PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1193509)

Clipboard (0)
None

Related Articles

1.  Induction of Cambial Reactivation by Localized Heating in a Deciduous Hardwood Hybrid Poplar (Populus sieboldii × P. grandidentata) 
Annals of Botany  2007;100(3):439-447.
Background and Aims
The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata) was investigated.
Methods
Electric heating tape (20–22 °C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy.
Key Results
Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems.
Conclusions
The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.
doi:10.1093/aob/mcm130
PMCID: PMC2533603  PMID: 17621596
Populus sieboldii × Populus grandidentata; localized heating, cambial reactivation; model system; storage starch; xylem differentiation
2.  A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems 
Annals of Botany  2012;110(4):875-885.
Background and Aims
Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings.
Methods
Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells.
Conclusions
The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.
doi:10.1093/aob/mcs149
PMCID: PMC3423807  PMID: 22843340
Cambial activity; conifers; latewood formation; morphology of tracheids; rapid decrease in temperature
3.  Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees 
Annals of Botany  2010;106(6):885-895.
Background and Aims
Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.
Methods
Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.
Conclusions
The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.
doi:10.1093/aob/mcq185
PMCID: PMC2990657  PMID: 21037242
Cambial reactivation; confocal laser scanning microscopy; Cryptomeria japonica; lipid; starch; xylem differentiation
4.  Differentiation of Terminal Latewood Tracheids in Silver Fir Trees During Autumn 
Annals of Botany  2005;95(6):959-965.
• Background and Aims The differentiation of terminal latewood tracheids of silver fir (Abies alba) trees grown in Slovenia was investigated in autumn/winter 2001/2002.
• Methods The experimental trees were divided into three groups: one with narrow annual rings, width less than 1 mm; one with annual ring widths between 1 and 4 mm; and one group with broad rings larger than 4 mm. The differentiation of terminal latewood tracheids was investigated by light-, electron- and UV-microscopy in tissues sampled in October and November 2001 and March 2002.
• Key Results In the middle of October, cambial divisions did not occur any more in any of the trees. In trees with narrow annual rings, cell wall deposition as well as lignification were completed in terminal latewood tracheids at this date, whereas in trees with annual ring widths of more than 1 mm these processes still continued. Electron microscopy as well as UV microscopy revealed an unlignified inner S2 layer and the absence of S3 and warty layers. With increasing distance from the cambium, wall formation and lignification gradually appeared to be completed. Samples of all trees taken in the middle of November only contained differentiated terminal latewood tracheids. At the structural and lignin topochemical level, November and March samples showed completed differentiation of walls of terminal latewood tracheids.
• Conclusions In trees with broader annual rings, the final steps of differentiation of the youngest latewood tracheids near the cambium still continued during autumn, but were finished prior to winter. It was concluded from structural observations that duration of cambial activity is longer in trees with broad annual rings than in trees with narrow rings.
doi:10.1093/aob/mci112
PMCID: PMC4246759  PMID: 15760912
Silver fir (Abies alba); latewood tracheids; cell wall structure; autumn differentiation; lignification; light microscopy; transmission electron microscopy; UV-microspectrophotometry
5.  Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem 
Journal of Experimental Botany  2011;63(2):837-845.
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
doi:10.1093/jxb/err309
PMCID: PMC3254684  PMID: 22016427
Auxin; cambium; cell differentiation; conduit tapering; Picea abies polar pattern growth
6.  Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana 
Annals of Botany  2008;102(5):667-674.
Background and Aims
Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada.
Methods
Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem.
Key Results
Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later.
Conclusions
The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.
doi:10.1093/aob/mcn146
PMCID: PMC2712372  PMID: 18708643
Abies balsamea; boreal forest; cambium; cell differentiation; cell wall thickening; lignification; Picea mariana; root; stem; xylem
7.  Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris 
Tree physiology  2010;30(4):490-501.
Summary
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site).
In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05).
Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
doi:10.1093/treephys/tpq003
PMCID: PMC3046340  PMID: 20197285
Cambium; dry inner Alpine valley; intra-annual growth; Scots pine; tracheid production; xylogenesis
8.  Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast 
Annals of Botany  2012;110(4):861-873.
