Search tips
Search criteria

Results 1-25 (1065106)

Clipboard (0)

Related Articles

1.  In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants 
Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment.
A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC).
This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins.
This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations.
Author Summary
Traditional herbal medicine continues to play a key role in health, particularly in remote areas with limited access to “modern medicines”. Many plants are used in traditional Nigerian medicine to treat parasitic diseases. While many of these plants have shown notable activity against parasitic protozoa, in most cases the mode of activity is not known. That is, it is not known what biochemical entities are being targeted by the plant chemical constituents. In this work, we have carried out molecular docking studies of known phytochemicals from Nigerian medicinal plants used to treat human African trypanosomiasis (sleeping sickness) with known biochemical targets in the Trypanosoma brucei parasite. The goals of this study were to identify the protein targets that the medicinal plants are affecting and to discern general trends in protein target selectivity for phytochemical classes. In doing so, we have theoretically identified strongly interacting plant chemicals and their biomolecular targets. These results should lead to further research to verify the efficacy of the phytochemical agents as well as delineate possible modifications of the active compounds to increase potency or selectivity.
PMCID: PMC3404109  PMID: 22848767
2.  Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate 
Molecular Microbiology  2006;61(6):1457-1468.
The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the β6-α6 loop and α6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.
PMCID: PMC1618733  PMID: 16968221
3.  Chemical and genetic validation of dihydrofolate reductase–thymidylate synthase as a drug target in African trypanosomes 
Molecular Microbiology  2008;69(2):520-533.
The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase–thymidylate synthase (DHFR–TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR–TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR–TS is essential for parasite survival and represents a promising target for drug discovery.
PMCID: PMC2610392  PMID: 18557814
4.  Molecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania 
Iranian Biomedical Journal  2010;14(3):97-102.
Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pteridine moiety from guanine triphosphate. Therefore, it must produce pteridine using PTR1, an essential part of the salvage pathway that reduces oxidized pteridines. Thus, PTR1 is a good drug-target candidate for anti-Leishmania chemotherapy. The aim of this study was the cloning, expression, and enzymatic assay of the ptr1 gene from Iranian lizard Leishmania as a model for further studies on Leishmania. Methods: Promastigote DNA was extracted from the Iranian lizard Leishmania, and the ptr1 gene was amplified using specific primers. The PCR product was cloned, transformed into Escherichia coli strain JM109, and expressed. The recombinant protein (PTR1 enzyme) was then purified and assayed. Results: ptr1 gene was successfully amplified and cloned into expression vector. Recombinant protein (PTR1 enzyme) was purified using affinity chromatography and confirmed by Western-blot and dot blot using anti-Leishmania major PTR1 antibody and anti-T7 tag monoclonal antibody, respectively. The enzymatic assay was confirmed as PTR1 witch performed using 6-biopterin as a substrate and nicotinamide adenine dinucleotide phosphate as a coenzyme. Conclusion: Iranian lizard Leishmania ptr1 was expressed and enzymatic assay was performed successfully.
PMCID: PMC3904060  PMID: 21079660
Pteridine reductase 1 (PTR1); Leishmania; Gene expression
5.  Design, Synthesis and Biological Evaluation of Novel Inhibitors of Trypanosoma brucei Pteridine Reductase 1 
Chemmedchem  2010;6(2):302-308.
Genetic studies indicate that the enzyme pteridine reductase 1 (PTR1) is essential for the survival of the protozoan parasite Trypanosoma brucei. Herein, we describe the development and optimisation of a novel series of PTR1 inhibitors, based on benzo[d]imidazol-2-amine derivatives. Data are reported on 33 compounds. This series was initially discovered by a virtual screening campaign (J. Med. Chem., 2009, 52, 4454). The inhibitors adopted an alternative binding mode to those of the natural ligands, biopterin and dihydrobiopterin, and classical inhibitors, such as methotrexate. Using both rational medicinal chemistry and structure-based approaches, we were able to derive compounds with potent activity against T. brucei PTR1 (=7 nm), which had high selectivity over both human and T. brucei dihydrofolate reductase. Unfortunately, these compounds displayed weak activity against the parasites. Kinetic studies and analysis indicate that the main reason for the lack of cell potency is due to the compounds having insufficient potency against the enzyme, which can be seen from the low Km to Ki ratio (Km=25 nm and Ki=2.3 nm, respectively).
