PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (804465)

Clipboard (0)
None

Related Articles

1.  Induction of Cambial Reactivation by Localized Heating in a Deciduous Hardwood Hybrid Poplar (Populus sieboldii × P. grandidentata) 
Annals of Botany  2007;100(3):439-447.
Background and Aims
The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata) was investigated.
Methods
Electric heating tape (20–22 °C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy.
Key Results
Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems.
Conclusions
The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.
doi:10.1093/aob/mcm130
PMCID: PMC2533603  PMID: 17621596
Populus sieboldii × Populus grandidentata; localized heating, cambial reactivation; model system; storage starch; xylem differentiation
2.  Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees 
Annals of Botany  2010;106(6):885-895.
Background and Aims
Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.
Methods
Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.
Conclusions
The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.
doi:10.1093/aob/mcq185
PMCID: PMC2990657  PMID: 21037242
Cambial reactivation; confocal laser scanning microscopy; Cryptomeria japonica; lipid; starch; xylem differentiation
3.  A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems 
Annals of Botany  2012;110(4):875-885.
Background and Aims
Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings.
Methods
Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy.
Key Results
Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells.
Conclusions
The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.
doi:10.1093/aob/mcs149
PMCID: PMC3423807  PMID: 22843340
Cambial activity; conifers; latewood formation; morphology of tracheids; rapid decrease in temperature
4.  Fluctuations of cambial activity in relation to precipitation result in annual rings and intra-annual growth zones of xylem and phloem in teak (Tectona grandis) in Ivory Coast 
Annals of Botany  2012;110(4):861-873.
Background and Aims
Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known.
Methods
The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy.
Key Results
A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R2 = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season.
Conclusions
The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.
doi:10.1093/aob/mcs145
PMCID: PMC3423803  PMID: 22805529
Growth rings; teak; Tectona grandis; vascular cambium; xylem and phloem formation
5.  Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana 
Annals of Botany  2008;102(5):667-674.
Background and Aims
Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada.
Methods
Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem.
Key Results
Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later.
Conclusions
The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.
doi:10.1093/aob/mcn146
PMCID: PMC2712372  PMID: 18708643
Abies balsamea; boreal forest; cambium; cell differentiation; cell wall thickening; lignification; Picea mariana; root; stem; xylem
6.  Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris 
Tree physiology  2010;30(4):490-501.
Summary
We determined the temporal dynamics of cambial activity and xylem cell differentiation of Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m asl, Tyrol, Austria), where radial growth is strongly limited by drought in spring. Repeated micro-sampling of the developing tree ring of mature trees was carried out during 2 contrasting years at two study plots that differ in soil water availability (xeric and dry-mesic site).
In 2007, when air temperature at the beginning of the growing season in April exceeded the long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, indicating that resumption of cambial cell division after winter dormancy is temperature-controlled. Cambial cell division consistently ended about the end of June/early July in both study years. Radial enlargement of tracheids started almost 3 wk earlier in 2007 compared with 2008 at both study plots. At the xeric site, the maximum rate of tracheid production in 2007 and 2008 was reached in early and mid-May, respectively, and c. 2 wk later, at the dry-mesic site. Since in both study years, more favorable growing conditions (i.e., an increase in soil water content) were recorded during summer, we suggest a strong sink competition for carbohydrates to mycorrhizal root and shoot growth. Wood formation stopped c. 4 wk earlier at the xeric compared with the dry-mesic site in both years, indicating a strong influence of drought stress on cell differentiation. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric than at the dry-mesic site (P < 0.05).
Repeated cellular analyses during the two growing seasons revealed that, although spatial variability in the dynamics and duration of cell differentiation processes in Pinus sylvestris exposed to drought is strongly influenced by water availability, the onset of cambial activity and cell differentiation is controlled by temperature.
doi:10.1093/treephys/tpq003
PMCID: PMC3046340  PMID: 20197285
Cambium; dry inner Alpine valley; intra-annual growth; Scots pine; tracheid production; xylogenesis
7.  Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem 
Journal of Experimental Botany  2011;63(2):837-845.
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
doi:10.1093/jxb/err309
PMCID: PMC3254684  PMID: 22016427
Auxin; cambium; cell differentiation; conduit tapering; Picea abies polar pattern growth
8.  Cambial activity related to tree size in a mature silver-fir plantation 
Annals of Botany  2011;108(3):429-438.
Background and Aims
Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.
Methods
Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.
Key Results
Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.
Conclusions
These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.
doi:10.1093/aob/mcr168
PMCID: PMC3158687  PMID: 21816842
Cambial activity; forest-stand structure; silver fir (Abies alba); tree-ring formation; tree-to-tree competition; social status; wood anatomy; xylem cell differentiation
9.  Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra 
Tree physiology  2009;29(5):641-649.
