in origination of many childhood leukemias is likely the presence of preleukemic clone (transformed hematopoietic stem/progenitor cells with preleukemic gene fusions (PGF)) in newborn. Thus, the screening of umbilical cord blood (UCB) for PGF may be of high importance for developing strategies for childhood leukemia prevention and treatment. However, the data on incidence of PGF in UCB are contradictive. We have compared multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (RT qPCR) in neonates from Slovak National Birth Cohort. According to multiplex PCR, all 135 screened samples were negative for the most frequent PGF of B-lineage acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). To explore the prevalence of prognostically important TEL-AML1, MLL-AF4 and BCR-ABL (p190), 200 UCB were screened using RT qPCR. The initial screening showed an unexpectedly high incidence of studied PGF. The validation of selected samples in two laboratories confirmed approximately ¼ of UCB positive, resulting in ∼4% incidence of TEL-AML1, ∼6.25% incidence of BCR-ABL1 p190, and ∼0.75% frequency of MLL-AF4. In most cases, the PGF presented at very low level, about 1–5 copies per 105 cells. We hypothesize that low PGF numbers reflect their relatively late origin and are likely to be eliminated in further development while higher number of PGF reflects earlier origination and may represent higher risk for leukemia.
doi:10.1371/journal.pone.0091116
PMCID: PMC3951330  PMID: 24621554
5.  Prenatal origin of childhood AML occurs less frequently than in childhood ALL 
BMC Cancer  2006;6:100.
Background
While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers.
Methods
We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot.
Results
In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML.
Conclusion
In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases.
doi:10.1186/1471-2407-6-100
PMCID: PMC1463004  PMID: 16630339
6.  Identification of Novel Genomic Aberrations in AML-M5 in a Level of Array CGH 
PLoS ONE  2014;9(4):e87637.
To assess the possible existence of unbalanced chromosomal abnormalities and delineate the characterization of copy number alterations (CNAs) of acute myeloid leukemia-M5 (AML-M5), R-banding karyotype, oligonucelotide array CGH and FISH were performed in 24 patients with AML-M5. A total of 117 CNAs with size ranging from 0.004 to 146.263 Mb was recognized in 12 of 24 cases, involving all chromosomes other than chromosome 1, 4, X and Y. Cryptic CNAs with size less than 5 Mb accounted for 59.8% of all the CNAs. 12 recurrent chromosomal alterations were mapped. Seven out of them were described in the previous AML studies and five were new candidate AML-M5 associated CNAs, including gains of 3q26.2-qter and 13q31.3 as well as losses of 2q24.2, 8p12 and 14q32. Amplication of 3q26.2-qter was the sole large recurrent chromosomal anomaly and the pathogenic mechanism in AML-M5 was possibly different from the classical recurrent 3q21q26 abnormality in AML. As a tumor suppressor gene, FOXN3, was singled out from the small recurrent CNA of 14q32, however, it is proved that deletion of FOXN3 is a common marker of myeloid leukemia rather than a specific marker for AML-M5 subtype. Moreover, the concurrent amplication of MLL and deletion of CDKN2A were noted and it might be associated with AML-M5. The number of CNA did not show a significant association with clinico-biological parameters and CR number of the 22 patients received chemotherapy. This study provided the evidence that array CGH served as a complementary platform for routine cytogenetic analysis to identify those cryptic alterations in the patients with AML-M5. As a subtype of AML, AML-M5 carries both common recurrent CNAs and unique CNAs, which may harbor novel oncogenes or tumor suppressor genes. Clarifying the role of these genes will contribute to the understanding of leukemogenic network of AML-M5.
doi:10.1371/journal.pone.0087637
PMCID: PMC3984075  PMID: 24727659
7.  A case of pediatric B-Lymphoblastic leukemia presenting with a t(9;12)(p24;q11.2) involving JAK2 and concomitant MLL rearrangement with apparent insertion at 6q27 
Biomarker Research  2013;1:31.
Background
B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in pediatric patients and the leading cause of cancer-related death in children and young adults. Translocations of 9p24 involving JAK2 (9p24) and gain-of-function mutations of JAK2 with subsequent activation of the JAK2 kinase have been described in several hematological malignancies including B-ALL. However, rearrangements involving JAK2 are rare in B-ALL as only few cases have been described in the literature.