PMCID: PMC3047710  PMID: 21275054
antiprotozoal agents; drug discovery; pteridine reductase; structure-based drug design; Trypanosoma brucei
6.  Structure-Based Design and Synthesis of Antiparasitic Pyrrolopyrimidines Targeting Pteridine Reductase 1 
Journal of Medicinal Chemistry  2014;57(15):6479-6494.
The treatment of Human African trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important; pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp., has been identified as a candidate target, and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from Trypanosoma brucei (J. Med. Chem.2010, 53, 221–229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. Eight compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus, although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development.
PMCID: PMC4136963  PMID: 25007262
7.  Dissecting the Metabolic Roles of Pteridine Reductase 1 in Trypanosoma brucei and Leishmania major* 
The Journal of Biological Chemistry  2011;286(12):10429-10438.
Leishmania parasites are pteridine auxotrophs that use an NADPH-dependent pteridine reductase 1 (PTR1) and NADH-dependent quinonoid dihydropteridine reductase (QDPR) to salvage and maintain intracellular pools of tetrahydrobiopterin (H4B). However, the African trypanosome lacks a credible candidate QDPR in its genome despite maintaining apparent QDPR activity. Here we provide evidence that the NADH-dependent activity previously reported by others is an assay artifact. Using an HPLC-based enzyme assay, we demonstrate that there is an NADPH-dependent QDPR activity associated with both TbPTR1 and LmPTR1. The kinetic properties of recombinant PTR1s are reported at physiological pH and ionic strength and compared with LmQDPR. Specificity constants (kcat/Km) for LmPTR1 are similar with dihydrobiopterin (H2B) and quinonoid dihydrobiopterin (qH2B) as substrates and about 20-fold lower than LmQDPR with qH2B. In contrast, TbPTR1 shows a 10-fold higher kcat/Km for H2B over qH2B. Analysis of Trypanosoma brucei isolated from infected rats revealed that H4B (430 nm, 98% of total biopterin) was the predominant intracellular pterin, consistent with a dual role in the salvage and regeneration of H4B. Gene knock-out experiments confirmed this: PTR1-nulls could only be obtained from lines overexpressing LmQDPR with H4B as a medium supplement. These cells grew normally with H4B, which spontaneously oxidizes to qH2B, but were unable to survive in the absence of pterin or with either biopterin or H2B in the medium. These findings establish that PTR1 has an essential and dual role in pterin metabolism in African trypanosomes and underline its potential as a drug target.
PMCID: PMC3060496  PMID: 21239486
Enzyme Kinetics; Gene Knockout; Parasite Metabolism; Pterin; Trypanosome; Biopterin; Leishmania; Pteridine Reductase; Quinonoid Pteridine Reductase; Substrate Inhibition
8.  An orally effective dihydropyrimidone (DHPM) analogue induces apoptosis-like cell death in clinical isolates of Leishmania donovani overexpressing pteridine reductase 1 
Parasitology Research  2009;105(5):1317-1325.
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. The enzyme pteridine reductase 1 (PTR1) of L. donovani acts as a metabolic bypass for drugs targeting dihydrofolate reductase (DHFR); therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Leishmania cells overexpressing PTR1 tagged at the N-terminal with green fluorescent protein were established to screen for proprietary dihydropyrimidone (DHPM) derivatives of DHFR specificity synthesised in our laboratory. A cell-permeable molecule with impressive antileishmanial in vitro and in vivo oral activity was identified. Structure activity relationship based on homology model drawn on our recombinant enzyme established the highly selective inhibition of the enzyme by this analogue. It was seen that the leishmanicidal effect of this analogue is triggered by programmed cell death mediated by the loss of plasma membrane integrity as detected by binding of annexin V and propidium iodide (PI), loss of mitochondrial membrane potential culminating in cell cycle arrest at the sub-G0/G1 phase and oligonucleosomal DNA fragmentation. Hence, this DHPM analogue [(4-fluoro-phenyl)-6-methyl-2-thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylic acid ethyl ester] is a potent antileishmanial agent that merits further pharmacological investigation.