Summary
The relationship between stem CO2 efflux (ES), cambial activity and xylem production in Pinus cembra was determined at the timberline (1950 m a.s.l.) of the Central Austrian Alps, throughout one year. ES was measured continuously from June 2006 to August 2007 using an infrared gas-analysis system. Cambial activity and xylem production was determined by repeated microcore sampling of the developing tree ring and radial increment was monitored using automated point dendrometers. Aside of temperature, the number of living tracheids and cambial cells was predominantly responsible for ES: ES normalized to 10°C (ES10) was significantly correlated to number of living cells throughout the year (r2 = 0,574; p < 0,001). However, elevated ES and missing correlation between ES10 and xylem production was detected during cambial reactivation in April and during transition from active phase to rest, which occurred in August and lasted until early September. Results of this study indicate that (i) during seasonal variations in cambial activity non-linearity between ES and xylem production occurs and (ii) elevated metabolic activity during transition stages in the cambial activity-dormancy cycle influence the carbon budget of Pinus cembra. Daily radial stem increment was primarily influenced by the number of enlarging cells and was not correlated to ES.
doi:10.1093/treephys/tpp001
PMCID: PMC3013296  PMID: 19203979
cambial reactivation; dormancy; Pinus cembra; radial stem growth; sap flow; stem CO2 efflux; stem respiration; xylem production
10.  Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra 
Annals of Botany  2010;106(3):385-394.
Background and Aims
Cambium reactivation after dormancy and budbreak in deciduous trees requires a supply of mobilized reserve materials. The pathway and mode of transfer of these materials are poorly understood.
Methods
Transport of reserve materials during cambium reactivation in Populus nigra was investigated by conventional and immunocytochemical TEM analyses, SDS–PAGE, western blotting and intracellular microinjection of fluorescent dyes.
Key Results
Proteinaceous compounds stored in vacuoles and protein bodies of vascular cells and ray cells disappeared within 3 weeks after cambial reactivation and budbreak. Some of these proteins (32 kDa, 30 kDa and 15 kDa) were labelled by lectin antibodies in SDS–PAGE. The same antibodies were localized to plasmodesmata (PDs) between phloem parenchyma, ray cells and fusiform cambial cells. In addition, proteinaceous particles were localized inside the cytoplasmic sleeves of these PDs during budbreak. During this period, the functional diameter of PDs was about 2·2 nm which corresponds approximately to the Stokes' radius of the detected 15-kDa protein.
Conclusions
Lectin-like reserve proteins or their degradation products seem to be transferred through PDs of phloem parenchyma and rays during cambial reactivation and budbreak. PD transfer of storage proteins is a novelty which supports the concept of symplasmic nutrient supply to the cambial region.
doi:10.1093/aob/mcq130
PMCID: PMC2924828  PMID: 20584737
Cambial region; lectins; plasmodesmal trafficking; Populus nigra ‘italica’; size exclusion limit; storage proteins; vascular tissues
11.  Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site 
European journal of forest research  2014;133(3):467-479.
Dendroclimatological studies in a dry inner Alpine environment (750 m a.s.l.) revealed different growth response of co-occurring coniferous species to climate, which is assumed to be caused by a temporal shift in wood formation among species. The main focus of this study therefore was to monitor intra-annual dynamics of radial increment growth of mature deciduous and evergreen coniferous species (Pinus sylvestris, Larix decidua and Picea abies) during two consecutive years with contrasting climatic conditions. Radial stem growth was continuously followed by band dendrometers and modelled using Gompertz functions to determine time of maximum growth. Histological analyses of tree ring formation allowed determination of temporal dynamics of cambial activity and xylem cell development. Daily fluctuations in stem radius and radial stem increments were extracted from dendrometer traces, and correlations with environmental variables were performed. While a shift in temporal dynamics of radial growth onset and cessation was detected among co-occurring species, intra-annual radial growth peaked synchronously in late May 2011 and early June 2012. Moist atmospheric conditions, i.e. high relative air humidity, low vapour pressure deficit and low air temperature during the main growing period, favoured radial stem increment of all species. Soil water content and soil temperature were not significantly related to radial growth. Although a temporal shift in onset and cessation of wood formation was detected among species, synchronous culmination of radial growth indicates homogenous exogenous and/or endogenous control. The close coupling of radial growth to atmospheric conditions points to the importance of stem water status for intra-annual growth of drought-prone conifers.
doi:10.1007/s10342-013-0777-z
PMCID: PMC4035765  PMID: 24883053
Cambial activity; Climate–growth relationship; Conifers; Dendrometer; Drought; Intra-annual radial growth
12.  ON THE FINE STRUCTURE OF THE CAMBIUM OF FRAXINUS AMERICANA L 
The Journal of Cell Biology  1966;31(1):79-93.