Findings
Herein, we present a case of pediatric B-ALL whose conventional cytogenetics revealed an abnormal karyotype with a reciprocal translocation involving 9p24 (JAK2) and 12p11.2. Fluorescence in situ hybridization (FISH) studies using the RP11-927H16 Spectrum Green JAK2 probe on previously G-banded metaphases confirmed the involvement of JAK2 in this rearrangement. Further FISH studies on the same previously G-banded metaphases using the LSI MLL probe helped to characterize an insertion of MLL into 6q27 as an additional abnormality in this karyotype. FISH studies performed on interphase nuclei also revealed an abnormal clone with MLL rearrangements in 23.6% of the nuclei examined as well as an abnormal clonal population with a deletion of the 5'IGH@ region in 88.3% of the nuclei examined.
Conclusions
Rearrangements of 9p24 can result in constitutive activation of JAK2, and have been observed in B-ALL. Rearrangements of the MLL gene have also been described extensively in B-ALL. However, rearrangements of MLL with a partner at 6q27 and in conjunction with a translocation involving JAK2 have not been previously described. This case pinpoints the importance of FISH and conventional cytogenetics to characterize complex rearrangements in which JAK2 and MLL are involved. The therapeutic targeting of JAK2 and MLL in cases like this may be prognostically beneficial.
doi:10.1186/2050-7771-1-31
PMCID: PMC4177618  PMID: 24274401
JAK2; MLL; FISH; B-ALL
8.  Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. 
Journal of Clinical Investigation  1994;93(1):429-437.
Cytogenetic studies have previously identified abnormalities of chromosome band 11q23 in many cases of infant acute leukemia. Recent studies by ourselves and others have demonstrated breakpoint clustering in acute leukemias bearing translocations involving 11q23, and a Drosophila trithorax gene homologue (called MLL, HRX, or ALL-1) has been shown to span the 11q23 breakpoints of these translocations. To determine if this gene is affected in infant acute myeloid leukemia (AML), we have analyzed 26 infant AML cases for molecular alterations of this 11q23 gene. 15 out of 26 cases studied (58%) showed rearrangement of the MLL gene at the molecular level, and these rearrangements were clustered within an approximately 11-kb region containing nine exons of this gene. Moreover, 14 of the 15 cases with 11q23 rearrangements (93%) had myelomonocytic or monocytic phenotypes (M4 or M5 FAB subtypes, respectively), both of which are associated with a poor prognosis in childhood AML. In contrast, only 1 of 11 nonrearranged cases had an M4 or M5 phenotype (P = 0.00002). Rearrangement also correlated significantly with hyperleukocytosis (P = 0.02), another clinical parameter associated with poor outcome in this disease. Our results demonstrate that molecular rearrangements of MLL are common in M4 or M5 infant AML, and suggest that alteration of this gene may result in abnormal control of proliferation and differentiation in monocytic progenitor cells.
Images
PMCID: PMC293805  PMID: 8282816
9.  Acute myeloid leukemia with t(7;21)(p22;q22) and 5q deletion: a case report and literature review 
The gene RUNX1 at chromosome 21q22 encodes the alpha subunit of Core binding factor (CBF), a heterodimeric transcription factor involved in the development of normal hematopoiesis. Translocations of RUNX1 are seen in several types of leukemia with at least 21 identified partner genes. The cryptic t(7;21)(p22;q22) rearrangement involving the USP42 gene appears to be a specific and recurrent cytogenetic abnormality. Eight of the 9 cases identified in the literature with this translocation were associated with acute myeloid leukemia (AML), with the remaining case showing refractory anemia with excess blasts, type 2. Herein, we present a patient with two preceding years of leukopenia and one year of anemia prior to the diagnosis of AML, NOS with monocytic differentiation (myelomonocytic leukemia) whose conventional cytogenetics showed an abnormal clone with 5q deletion. Interphase FISH using LSI RUNX1/RUNXT1 showed three signals for RUNX1. FISH studies on previously G-banded metaphases showed the extra RUNX1 signal on the short arm of chromosome 7. Further characterization using the subtelomeric 7p probe showed a cryptic 7;21 translocation. Our case and eight previously reported leukemic cases with the t(7;21)(p22;q22) appear to share similar features including monocytic differentiation, immunophenotypic aberrancies (often with CD56 and/or CD7), and a generally poor response to standard induction chemotherapy. About 80% of these cases had loss of 5q material as an additional abnormality at initial diagnosis or relapse. These findings suggest that t(7;21) may represent a distinct recurrent cytogenetic abnormality associated with AML. The association between the t(7;21) and 5q aberrancies appears to be non-random, however the pathogenetic connection remains unclear. Additional studies to evaluate for RUNX1 partner genes may be considered for AML patients with RUNX1 rearrangement and 5q abnormalities; however knowledge of the prognostic implications of this rearrangement is still limited.