PMCID: PMC2745541  PMID: 19621245
9.  High-resolution structures of Trypanosoma brucei pteridine reductase ligand complexes inform on the placement of new molecular entities in the active site of a potential drug target 
Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species. These protozoa cause serious diseases for which current therapies are inadequate. High-resolution structures have been determined, using data between 1.6 and 1.1 Å resolution, of T. brucei PTR1 in complex with pemetrexed, trimetrexate, cyromazine and a 2,4-diaminopyrimidine derivative. The structures provide insight into the interactions formed by new molecular entities in the enzyme active site with ligands that represent lead compounds for structure-based inhibitor development and to support early-stage drug discovery.
PMCID: PMC3655514  PMID: 21123874
10.  Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site 
The structure of L. donovani pteridine reductase has been targeted to assist in a program of structure-based inhibitor research. Crystals that diffracted to 2.5 Å resolution were obtained and the structure has been solved. Unfortunately, the active site is disordered and this crystal form is unsuitable for use in characterizing enzyme–ligand interactions.
Pteridine reductase (PTR1) is a potential target for drug development against parasitic Trypanosoma and Leishmania species, protozoa that are responsible for a range of serious diseases found in tropical and subtropical parts of the world. As part of a structure-based approach to inhibitor development, specifically targeting Leishmania species, well ordered crystals of L. donovani PTR1 were sought to support the characterization of complexes formed with inhibitors. An efficient system for recombinant protein production was prepared and the enzyme was purified and crystallized in an orthorhombic form with ammonium sulfate as the precipitant. Diffraction data were measured to 2.5 Å resolution and the structure was solved by molecular replacement. However, a sulfate occupies a phosphate-binding site used by NADPH and occludes cofactor binding. The nicotinamide moiety is a critical component of the active site and without it this part of the structure is disordered. The crystal form obtained under these conditions is therefore unsuitable for the characterization of inhibitor complexes.
PMCID: PMC3079966  PMID: 21206018
antifolates; pteridine reductase; Leishmania; pterins; Trypanosoma
11.  Folate metabolic pathways in Leishmania 
Essays in Biochemistry  2011;51:63-80.
Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for ‘repurposing’ of compounds developed originally for treatment of human cancers or other infectious agents.
PMCID: PMC3278214  PMID: 22023442
12.  Exploiting Structural Analysis, In Silico Screening and Serendipity to Identify Novel Inhibitors of Drug-resistant Falciparum Malaria 
ACS chemical biology  2009;4(1):29-40.
Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in folate biosynthesis, and a major malarial drug target. Point mutations in P. falciparum TS-DHFR have caused widespread global antifolate resistance, and yet the most effective antifolate known to overcome drug-resistance, WR99210, has poor oral bioavailability. More specific, less toxic therapies are urgently needed. Antifolates target the conversion of methylene tetrahydrofolate to dihydrofolate by TS, and that of dihydrofolate to tetrahydrofolate by DHFR. In humans, TS and DHFR are two discrete enzymes. In P. falciparum, however, TS-DHFR is a bifunctional enzyme, with TS and DHFR encoded within a single protein, and tethered together with by a ‘linker’ region. This linker is not homologous to any other known TS or DHFR enzymes, and is essential for enzyme activity. This bifunctional enzyme thus presents different design approaches for developing novel inhibitors against drug-resistant mutants: developing active-site inhibitors equally effective against wildtype and drug-resistant parasites, or targeting unique non-active site regions for parasite-specific inhibitors. As a first step in identifying unique inhibitors, we performed a high-throughput in silico screen of a database of diverse, drug-like molecules against a non-active site pocket within the linker region of TS-DHFR. The top compounds from the virtual screen were evaluated by enzymatic and cellular assays. In vitro enzymatic studies and cell culture studies of wildtype and drug-resistant P. falciparum parasites identified three compounds active to 20 μM IC50s in both wildtype and antifolate-resistant enzymatic studies, as well as in P. falciparum cell culture. Moreover no inhibition of human DHFR enzyme was observed indicating the inhibitory effects appeared to be parasite-specific. Notably, all three compounds had a biguanide scaffold. Further computational analysis was utilized to determine the relative free energy of binding and these calculations suggested that the compounds might preferentially interact with the active site over the screened ‘linker’ region. To resolve the two possible modes of binding, co-crystallization studies of the compounds complexed with TS-DHFR enzyme were performed to determine the three-dimensional structures. Surprisingly, the structural analysis revealed that these novel, biguanide compounds, distinct from WR99210, do indeed bind at the active site of DHFR, and additionally revealed the molecular basis by which they overcome drug-resistance. To our knowledge, these are the first co-crystal structures of novel, biguanide, non-WR99210 compounds that are active against folate-resistant malaria parasites in cell culture. These studies reveal how serendipity coupled with computational and structural analysis can identify unique compounds as a promising starting point for rational drug design to combat drug-resistant malaria.
PMCID: PMC2711878  PMID: 19146480
Dihydrofolate reductase-thymidylate synthase (DHFR-TS); Plasmodium falciparum; antifolate; anti-malarial; biguanide; molecular docking
13.  Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice 
Molecular Microbiology  2010;77(3):658-671.
Gene knockout and knockdown methods were used to examine essentiality of pteridine reductase (PTR1) in pterin metabolism in the African trypanosome. Attempts to generate PTR1 null mutants in bloodstream form Trypanosoma brucei proved unsuccessful; despite integration of drug selectable markers at the target locus, the gene for PTR1 was either retained at the same locus or elsewhere in the genome. However, RNA interference (RNAi) resulted in complete knockdown of endogenous protein after 48 h, followed by cell death after 4 days. This lethal phenotype was reversed by expression of enzymatically active Leishmania major PTR1 in RNAi lines (oeRNAi) or by addition of tetrahydrobiopterin to cultures. Loss of PTR1 was associated with gross morphological changes due to a defect in cytokinesis, resulting in cells with multiple nuclei and kinetoplasts, as well as multiple detached flagella. Electron microscopy also revealed increased numbers of glycosomes, while immunofluorescence microscopy showed increased and more diffuse staining for glycosomal matrix enzymes, indicative of mis-localisation to the cytosol. Mis-localisation was confirmed by digitonin fractionation experiments. RNAi cell lines were markedly less virulent than wild-type parasites in mice and virulence was restored in the oeRNAi line. Thus, PTR1 may be a drug target for human African trypanosomiasis.
PMCID: PMC2916222  PMID: 20545846
14.  Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. 
Nucleic Acids Research  1999;27(18):3653-3659.
The protozoan parasite Leishmania resists the antifolate methotrexate (MTX) by amplifying the R locus dihydrofolate reductase-thymidylate synthase ( dhfr-ts ) gene, the H locus ptr1 pterin reductase gene, and finally by mutation in a common folate/MTX transporter. Amplification of dhfr-ts has never been observed in Leishmania tarentolae MTX resistant mutants while ptr1 amplification is common. We have selected a L.tarentolae ptr1 null mutant for MTX resistance and observed dhfr-ts amplification in this mutant demonstrating that once a preferred resistance mechanism is unavailable, a second one will take over. By introducing the ptr1 gene at the R locus and the dhfr-ts gene at the H locus by gene targeting, we investigated the role of the resistance gene and the locus on the rate of gene amplification. Transfection studies indicated that ptr1 gave higher levels of MTX resistance than dhfr-ts. Consistent with this, when ptr1 was present as part of either the H locus or the R locus it was invariably amplified, while dhfr-ts was only amplified when ptr1 was inactivated. When dhfr-ts was present in a ptr1 null background on both the H locus and the R locus, amplification from the H locus was more frequent suggesting that both the gene and the locus are determining the frequency of gene amplification in Leishmania.