Background and Aims
Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known.
Methods
The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy.
Key Results
A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season.
Conclusions
The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.
doi:10.1093/aob/mcs145
PMCID: PMC3423803  PMID: 22805529
Growth rings; teak; Tectona grandis; vascular cambium; xylem and phloem formation
9.  Cambial activity related to tree size in a mature silver-fir plantation 
Annals of Botany  2011;108(3):429-438.
Background and Aims
Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.
Methods
Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.
Key Results
Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.
Conclusions
These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.
doi:10.1093/aob/mcr168
PMCID: PMC3158687  PMID: 21816842
Cambial activity; forest-stand structure; silver fir (Abies alba); tree-ring formation; tree-to-tree competition; social status; wood anatomy; xylem cell differentiation
10.  Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood 
Trees (Berlin, Germany : West)  2011;25(2):289-299.
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies.
doi:10.1007/s00468-010-0505-y
PMCID: PMC3207224  PMID: 22058609
Compression strength perpendicular to the grain; Conduit wall reinforcement; Hydraulic efficiency; Modulus of elasticity in bending; Norway spruce; Structure–function relationships; Vulnerability to cavitation; Wood shrinkage
11.  Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra 
Tree physiology  2009;29(5):641-649.
Summary
The relationship between stem CO2 efflux (ES), cambial activity and xylem production in Pinus cembra was determined at the timberline (1950 m a.s.l.) of the Central Austrian Alps, throughout one year. ES was measured continuously from June 2006 to August 2007 using an infrared gas-analysis system. Cambial activity and xylem production was determined by repeated microcore sampling of the developing tree ring and radial increment was monitored using automated point dendrometers. Aside of temperature, the number of living tracheids and cambial cells was predominantly responsible for ES: ES normalized to 10°C (ES10) was significantly correlated to number of living cells throughout the year (r2 = 0,574; p < 0,001). However, elevated ES and missing correlation between ES10 and xylem production was detected during cambial reactivation in April and during transition from active phase to rest, which occurred in August and lasted until early September. Results of this study indicate that (i) during seasonal variations in cambial activity non-linearity between ES and xylem production occurs and (ii) elevated metabolic activity during transition stages in the cambial activity-dormancy cycle influence the carbon budget of Pinus cembra. Daily radial stem increment was primarily influenced by the number of enlarging cells and was not correlated to ES.
doi:10.1093/treephys/tpp001
PMCID: PMC3013296  PMID: 19203979
cambial reactivation; dormancy; Pinus cembra; radial stem growth; sap flow; stem CO2 efflux; stem respiration; xylem production
12.  Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica 
Annals of Botany  2009;103(7):1145-1157.
Background and Aims
Although the lateral movement of water and gas in tree stems is an important issue for understanding tree physiology, as well as for the development of wood preservation technologies, little is known about the vascular pathways for radial flow. The aim of the current study was to understand the occurrence and the structure of anatomical features of sugi (Cryptomeria japonica) wood including the tracheid networks, and area fractions of intertracheary pits, tangential walls of ray cells and radial intercellular spaces that may be related to the radial permeability (conductivity) of the xylem.
Methods
Wood structure was investigated by light microscopy and scanning electron microscopy of traditional wood anatomical preparations and by a new method of exposed tangential faces of growth-ring boundaries.
Key Results
Radial wall pitting and radial grain in earlywood and tangential wall pitting in latewood provide a direct connection between subsequent tangential layers of tracheids. Bordered pit pairs occur frequently between earlywood and latewood tracheids on both sides of a growth-ring boundary. In the tangential face of the xylem at the interface with the cambium, the area fraction of intertracheary pit membranes is similar to that of rays (2·8 % and 2·9 %, respectively). The intercellular spaces of rays are continuous across growth-ring boundaries. In the samples, the mean cross-sectional area of individual radial intercellular spaces was 1·2 µm2 and their total volume was 0·06 % of that of the xylem and 2·07 % of the volume of rays.