doi:10.1186/2162-3619-3-8
PMCID: PMC4012275  PMID: 24646765
AML; Acute myeloid leukemia; t(7;21); t(7;21)(p22;q22); RUNX1; USP42
10.  Utility of a multiplex reverse transcriptase-polymerase chain reaction assay (HemaVision) in the evaluation of genetic abnormalities in Korean children with acute leukemia: a single institution study 
Korean Journal of Pediatrics  2013;56(6):247-253.
Purpose
In children with acute leukemia, bone marrow genetic abnormalities (GA) have prognostic significance, and may be the basis for minimal residual disease monitoring. Since April 2007, we have used a multiplex reverse transcriptase-polymerase chain reaction tool (HemaVision) to detect of GA.
Methods
In this study, we reviewed the results of HemaVision screening in 270 children with acute leukemia, newly diagnosed at The Catholic University of Korea from April 2007 to December 2011, and compared the results with those of fluorescence in situ hybridization (FISH), and G-band karyotyping.
Results
Among the 270 children (153 males, 117 females), 187 acute lymphoblastic leukemia and 74 acute myeloid leukemia patients were identified. Overall, GA was detected in 230 patients (85.2%). HemaVision, FISH, and G-band karyotyping identified GA in 125 (46.3%), 126 (46.7%), and 215 patients (79.6%), respectively. TEL-AML1 (20.9%, 39/187) and AML1-ETO (27%, 20/74) were the most common GA in ALL and AML, respectively. Overall sensitivity of HemaVision was 98.4%, with false-negative results in 2 instances: 1 each for TEL-AML1 and MLL-AF4. An aggregate of diseasesspecific FISH showed 100% sensitivity in detection of GA covered by HemaVision for actual probes utilized. G-band karyotype revealed GA other than those covered by HemaVison screening in 133 patients (49.3%). Except for hyperdiplody and hypodiploidy, recurrent GA as defined by the World Health Organizationthat were not screened by HemaVision, were absent in the karyotype.
Conclusion
HemaVision, supported by an aggregate of FISH tests for important translocations, may allow for accurate diagnosis of GA in Korean children with acute leukemia.
doi:10.3345/kjp.2013.56.6.247
PMCID: PMC3693043  PMID: 23807891
HemaVision; Acute leukemia; Child; Fluorescence in situ hybridization; Karyotype
11.  A novel spliced fusion of MLL with CT45A2 in a pediatric biphenotypic acute leukemia 
BMC Cancer  2010;10:518.
Background
Abnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia.
Methods
Cytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia.
Results
Fluorescence in situ hybridization of bone marrow G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences.
Conclusion
We have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first Cancer/Testis antigen family gene found fused with MLL in acute leukemia, future studies addressing its biologic relevance for leukemogenesis are warranted.
doi:10.1186/1471-2407-10-518
PMCID: PMC2956734  PMID: 20920256
12.  Additional Genomic Aberrations Identified by Single Nucleotide Polymorphism Array-Based Karyotyping in an Acute Myeloid Leukemia Case with Isolated del(20q) Abnormality 
Annals of Laboratory Medicine  2012;32(6):445-449.