PMCID: PMC148619  PMID: 10471733
15.  Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase 
Analytical Biochemistry  2010;396(2):194-203.
Activity of the pterin- and folate-salvaging enzymes pteridine reductase 1 (PTR1) and dihydrofolate reductase–thymidylate synthetase (DHFR-TS) is commonly measured as a decrease in absorbance at 340 nm, corresponding to oxidation of nicotinamide adenine dinucleotide phosphate (NADPH). Although this assay has been adequate to study the biology of these enzymes, it is not amenable to support any degree of routine inhibitor assessment because its restricted linearity is incompatible with enhanced throughput microtiter plate screening. In this article, we report the development and validation of a nonenzymatically coupled screening assay in which the product of the enzymatic reaction reduces cytochrome c, causing an increase in absorbance at 550 nm. We demonstrate this assay to be robust and accurate, and we describe its utility in supporting a structure-based design, small-molecule inhibitor campaign against Trypanosoma brucei PTR1 and DHFR-TS.
PMCID: PMC2789237  PMID: 19748480
Drug discovery; Screening; Pteridine reductase; Dihydrofolate reductase
16.  One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening† 
Journal of Medicinal Chemistry  2009;52(14):4454-4465.
The enzyme pteridine reductase 1 (PTR1) is a potential target for new compounds to treat human African trypanosomiasis. A virtual screening campaign for fragments inhibiting PTR1 was carried out. Two novel chemical series were identified containing aminobenzothiazole and aminobenzimidazole scaffolds, respectively. One of the hits (2-amino-6-chloro-benzimidazole) was subjected to crystal structure analysis and a high resolution crystal structure in complex with PTR1 was obtained, confirming the predicted binding mode. However, the crystal structures of two analogues (2-amino-benzimidazole and 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole) in complex with PTR1 revealed two alternative binding modes. In these complexes, previously unobserved protein movements and water-mediated protein−ligand contacts occurred, which prohibited a correct prediction of the binding modes. On the basis of the alternative binding mode of 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole, derivatives were designed and selective PTR1 inhibitors with low nanomolar potency and favorable physicochemical properties were obtained.
PMCID: PMC2966039  PMID: 19527033
17.  First Three-Dimensional Structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: Insights for Catalysis, Interdomain Interactions, and Substrate Channeling 
Biochemistry  2013;52(41):7305-7317.
Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Toxoplasma gondii, contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the catalytic activities contained on a single polypeptide chain. The prevalence of T. gondii infection across the world, especially for those immunocompromised, underscores the need to understand TS-DHFR enzyme function and to find new avenues to exploit for the design of novel antiparasitic drugs. As a first step, we have solved the first three-dimensional structures of T. gondii TS-DHFR at 3.7 Å and of a loop truncated TS-DHFR, removing several flexible surface loops in the DHFR domain, improving resolution to 2.2 Å. Distinct structural features of the TS-DHFR homodimer include a junctional region containing a kinked crossover helix between the DHFR domains of the two adjacent monomers, a long linker connecting the TS and DHFR domains, and a DHFR domain that is positively charged. The roles of these unique structural features were probed by site-directed mutagenesis coupled with pre-steady state and steady state kinetics. Mutational analysis of the crossover helix region combined with kinetic characterization established the importance of this region not only in DHFR catalysis but also in modulating the distal TS activity, suggesting a role for TS-DHFR interdomain interactions. Additional kinetic studies revealed that substrate channeling occurs in which dihydrofolate is directly transferred from the TS to DHFR active site without entering bulk solution. The crystal structure suggests that the positively charged DHFR domain governs this electrostatically mediated movement of dihydrofolate, preventing release from the enzyme. Taken together, these structural and kinetic studies reveal unique, functional regions on the T. gondii TS-DHFR enzyme that may targeted for inhibition, thus paving the way for designing species specific inhibitors.