Conclusions
A tracheid network can provide lateral apoplastic transport of substances in the secondary xylem of sugi. The intertracheid pits in growth-ring boundaries can be considered an important pathway, distinct from that of the rays, for transport of water across growth rings and from xylem to cambium.
doi:10.1093/aob/mcp050
PMCID: PMC2707907  PMID: 19258338
Cryptomeria japonica; bordered pit; intercellular spaces; lateral transport; tracheid network; water conduction; xylem permeability
13.  Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure 
Tree physiology  2007;27(8):1165-1178.
Summary
Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff.
PMCID: PMC3197722  PMID: 17472942
biomechanics; functional anatomy; hydraulic conductivity; Picea abies; tradeoffs; vulnerability to cavitation
14.  Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca) 
BMC Plant Biology  2010;10:106.
Background
Laser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD.
Results
We describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca) stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA). Transcript levels of β-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues.
Conclusions
Methods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated by LMD from woody conifer stems. Patterns of gene expression are demonstrated in specific tissues that may be masked in analysis of heterogenous samples. Combined analysis of transcripts, proteins and metabolites of individual tissues will facilitate future characterization of complex processes of woody plant development, including periodic stem growth and dormancy, cell specialization, and defense and may be applied widely to other plant species.
doi:10.1186/1471-2229-10-106
PMCID: PMC3095273  PMID: 20540781
15.  Developmental Stages and Fine Structure of Surface Callus Formed after Debarking of Living Lime Trees (Tilia sp.) 
Annals of Botany  2002;89(6):773-782.
Wounding of trees by debarking during the vegetative period sometimes results in the formation of callus tissue which develops over the entire wound surface or on parts of it. This light and transmission electron microscopy study of living lime trees found that the formation of such a surface callus is subdivided into three stages. During the first stage, numerous cell divisions take place in regions where differentiating xylem remains at the wound surface after debarking. This young callus tissue consists of isodiametric parenchymatous cells. Cambium cells, sometimes also remaining at the wound surface, collapse and do not contribute to callus formation. During the second stage, cells in the callus undergo differentiation by forming a wound periderm with phellem, phellogen and phelloderm. In the third stage, a cambial zone develops between the wound periderm and the xylem tissue laid down prior to wounding. This process is initiated by anticlinal and periclinal divisions of a few callus cells only. Later this process extends tangentially to form a continuous belt of wound cambium. Subsequently, this cambium produces both wound xylem and wound phloem and thus contributes to further thickening.
doi:10.1093/aob/mcf137
PMCID: PMC4233843  PMID: 12102533
Debarking; wound reactions; cambium; surface callus; tissue differentiation; Tilia sp.; light microscopy; electron microscopy
16.  Season-associated modifications in symplasmic organization of the cambium in Populus nigra 
Annals of Botany  2010;105(3):375-387.
Background and Aims
Alterations of plasmodesma (PD) connectivity are likely to be very important for plant development. Here, the repetitive division pattern of cambial initials in Populus nigra ‘italica’ was studied to follow the development of the PD network during maturation. Furthermore, seasonal changes were investigated in order to trace indications for developmental and functional adaptations.
Methods
Cambium samples of P. nigra twigs, collected in summer, autumn and spring, were chemically fixed for transmission electron microscopy. The parameters, PD density (number of PDs per square micrometre cell-wall area) and PD frequency (total number of PDs per average cell-wall area), were determined for radial and tangential cell interfaces deposited in chronological order.
Key Results
Data sets, presented in plasmodesmograms, show a strong variability in the PD network throughout the year. In summer, high PD numbers occur at the division wall which, after PD doubling by longitudinal fission, decline with further development both at the xylem and the phloem side. In autumn, the number of PDs at the division wall is low as they are in subsequent tangential interfaces. In spring, the first cell division coincides with a massive increase in PD numbers, in particular at the division wall. Only the radial walls between initials maintain their PD equipment throughout the year. This feature can be exploited for identification of the initial layer.