Prognosis is known to be better in cases with isolated chromosomal abnormalities than in those with complex karyotypes. Accordingly, del(20q) as an isolated abnormality must be distinguished from cases in which it is associated with other chromosomal rearrangements for a better stratification of prognosis. We report a case of an isolated del(20q) abnormality with additional genomic aberrations identified using whole-genome single nucleotide polymorphism array (SNP-A)-based karyotyping. A 39-yr-old man was diagnosed with AML without maturation. Metaphase cytogenetic analysis (MC) revealed del(20)(q11.2) as the isolated abnormality in 100% of metaphase cells analyzed, and FISH analysis using D20S108 confirmed the 20q deletion in 99% of interphase cells. Using FISH, other rearrangements such as BCR/ABL1, RUNX1/RUNX1T1, PML/RARA, CBFB/MYH11, and MLL were found to be negative. SNP-A identified an additional copy neutral loss of heterozygosity (CN-LOH) in the 11q13.1-q25 region. Furthermore, SNP-A allowed for a more precise definition of the breakpoints of the 20q deletion (20q11.22-q13.31). Unexpectedly, the terminal regions showed gain on chromosome 20q. The patient did not achieve complete remission; 8 months later, he died from complications of leukemic cell infiltrations into the central nervous system. This study suggests that a presumably isolated chromosomal abnormality by MC may have additional genomic aberrations, including CN-LOH, which could be associated with a poor prognosis. SNP-A-based karyotyping may be helpful for distinguishing true isolated cases from cases in combination with additional genomic aberrations not detected by MC.
doi:10.3343/alm.2012.32.6.445
PMCID: PMC3486942  PMID: 23130347
Deletion; Chromosome 20; Isolated; AML; Cytogenetics; Single nucleotide polymorphism; Array
13.  Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia 
BMC Genomics  2007;8:385.
Background
The t(12;21)(p13;q22) translocation is found in 20 to 25% of cases of childhood B-lineage acute lymphoblastic leukemia (B-ALL). This rearrangement results in the fusion of ETV6 (TEL) and RUNX1 (AML1) genes and defines a relatively uniform category, although only some patients suffer very late relapse. TEL/AML1-positive patients are thus an interesting subgroup to study, and such studies should elucidate the biological processes underlying TEL/AML1 pathogenesis. We report an analysis of gene expression in 60 children with B-lineage ALL using Agilent whole genome oligo-chips (44K-G4112A) and/or real time RT-PCR.
Results
We compared the leukemia cell gene expression profiles of 16 TEL/AML1-positive ALL patients to those of 44 TEL/AML1-negative patients, whose blast cells did not contain any additional recurrent translocation. Microarray analyses of 26 samples allowed the identification of genes differentially expressed between the TEL/AML1-positive and negative ALL groups. Gene enrichment analysis defined five enriched GO categories: cell differentiation, cell proliferation, apoptosis, cell motility and response to wounding, associated with 14 genes -RUNX1, TCFL5, TNFRSF7, CBFA2T3, CD9, SCARB1, TP53INP1, ACVR1C, PIK3C3, EGFL7, SEMA6A, CTGF, LSP1, TFPI – highlighting the biology of the TEL/AML1 sub-group. These results were first confirmed by the analysis of an additional microarray data-set (7 patient samples) and second by real-time RT-PCR quantification and clustering using an independent set (27 patient samples). Over-expression of RUNX1 (AML1) was further investigated and in one third of the patients correlated with cytogenetic findings.
Conclusion
Gene expression analyses of leukemia cells from 60 children with TEL/AML1-positive and -negative B-lineage ALL led to the identification of five biological processes, associated with 14 validated genes characterizing and highlighting the biology of the TEL/AML1-positive ALL sub-group.
doi:10.1186/1471-2164-8-385
PMCID: PMC2211320  PMID: 17956600
14.  Genetic Variants Modify Susceptibility to Leukemia in Infants: A Children’s Oncology Group Report 
Pediatric blood & cancer  2012;60(1):31-34.
Background
The mixed lineage leukemia (MLL) gene is commonly rearranged in infant leukemia (IL). Genetic determinants of susceptibility to IL are unknown. Recent genome wide association studies for childhood acute lymphoblastic leukemia (ALL) have identified susceptibility loci at IKZF1, ARID5B, and CEBPE.
Procedure
We genotyped these loci in 171 infants with leukemia and 384 controls and evaluated associations overall, by subtype (ALL, acute myeloid leukemia (AML)), and by presence (+) or absence (−) of MLL rearrangements.