PMCID: PMC3905773  PMID: 24053355
thymidylate synthase; dihydrofolate reductase; transient kinetics; toxoplasmosis; domain communication; substrate channeling
18.  Inhibition of Leishmania major PTR1 Gene Expression by Antisense in Escherichia coli 
Protozoa related to Trypanosome family including Leishmania, synthesize enzymes to escape from drug therapy. One of them is PTR1 that its enzymatic activity is similar to dihydrofolate reductase (DHFR). Dihydrofolate reductase - thymidylate synthase has a major role in DNA synthesis, if it is inhibited, the result would be the death of parasite. Since PTR1 activity is similar to DHFR, causes the decrease of inhibition effect of drug. The aim of this study was inhibition of Iranian L. major PTR1 expression with mRNA antisense in prokaryotic system as an approach to appear of the drugs therapeutic effects more.
PTR1 gene was ligated to pACYCDuet-1 and pcDNA3 plasmids as sense and antisense plasmids, respectively. Simultaneously transfer of sense and antisense plasmids was done in E. coli strain M15. SDS-PAGE and western blot analysis were carried out to analyze the expression.
Sense and antisense plasmids were prepared and confirmed by restriction analysis and PCR then simultaneously transfer of them was done. SDS-PAGE and western blot analysis showed PTR1 gene was inhibited by mRNA antisense in bacterial cells.
Expression of PTR1 gene in sense plasmid was inhibited successfully by antisense plasmid.
PMCID: PMC3468993  PMID: 23113195
PTR1; Leishmania major; Antisense plasmid; Dihydrofolate reductase; Expression
19.  PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major 
Current genetics  2009;55(3):287-299.
Leishmania must survive oxidative stress, but lack many classical antioxidant enzymes and rely heavily on trypanothione-dependent pathways. We used forward genetic screens to recover loci mediating oxidant resistance via overexpression in Leishmania major, which identified pteridine reductase 1 (PTR1). Comparisons of isogenic lines showed ptr1- null mutants were 18-fold more sensitive to H2O2 than PTR1-overproducing lines, and significant 3-5 fold differences were seen with a broad panel of oxidant-inducing agents. The toxicities of simple nitric oxide generators and other drug classes (except antifolates) were unaffected by PTR1 levels. H2O2 susceptibility could be modulated by exogenous biopterin but not folate, in a PTR1-but not dihydrofolate reductase-dependent manner, implicating H4B metabolism specifically. Neither H2O2 consumption, nor the level of intracellular oxidative stress, was affected by PTR1 levels. Coupled with the fact that reduced pteridines are at least 100-fold less abundant than cellular thiols), these data argue strongly that reduced pteridines act through a mechanism other than scavenging. The ability of unconjugated pteridines to counter oxidative stress has implications to infectivity and response to chemotherapy. Since the intracellular pteridine levels of Leishmania can be readily manipulated, these organisms offer a powerful setting for the dissection of pteridine-dependent oxidant susceptibility in higher eukaryotes.
PMCID: PMC2759280  PMID: 19396443
20.  In Silico Screening, Structure-Activity Relationship, and Biologic Evaluation of Selective Pteridine Reductase Inhibitors Targeting Visceral Leishmaniasis▿ †  
In this study we utilized the concept of rational drug design to identify novel compounds with optimal selectivity, efficacy and safety, which would bind to the target enzyme pteridine reductase 1 (PTR1) in Leishmania parasites. Twelve compounds afforded from Baylis-Hillman chemistry were docked by using the QUANTUM program into the active site of Leishmania donovani PTR1 homology model. The biological activity for these compounds was estimated in green fluorescent protein-transfected L. donovani promastigotes, and the most potential analogue was further investigated in intracellular amastigotes. Structure-activity relationship based on homology model drawn on our recombinant enzyme was substantiated by recombinant enzyme inhibition assay and growth of the cell culture. Flow cytometry results indicated that 7-(4-chlorobenzyl)-3-methyl-4-(4-trifluoromethyl-phenyl)-3,4,6,7,8,9-hexahydro-pyrimido[1,2-a]pyrimidin-2-one (compound 7) was 10 times more active on L. donovani amastigotes (50% inhibitory concentration [IC50] = 3 μM) than on promastigotes (IC50 = 29 μM). Compound 7 exhibited a Ki value of 0.72 μM in a recombinant enzyme inhibition assay. We discovered that novel pyrimido[1,2-a]pyrimidin-2-one systems generated from the allyl amines afforded from the Baylis-Hillman acetates could have potential as a valuable pharmacological tool against the neglected disease visceral leishmaniasis.