The fine structure of ash cambium was studied after glutaraldehyde-osmium tetroxide fixation. The fusiform and ray initials are essentially alike, and both have the basic complement of organelles and membranes typical of parenchyma cells. The varied behavior of the two types of initials and the role of cambium in oriented production of the xylem and phloem are still unexplained phenomena. Actively growing cambial cells are highly vacuolate. They are rich in endoplasmic reticulum of the rough cisternal form, ribosomes, dictyosomes, and coated vesicles. Microtubules are present in the peripheral cytoplasm. The plasmalemma appears to be continuous with the endoplasmic reticulum and produces coated vesicles as well as micropinocytotic vesicles with smooth surfaces. The plastids have varying amounts of an intralamellar inclusion which may be a lipoprotein. The quiescent cambium is deficient in rough ER and coated vesicles and has certain structures which may be condensed proteins.
PMCID: PMC2107045  PMID: 5971976
13.  Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone 
Annals of forest science  2009;66(5):503.
Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
doi:10.1051/forest/2009038
PMCID: PMC3059571  PMID: 21423861
dendrometer; Pinus cembra; radial increment; treeline ecotone; xylem formation
14.  Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood? 
The New phytologist  2006;171(1):105-116.
Summary
• The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples.
• The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air.
• Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses.
• Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method.
doi:10.1111/j.1469-8137.2006.01736.x
PMCID: PMC3196831  PMID: 16771986
acoustic emissions (AEs); cavitation; hydraulic vulnerability; peak amplitude; Picea abies (Norway spruce); signal energy; specific hydraulic conductance; trunkwood
15.  Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables 
Trees (Berlin, Germany : West)  2009;23(3):623-635.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.
At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.
The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.
Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
PMCID: PMC3078619  PMID: 21509148
Cambium; intra-annual growth; Pinus cembra; temperature; tracheid production
16.  Elemental analysis of freeze-dried thin sections of Samanea motor organs: barriers to ion diffusion through the apoplast 
The Journal of Cell Biology  1982;95(3):893-902.
Leaflet movements in the legume Samanea saman are dependent upon massive redistribution of potassium (K), chloride (Cl), and other solutes between opposing (extensor and flexor) halves of the motor organ (pulvinus). Solutes are known to diffuse through the apoplast during redistribution. To test the possibility that solute diffusion might be restricted by apoplastic barriers, we analyzed elements in the apoplast in freeze-dried cryosections of pulvini using scanning electron microscopy/x-ray microanalysis. Large discontinuities in apoplastic K and Cl at the extensor-flexor interface provide evidence for a barrier to solute diffusion. The barrier extends from the epidermis on upper and lower sides of the pulvinus to cambial cells in the central vascular core. It is completed by hydrophobic regions between phloem and cambium, and between xylem rays and surrounding vascular tissue, as deduced by discontinuities in apoplastic solutes and by staining of fresh sections with lipid-soluble Sudan dyes. Thus, symplastic pathways are necessary for ion redistribution in the Samanea pulvinus during leaflet movement. In pulvini from leaflets in the closed state, all cells on the flexor side of the barrier have high internal as well as external K and Cl, whereas cells on the extensor side have barely detectable internal or external K or Cl. Approximately 60% of these ions are known to migrate to the extensor during opening; all return to the flexor during subsequent closure. We propose that solutes lost from shrinking cells in the outer cortex diffuse through the apoplast to plasmodesmata-rich cells of the inner cortex, collenchyma, and phloem; and that solutes cross the barrier by moving through plasmodesmata.
PMCID: PMC2112914  PMID: 7153251
17.  OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants 
BMC Genomics  2013;14:893.
Background
Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.
Results
The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways.
Conclusion
The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.
doi:10.1186/1471-2164-14-893
PMCID: PMC3878592  PMID: 24341908
Statistical integration; OnPLS; Poplar; Oxidative stress; Systems biology
18.  Season-associated modifications in symplasmic organization of the cambium in Populus nigra 
Annals of Botany  2010;105(3):375-387.
Background and Aims
Alterations of plasmodesma (PD) connectivity are likely to be very important for plant development. Here, the repetitive division pattern of cambial initials in Populus nigra ‘italica’ was studied to follow the development of the PD network during maturation. Furthermore, seasonal changes were investigated in order to trace indications for developmental and functional adaptations.
Methods
Cambium samples of P. nigra twigs, collected in summer, autumn and spring, were chemically fixed for transmission electron microscopy. The parameters, PD density (number of PDs per square micrometre cell-wall area) and PD frequency (total number of PDs per average cell-wall area), were determined for radial and tangential cell interfaces deposited in chronological order.