Results
Homozygosity for a variant IKZF1 allele (rs11978267) increased risk of infant AML (Odds Ratio (OR)=3.9, 95% Confidence Interval (CI)=1.8–8.4); the increased risk was similar for AML/MLL+ and MLL− cases. In contrast, risk of ALL/MLL− was increased in infants homozygous for the IKZF1 variant (OR=5.1, 95%CI=1.8–14.5) but the variant did not modify risk of ALL/MLL+. For ARID5B (rs10821936), homozygosity for the variant allele increased risk for the ALL/MLL− subgroup only (OR=7.2, 95%CI=2.5–20.6). There was little evidence of an association with the CEBP variant (rs2239633).
Conclusion
IKZF1 is expressed in early hematopoiesis, including precursor myeloid cells. Our data provide the first evidence that IKZF1 modifies susceptibility to infant AML, irrespective of MLL rearrangements, and could provide important new etiologic insights into this rare and heterogeneous hematopoietic malignancy.
doi:10.1002/pbc.24131
PMCID: PMC3381932  PMID: 22422485
leukemia; genetic susceptibility; infants
15.  The TEL-AML1 leukemia fusion gene dysregulates the TGF-β pathway in early B lineage progenitor cells  
Chromosome translocation to generate the TEL-AML1 (also known as ETV6-RUNX1) chimeric fusion gene is a frequent and early or initiating event in childhood acute lymphoblastic leukemia (ALL). Our starting hypothesis was that the TEL-AML1 protein generates and maintains preleukemic clones and that conversion to overt disease requires secondary genetic changes, possibly in the context of abnormal immune responses. Here, we show that a murine B cell progenitor cell line expressing inducible TEL-AML1 proliferates at a slower rate than parent cells but is more resistant to further inhibition of proliferation by TGF-β. This facilitates the competitive expansion of TEL-AML1–expressing cells in the presence of TGF-β. Further analysis indicated that TEL-AML1 binds to a principal TGF-β signaling target, Smad3, and compromises its ability to activate target promoters. In mice expressing a TEL-AML1 transgene, early, pre-pro-B cells were increased in number and also showed reduced sensitivity to TGF-β–mediated inhibition of proliferation. Moreover, expression of TEL-AML1 in human cord blood progenitor cells led to the expansion of a candidate preleukemic stem cell population that had an early B lineage phenotype (CD34+CD38–CD19+) and a marked growth advantage in the presence of TGF-β. Collectively, these data suggest a plausible mechanism by which dysregulated immune responses to infection might promote the malignant evolution of TEL-AML1–expressing preleukemic clones.
doi:10.1172/JCI36428
PMCID: PMC2662549  PMID: 19287094
16.  Prevalence of Gene Rearrangements in Mexican Children with Acute Lymphoblastic Leukemia: A Population Study—Report from the Mexican Interinstitutional Group for the Identification of the Causes of Childhood Leukemia 
BioMed Research International  2014;2014:210560.
Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010–2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children.
doi:10.1155/2014/210560
PMCID: PMC4323064
17.  A novel insertion ins(18;5)(q21.1;q31.2q35.1) in acute myeloid leukemia associated with microdeletions at 5q31.2, 5q35.1q35.2 and 18q12.3q21.1 detected by oligobased array comparative genomic hybridization 
Molecular Cytogenetics  2014;7(1):63.
Background
Nonrandom clonal chromosomal aberrations can be detected in approximately 55% of adult patients with acute myeloid leukemia (AML). Recurrent cytogenetic abnormalities play an important role in diagnosis, classification and prognosis of AML. However, several chromosomal abnormalities have not been completely determined or characterized, primarily because of their low incidence and limited amount of data.