PMCID: PMC3028761  PMID: 21115787
21.  Functional Expression of Parasite Drug Targets and Their Human Orthologs in Yeast 
The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.
Methodology/Principal Findings
Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast (ScDFR1), human (HsDHFR), Schistosoma (SmDHFR), and Trypanosoma (TbDHFR and TcDHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium (PfDHFR and PvDHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR (Pfdhfr51I,59R,108N) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs).
We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.
Author Summary
Parasites kill millions of people every year and leave countless others with chronic debilitating disease. These diseases, which include malaria and sleeping sickness, mainly affect people in developing countries. For this reason, few drugs have been developed to treat them. To make matters worse, many parasites are developing resistance to the drugs that are available. Thus, there is an urgent need to develop new drugs, but this is hampered by the fact that most parasites are difficult or impossible to grow in the laboratory. To address this, we have engineered baker's yeast to be dependent on the function of enzymes from either parasites or humans. In all, our engineered yeast constructs encompass six parasites (causing malaria, schistosomiasis, leishmaniasis, sleeping sickness, and Chagas disease) and three different enzymes that are known or potential drug targets. Further, we have increased yeast's sensitivity to drugs by deleting the gene for its major drug efflux pump. Because yeast is robust and easy to grow in the laboratory, we can use a robot to screen for drugs that will kill yeast dependent on a parasite enzyme, but not touch yeast dependent on the equivalent human enzyme.
PMCID: PMC3186757  PMID: 21991399
22.  2,4-Diaminopteridine-Based Compounds as Precursors for De Novo Synthesis of Antifolates: a Novel Class of Antimalarials 
We have tested the hypothesis that 2,4-diamino-6-hydroxymethyl-pteridine (DAP), 2,4-diaminopteroic acid (DAPA), and 2,4 diamino-N10-methyl-pteroic acid (DAMPA) could be converted into aminopterin (from DAP and DAPA) and methotrexate (from DAMPA), both of which are potent inhibitors of dihydrofolate reductase, a proven drug target for Plasmodium falciparum. DAP, DAPA, and DAMPA inhibited parasite growth in the micromolar range; DAMPA was the most active, with 50% inhibitory concentrations in vitro of 446 ng/ml against the antifolate-sensitive strain and 812 ng/ml against the highly resistant strain under physiological folate conditions. DAMPA potentiates the activity of the sulfone dapsone, an inhibitor of dihydropteroate synthase, but not that of chlorcycloguanil, a known inhibitor of dihydrofolate reductase (DHFR). Experiments with a Saccharomyces cerevisiae strain dependent upon the P. falciparum DHFR enzyme showed that DHFR is a target of DAMPA in that system. We hypothesize that DAMPA is converted to methotrexate by the parasite dihydrofolate synthase, which explains the synergy of DAMPA with dapsone but not with chlorcycloguanil. This de novo synthesis will not occur in the host, since it lacks the complete folate pathway. If this hypothesis holds true, the de novo synthesis of the toxic compounds could be used as a framework for the search for novel potent antimalarial antifolates.