Conclusions
PD networks in the cambium go through a strict developmental programme depending on the season, which is associated with changing functional requirements. For instance, PD numbers correlate with proliferative activity and potential pathways for intercellular signalling. Increases in PD numbers are ascribed to longitudinal fission as a major mechanism, whereas the decline in older derivatives is ascribed to PD degradation.
doi:10.1093/aob/mcp300
PMCID: PMC2826250  PMID: 20045870
Cambium; meristem initials; plasmodesmata; Populus nigra ‘italica’; seasonal conditions; ultrastructure
17.  Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays 
BMC Genomics  2009;10:215.
Background
Wood is the end product of secondary vascular system development, which begins from the cambium. The wood formation process includes four major stages: cell expansion, secondary wall biosynthesis, lignification, and programmed cell death. Transcriptional profiling is a rapid way to screen for genes involved in these stages and their transitions, providing the basis for understanding the molecular mechanisms that control this process.
Results
In this study, cDNA microarrays were prepared from a subtracted cDNA library (cambium zone versus leaf) of Chinese white poplar (Populus tomentosa Carr.) and employed to analyze the transcriptional profiles during the regeneration of the secondary vascular system, a platform established in our previous study. Two hundred and seven genes showed transcript-level differences at the different regeneration stages. Dramatic transcriptional changes were observed at cambium initiation, cambium formation and differentiation, and xylem development, suggesting that these up- or downregulated genes play important roles in these stage transitions. Transcription factors such as AUX/IAA and PINHEAD, which were previously shown to be involved in meristem and vascular tissue differentiation, were strongly transcribed at the stages when cambial cells were initiated and underwent differentiation, whereas genes encoding MYB proteins and several small heat shock proteins were strongly transcribed at the stage when xylem development begins.
Conclusion
Employing this method, we observed dynamic changes in gene transcript levels at the key stages, including cambium initiation, cambium formation and differentiation, and xylem development, suggesting that these up- or downregulated genes are strongly involved in these stage transitions. Further studies of these genes could help elucidate their roles in wood formation.
doi:10.1186/1471-2164-10-215
PMCID: PMC2685409  PMID: 19426563
18.  Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra 
Annals of Botany  2010;106(3):385-394.
Background and Aims
Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.
Methods
Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.
Key Results
Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes' radius of the detected 15-kDa protein.
Conclusions
Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region.
doi:10.1093/aob/mcq130
PMCID: PMC2924828  PMID: 20584737
Cambial region; lectins; plasmodesmal trafficking; Populus nigra ‘italica’; size exclusion limit; storage proteins; vascular tissues
19.  Auxin-Responsive DR5 Promoter Coupled with Transport Assays Suggest Separate but Linked Routes of Auxin Transport during Woody Stem Development in Populus 
PLoS ONE  2013;8(8):e72499.
Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin (3H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.
doi:10.1371/journal.pone.0072499
PMCID: PMC3744479  PMID: 23977308
20.  Early wound reactions of Japanese maple during winter dormancy: the effect of two contrasting temperature regimes 
AoB Plants  2014;6:plu059.
During winter dormancy, temperate trees are capable of only a restricted response to wounding. In an experiment, we investigated the effect of wounding on Acer palmatum trees during winter-bud dormancy and found that in the cold (4 °C) temperature treatment, wound reactions were virtually absent. In the warm (15 °C) treatment, however, trees reacted actively to wounding within a three-week period by e.g. forming callus and local wound xylem. We conclude that temperature is an important factor in wound reactions during winter dormancy and may even induce the formation of callus and wound xylem within a three-week period.