Results
We characterized an AML patient with a novel apparently balanced insertion ins(18;5)(q21;q31.2q35.1) that was cryptic by G-banding. The rearrangement was further examined by molecular cytogenetic methods and oligobased high-resolution array CGH (oaCGH) analysis. We show that an approximately 31.8 Mb large segment from chromosome 5 bands q31.2 to q35.1 has been inserted, by a direct mechanism, into chromosome 18 between bands q12.3 and q21.1. The insertion was unbalanced with concurrent submicroscopic deletions at 5q31.2 (approximately 0.37 Mb in size), 5q35.1q35.2 (approximately 1.98 Mb in size), and 18q12.3q21.1 (approximately 2.07 Mb in size). The microdeletions affect genes on 5q and 18q that have been associated with hematological malignancy and other cancers. A novel juxtaposition of the genes NPM1 and HAUS1 at 5q35.1 and 18q21.1, respectively, was detected by FISH analysis. Searching the literature and the Mitelman database revealed no previously reported ins(18;5) cases. Interestingly, however, two AML patients with translocation t(5;18)(q35;q21) encompassing the 5q35 and 18q21 breakpoint regions as detected in our present ins(18;5) patient have been reported.
Conclusions
It is well-known that cytogenetic abnormalities on the long arm of chromosome 5 affect hematopoiesis. However, the precise mechanism of their involvement in myeloid transformation is elusive. Our present data shed new light onto the frequent abnormalities on 5q as well as to the less frequent abnormalities observed on 18q in myeloid malignancies. In addition, we show that oaCGH analysis is a useful adjunct to revealing submicroscopic aberrations in regions of clinical importance. Reporting rare and nonrandom chromosomal abnormalities contribute to the identification of the whole spectrum of cytogenetic abnormalities in AML and their prognostic significance.
doi:10.1186/s13039-014-0063-x
PMCID: PMC4180307  PMID: 25279000
Acute myeloid leukemia; ins(18;5); oaCGH analysis; Chromosomal insertion; Microdeletion; Cryptic chromosomal aberration; del(5q); add(18q)
18.  ETV6-RUNX1 Rearrangement in Tunisian Pediatric B-Lineage Acute Lymphoblastic Leukemia 
Advances in Hematology  2009;2009:924301.
In this study, Forty-one out of fifty-seven Tunisian children with B-lineage acute lymphoblastic leukemia (B-ALL), and without cytogenetically detectable recurrent abnormalities at the time of the diagnosis, were evaluated by fluorescence in situ hybridization (FISH) for the t(12;21). This translocation leads ETV6-RUNX1 (previously TEL-AML1) fusion gene. 16 patients (28%) had ETV6-RUNX1 rearrangement. In addition to this rearrangement, two cases showed a loss of the normal ETV6 allele, and three others showed an extra signal of the RUNX1 gene. Seven patients without ETV6-RUNX1 rearrangement showed extra signals of the RUNX1 gene. One out of the 7 patients was also associated with a t(3;12) identified by FISH. This is the first Tunisian study in which we report the incidence of t(12;21) among childhood B-lineage ALL and in which we have found multiple copies of RUNX1. Finally, our findings confirm that additional or secondary genetic changes are commonly encountered in pediatric B-lineage ALL with ETV6-RUNX1 gene fusion which is envisaged to play a pivotal role in disease progression.
doi:10.1155/2009/924301
PMCID: PMC2799269  PMID: 20049174
19.  Zinc Finger Nuclease Induced DNA Double Stranded Breaks and Rearrangements in MLL 
Mutation research  2013;740(1-2):34-42.
Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the breakpoint cluster region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.
doi:10.1016/j.mrfmmm.2012.12.006
PMCID: PMC3578303  PMID: 23291497
20.  Both SEPT2 and MLL are down-regulated in MLL-SEPT2 therapy-related myeloid neoplasia 
BMC Cancer  2009;9:147.
Background
A relevant role of septins in leukemogenesis has been uncovered by their involvement as fusion partners in MLL-related leukemia. Recently, we have established the MLL-SEPT2 gene fusion as the molecular abnormality subjacent to the translocation t(2;11)(q37;q23) in therapy-related acute myeloid leukemia. In this work we quantified MLL and SEPT2 gene expression in 58 acute myeloid leukemia patients selected to represent the major AML genetic subgroups, as well as in all three cases of MLL-SEPT2-associated myeloid neoplasms so far described in the literature.
Methods
Cytogenetics, fluorescence in situ hybridization (FISH) and molecular studies (RT-PCR, qRT-PCR and qMSP) were used to characterize 58 acute myeloid leukemia patients (AML) at diagnosis selected to represent the major AML genetic subgroups: CBFB-MYH11 (n = 13), PML-RARA (n = 12); RUNX1-RUNX1T1 (n = 12), normal karyotype (n = 11), and MLL gene fusions other than MLL-SEPT2 (n = 10). We also studied all three MLL-SEPT2 myeloid neoplasia cases reported in the literature, namely two AML patients and a t-MDS patient.