PMCID: PMC1195384  PMID: 16127035
23.  Identification of Cryptosporidium parvum Dihydrofolate Reductase Inhibitors by Complementation in Saccharomyces cerevisiae 
There is a pressing need for drugs effective against the opportunistic protozoan pathogen Cryptosporidium parvum. Folate metabolic enzymes and enzymes of the thymidylate cycle, particularly dihydrofolate reductase (DHFR), have been widely exploited as chemotherapeutic targets. Although many DHFR inhibitors have been synthesized, only a few have been tested against C. parvum. To expedite and facilitate the discovery of effective anti-Cryptosporidium antifolates, we have developed a rapid and facile method to screen potential inhibitors of C. parvum DHFR using the model eukaryote, Saccharomyces cerevisiae. We expressed the DHFR genes of C. parvum, Plasmodium falciparum, Toxoplasma gondii, Pneumocystis carinii, and humans in the same DHFR-deficient yeast strain and observed that each heterologous enzyme complemented the yeast DHFR deficiency. In this work we describe our use of the complementation system to screen known DHFR inhibitors and our discovery of several compounds that inhibited the growth of yeast reliant on the C. parvum enzyme. These same compounds were also potent or selective inhibitors of the purified recombinant C. parvum DHFR enzyme. Six novel lipophilic DHFR inhibitors potently inhibited the growth of yeast expressing C. parvum DHFR. However, the inhibition was nonselective, as these compounds also strongly inhibited the growth of yeast dependent on the human enzyme. Conversely, the antibacterial DHFR inhibitor trimethoprim and two close structural analogs were highly selective, but weak, inhibitors of yeast complemented by the C. parvum enzyme. Future chemical refinement of the potent and selective lead compounds identified in this study may allow the design of an efficacious antifolate drug for the treatment of cryptosporidiosis.
PMCID: PMC89807  PMID: 10722506
24.  Identification and Characterization of Hundreds of Potent and Selective Inhibitors of Trypanosoma brucei Growth from a Kinase-Targeted Library Screening Campaign 
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.
Author Summary
Human African trypanosomiasis, or sleeping sickness, affects 10,000 patients annually, yet current drugs for this disease are poor, with high toxicity and inconvenient dosing requirements. Trypanosoma brucei, the parasite that causes sleeping sickness, is sensitive to a class of compounds called kinase inhibitors, and our project was aimed at identifying kinase-targeting compounds that rapidly and irreversibly inhibit parasite growth. This was accomplished by high-throughput screening of over 42,000 compounds, which resulted in identification of 797 potent inhibitors of parasite growth that are non-toxic to human cells. These inhibitors were studied for the speed of their effects and reversibility of growth inhibition, and were grouped on the basis of chemical structure similarity. One compound was shown to cure mice from a bloodstream of infection of T. brucei. These compounds can now be utilized by the research community as starting points for new drug discovery, and also as tool compounds for understanding the function of kinases in T. brucei.
PMCID: PMC4207660  PMID: 25340575
25.  Identification of Compounds with Anti-Proliferative Activity against Trypanosoma brucei brucei Strain 427 by a Whole Cell Viability Based HTS Campaign 
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill.
Author Summary
Human African Sleeping Sickness (HAT) is a disease caused by sub-species of Trypanosoma. The disease affects developing countries within Africa, mainly occurring in rural regions that lack resources to purchase drugs for treatment. Drugs that are currently available have significant side effects, and treatment regimes are lengthy and not always transferrable to the field. In consideration of these factors, new drugs are urgently needed for the treatment of HAT. To discover compounds suitable for drug discovery, cultured trypanosomes can be tested against libraries of compounds to identify candidates for further biological analysis. We have utilised a 384-well format, Alamar Blue viability assay to screen a large non-proprietary compound collection against Trypanosoma brucei brucei bloodstream form lister 427. The assay was shown to be reproducible, with reference compounds exhibiting activity in agreement with previously published results. Primary screening hits were retested against T.b. brucei and HEK293 mammalian cells in order to assess selectivity against the parasite. Selective hits were characterised by chemical analysis, taking into consideration drug-like properties amenable to further progression. Priority compounds were tested against a panel of protozoan parasites, including Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Five new compound classes were discovered that are amenable to progression in the drug discovery process for HAT.
PMCID: PMC3510080  PMID: 23209849

Results 1-25 (1065106)