During winter dormancy, temperate trees are capable of only a restricted response to wounding. Depending on the ambient temperature during winter dormancy, wounded trees may start compartmentalization, e.g. by producing inhibitory compounds, but it is thought that processes involving cell proliferation, such as the formation of callus and wound xylem, are delayed until the next growing season. We investigated the effect of two contrasting temperature regimes on early reactions of Acer palmatum trees to wounding during winter bud dormancy. Stems of A. palmatum trees were wounded and stored under an ambient temperature of 4 or 15 °C for 3 weeks during winter bud dormancy. We then studied wound reactions in the living bark, cambial region and xylem. In the 4 °C treatment, wound reactions were virtually absent. In the 15 °C treatment, however, trees reacted to wounding by dieback of the cortex and phloem and by the formation of ligno-suberized layers. In the cambial zone, cambial dieback occurred and callus tissue and wound xylem were formed locally, close to the wound margins. In the xylem, compartmentalization took place by deposition of inhibitory compounds in fibre cells and vessel elements. We conclude that temperature is an important factor in wound reactions during winter dormancy, and may even induce proliferation of callus and wound xylem within a 3-week period. It therefore seems likely that trees that have been wounded during dormancy in areas with mild or warm winters might cope better with wounding, as unlike trees in cold environments, they may compartmentalize wounds even during winter dormancy.
doi:10.1093/aobpla/plu059
PMCID: PMC4222136  PMID: 25275087
Acer palmatum; Japanese maple; local xylem growth; temperature; winter dormancy; wound reactions.
21.  Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables 
Trees (Berlin, Germany : West)  2009;23(3):623-635.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.
At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.
The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.
Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
PMCID: PMC3078619  PMID: 21509148
Cambium; intra-annual growth; Pinus cembra; temperature; tracheid production
22.  Effect of Thawing Time, Cooling Rate and Boron Nutrition on Freezing Point of the Primordial Shoot in Norway Spruce Buds 
Annals of Botany  2006;97(4):593-599.
• Background Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter.
• Methods The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage.
• Key Results In 2003, the freezing point of primordial shoots of buds (Tf), i.e. the low-temperature exotherm (LTE), was, on average, −39 °C when buds were thawed for less than 3 h and the Tf increased to −21 °C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 °C h−1. In 2005, buds dehardened linearly from −39 °C to −35 °C at a rate of 0·7 °C h−1. In 2003, different cooling rates of 1–5 °C h−1 had a minor effect on Tf but in 2005 with slow cooling rates Tf decreased. In both samplings, at cooling rates of 2 and 1 °C h−1, Tf was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, Tf was somewhat lower in B-fertilized trees.
• Conclusions There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.
doi:10.1093/aob/mcl008
PMCID: PMC2803655  PMID: 16464880
Differential thermal analysis; cold hardiness; Picea abies; apical bud; extra-organ freezing; thawing; winter thaws
23.  A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere 
Annals of Botany  2013;112(9):1911-1920.
Background and Aims
Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere.
Methods
Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011.
Key Results
The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern
Conclusions
The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
doi:10.1093/aob/mct243
PMCID: PMC3838565  PMID: 24201138
Cambium; cell differentiation; cell production; climate change; conifers; growth; meristem; phenology; productivity; secondary wall formation; xylogenesis
24.  ON THE FINE STRUCTURE OF THE CAMBIUM OF FRAXINUS AMERICANA L 
The Journal of Cell Biology  1966;31(1):79-93.
The fine structure of ash cambium was studied after glutaraldehyde-osmium tetroxide fixation. The fusiform and ray initials are essentially alike, and both have the basic complement of organelles and membranes typical of parenchyma cells. The varied behavior of the two types of initials and the role of cambium in oriented production of the xylem and phloem are still unexplained phenomena. Actively growing cambial cells are highly vacuolate. They are rich in endoplasmic reticulum of the rough cisternal form, ribosomes, dictyosomes, and coated vesicles. Microtubules are present in the peripheral cytoplasm. The plasmalemma appears to be continuous with the endoplasmic reticulum and produces coated vesicles as well as micropinocytotic vesicles with smooth surfaces. The plastids have varying amounts of an intralamellar inclusion which may be a lipoprotein. The quiescent cambium is deficient in rough ER and coated vesicles and has certain structures which may be condensed proteins.
PMCID: PMC2107045  PMID: 5971976
25.  Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone 
Annals of forest science  2009;66(5):503.
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
doi:10.1051/forest/2009038
PMCID: PMC3059571  PMID: 21423861
dendrometer; Pinus cembra; radial increment; treeline ecotone; xylem formation

Results 1-25 (1193509)