Results
When compared with normal controls, we found a 12.8-fold reduction of wild-type SEPT2 and MLL-SEPT2 combined expression in cases with the MLL-SEPT2 gene fusion (p = 0.007), which is accompanied by a 12.4-fold down-regulation of wild-type MLL and MLL-SEPT2 combined expression (p = 0.028). The down-regulation of SEPT2 in MLL-SEPT2 myeloid neoplasias was statistically significant when compared with all other leukemia genetic subgroups (including those with other MLL gene fusions). In addition, MLL expression was also down-regulated in the group of MLL fusions other than MLL-SEPT2, when compared with the normal control group (p = 0.023)
Conclusion
We found a significant down-regulation of both SEPT2 and MLL in MLL-SEPT2 myeloid neoplasias. In addition, we also found that MLL is under-expressed in AML patients with MLL fusions other than MLL-SEPT2.
doi:10.1186/1471-2407-9-147
PMCID: PMC2689242  PMID: 19445675
21.  DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. 
Molecular and Cellular Biology  1997;17(7):4070-4079.
A distinct population of therapy-related acute myeloid leukemia (t-AML) is strongly associated with prior administration of topoisomerase II (topo II) inhibitors. These t-AMLs display distinct cytogenetic alterations, most often disrupting the MLL gene on chromosome 11q23 within a breakpoint cluster region (bcr) of 8.3 kb. We recently identified a unique site within the MLL bcr that is highly susceptible to DNA double-strand cleavage by classic topo II inhibitors (e.g., etoposide and doxorubicin). Here, we report that site-specific cleavage within the MLL bcr can be induced by either catalytic topo II inhibitors, genotoxic chemotherapeutic agents which do not target topo II, or nongenotoxic stimuli of apoptotic cell death, suggesting that this site-specific cleavage is part of a generalized cellular response to an apoptotic stimulus. We also show that site-specific cleavage within the MLL bcr can be linked to the higher-order chromatin fragmentation that occurs during the initial stages of apoptosis, possibly through cleavage of DNA loops at their anchorage sites to the nuclear matrix. In addition, we show that site-specific cleavage is conserved between species, as specific DNA cleavage can also be demonstrated within the murine MLL locus. Lastly, site-specific cleavage during apoptosis can also be identified at the AML1 locus, a locus which is also frequently involved in chromosomal rearrangements present in t-AML patients. In conclusion, these results suggest the potential involvement of higher-order chromatin fragmentation which occurs as a part of a generalized apoptotic response in a mechanism leading to chromosomal translocation of the MLL and AML1 genes and subsequent t-AML.
PMCID: PMC232260  PMID: 9199342
22.  DNA Methylation Profiles and Their Relationship with Cytogenetic Status in Adult Acute Myeloid Leukemia 
PLoS ONE  2010;5(8):e12197.
Background
Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required.
Methodology/Principal Findings
We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/progenitor cells (HSPC) transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients.
Conclusions/Significance
Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signature.
doi:10.1371/journal.pone.0012197
PMCID: PMC2922373  PMID: 20808941
23.  Three-way Translocation of MLL/MLLT3, t(1;9;11)(p34.2;p22;q23), in a Pediatric Case of Acute Myeloid Leukemia 
The chromosome band 11q23 is a common target region of chromosomal translocation in different types of leukemia, including infantile leukemia and therapy-related leukemia. The target gene at 11q23, MLL, is disrupted by the translocation and becomes fused to various translocation partners. We report a case of AML with a rare 3-way translocation involving chromosomes 1, 9, and 11: t(1;9;11)(p34.2;p22;q23). A 3-yr-old Korean girl presented with a 5-day history of fever. A diagnosis of AML was made on the basis of the morphological evaluation and immunophenotyping of bone marrow specimens. Flow cytometric immunophenotyping showed blasts positive for myeloid lineage markers and aberrant CD19 expression. Karyotypic analysis showed 46,XX,t(1;9;11)(p34.2;p22;q23) in 19 of the 20 cells analyzed. This abnormality was involved in MLL/MLLT3 rearrangement, which was confirmed by qualitative multiplex reverse transcription-PCR and interphase FISH. She achieved morphological and cytogenetic remission after 1 month of chemotherapy and remained event-free for 6 months. Four cases of t(1;9;11)(v;p22;q23) have been reported previously in a series that included cases with other 11q23 abnormalities, making it difficult to determine the distinctive clinical features associated with this abnormality. To our knowledge, this is the first description of t(1;9;11) with clinical and laboratory data, including the data for the involved genes, MLL/MLLT3.
doi:10.3343/kjlm.2011.31.2.127
PMCID: PMC3116001  PMID: 21474990
Genetic translocation; Human MLL-MLLT3 fusion protein; Chromosome aberrations; Acute myeloid leukemia
24.  Initiation of MLL-rearranged AML is dependent on C/EBPα 
C/EBPα collaborates with MLL-ENL to activate a group of genes that, together with Hoxa9 and Meis1, are responsible for the early events that transforms normal hematopoietic cells into leukemic cells
MLL-fusion proteins are potent inducers of oncogenic transformation, and their expression is considered to be the main oncogenic driving force in ∼10% of human acute myeloid leukemia (AML) patients. These oncogenic fusion proteins are responsible for the initiation of a downstream transcriptional program leading to the expression of factors such as MEIS1 and HOXA9, which in turn can replace MLL-fusion proteins in overexpression experiments. To what extent MLL fusion proteins act on their own during tumor initiation, or if they collaborate with other transcriptional regulators, is unclear. Here, we have compared gene expression profiles from human MLL-rearranged AML to normal progenitors and identified the myeloid tumor suppressor C/EBPα as a putative collaborator in MLL-rearranged AML. Interestingly, we find that deletion of Cebpa rendered murine hematopoietic progenitors completely resistant to MLL-ENL–induced leukemic transformation, whereas C/EBPα was dispensable in already established AMLs. Furthermore, we show that Cebpa-deficient granulocytic-monocytic progenitors were equally resistant to transformation and that C/EBPα collaborates with MLL-ENL in the induction of a transcriptional program, which is also apparent in human AML. Thus, our studies demonstrate a key role of C/EBPα in MLL fusion–driven transformation and find that it sharply demarcates tumor initiation and maintenance.
doi:10.1084/jem.20130932
PMCID: PMC3892979  PMID: 24367003
25.  Frequency of 11q23/MLL gene rearrangement in Egyptian childhood acute myeloblastic leukemia: Biologic and clinical significance 
South Asian Journal of Cancer  2014;3(4):206-208.
Background:
Molecular cytogenetic abnormalities involving 11q23 are among the most common cytogenetic abnormalities in acute myeloid leukemia (AML) patients.
Aim of the work:
we aimed to evaluate the frequency of MLL/AF9 fusion gene in de novo AML patients, its impact on clinical features, and its prognostic significance.
Patients and Methods:
Twenty-eight children patients with AML and 20 healthy controls were subjected to complete clinical examination and laboratory investigations including, complete hemogram and bone marrow (BM) examination. Diagnosis was based on FAB morphologic and immunophenotypic criteria. Detection of (MLL/AF9) fusion gene was assessed by dual color fluorescent in situ hybridization (FISH). Follow-up were carried out clinically and by blast count in BM, and response to therapy to detect the outcome of the disease.
Results:
The incidence of MLL-fusion gene MLL/AF9 in AML cases was about (6/28) (21%). Four patients with MLL/AF9 fusion gene were newly diagnosed, two cases were at relapse and no patient at remission showed positivity. As regard the clinical outcome, five out of six MLL positive cases died, three of them during induction and two during relapse. The FAB AML subtypes with MLL/AF9 fusion were one M2, three M4, and two M5.
Conclusion:
MLL-fusion gene MLL/AF9 was found in about 21% of studied AML patients when assessed by FISH technique and this is of high clinical relevance as most of these abnormalities have been associated with poor prognosis.
doi:10.4103/2278-330X.142964
PMCID: PMC4236697  PMID: 25422805
Acute myelobastic leukemia; 11q23/MLL gene; Dual color FISH

Results 1-25 (1407094)