Key Results
Data sets, presented in plasmodesmograms, show a strong variability in the PD network throughout the year. In summer, high PD numbers occur at the division wall which, after PD doubling by longitudinal fission, decline with further development both at the xylem and the phloem side. In autumn, the number of PDs at the division wall is low as they are in subsequent tangential interfaces. In spring, the first cell division coincides with a massive increase in PD numbers, in particular at the division wall. Only the radial walls between initials maintain their PD equipment throughout the year. This feature can be exploited for identification of the initial layer.
Conclusions
PD networks in the cambium go through a strict developmental programme depending on the season, which is associated with changing functional requirements. For instance, PD numbers correlate with proliferative activity and potential pathways for intercellular signalling. Increases in PD numbers are ascribed to longitudinal fission as a major mechanism, whereas the decline in older derivatives is ascribed to PD degradation.
doi:10.1093/aob/mcp300
PMCID: PMC2826250  PMID: 20045870
Cambium; meristem initials; plasmodesmata; Populus nigra ‘italica’; seasonal conditions; ultrastructure
19.  Cambium Destruction in Conifers Caused by Pinewood Nematodes 
Journal of Nematology  1986;18(3):398-402.
Percentage and rate of mortality in 2-4-year-old conifers depended upon the numbers of pinewood nematodes Bursaphelenchus xylophilus inoculated into their stems. In addition, percentage of conifer mortality was greater for spring inoculations when cambial activity was greater than for late summer and fall inoculations. Gross and histological examination of stems revealed destruction of the cambial layer, including fusiform and ray intitials and their derivatives. These data suggest that cambial and ray destruction causes tree death through blockage of tracheids by gas, oleoresin, or metabolites from dying ray tissues.
PMCID: PMC2618560  PMID: 19294198
histopathology; Bursaphelenchus xylophilus; pinewood nematode; pinewi!t disease; conifer death; mortality; Pinus spp.
20.  Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood 
Trees (Berlin, Germany : West)  2011;25(2):289-299.
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies.
doi:10.1007/s00468-010-0505-y
PMCID: PMC3207224  PMID: 22058609
Compression strength perpendicular to the grain; Conduit wall reinforcement; Hydraulic efficiency; Modulus of elasticity in bending; Norway spruce; Structure–function relationships; Vulnerability to cavitation; Wood shrinkage
21.  Plant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling 
PLoS Genetics  2012;8(11):e1002997.
The procambium and cambium are meristematic tissues from which vascular tissue is derived. Vascular initials differentiate into phloem towards the outside of the stem and xylem towards the inside. A small peptide derived from CLV-3/ESR1-LIKE 41 (CLE41) is thought to promote cell divisions in vascular meristems by signalling through the PHLOEM INTERCALLATED WITH XYLEM (PXY) receptor kinase. pxy mutants, however, display only small reductions in vascular cell number, suggesting a mechanism exists that allows plants to compensate for the absence of PXY. Consistent with this idea, we identify a large number of genes specifically upregulated in pxy mutants, including several AP2/ERF transcription factors. These transcription factors are required for normal cell division in the cambium and procambium. These same transcription factors are also upregulated by ethylene and in ethylene-overproducing eto1 mutants. eto1 mutants also exhibit an increase in vascular cell division that is dependent upon the function of at least 2 of these ERF genes. Furthermore, blocking ethylene signalling using a variety of ethylene insensitive mutants such as ein2 enhances the cell division defect of pxy. Our results suggest that these factors define a novel pathway that acts in parallel to PXY/CLE41 to regulate cell division in developing vascular tissue. We propose a model whereby vascular cell division is regulated both by PXY signalling and ethylene/ERF signalling. Under normal circumstances, however, PXY signalling acts to repress the ethylene/ERF pathway.
Author Summary
Plants transport water and nutrients throughout their bodies using a specialised vascular system. Vascular tissue is also responsible for providing structural support to plants; for example, wood is made up of specialised vascular cells. Consequently, the vascular system constitutes the majority of plant biomass. Chemicals from plant biomass could be used to make the next generation of biofuels in order to reduce dependence on fossil fuels. Vascular tissue is derived from a group of dividing cells present in a structure called the procambium, but mechanisms controlling cell division in this structure remain poorly understood. Understanding the events that occur in the procambium may help us to understand how we can best utilise plants for increased plant biomass, for example, for biofuel and wood production. We have identified a number of genes that regulate cell division in the procambium that are controlled by the gaseous plant hormone ethylene. We show that ethylene signalling, in turn, interacts with PXY, a gene encoding a signalling component that also controls vascular cell division. Our results demonstrate that the interaction between ethylene and PXY signalling is responsible for maintaining the plant vascular system.
doi:10.1371/journal.pgen.1002997
PMCID: PMC3499249  PMID: 23166504
22.  Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis 
Journal of Experimental Botany  2011;63(5):2117-2126.
Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher’s C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.
doi:10.1093/jxb/err423
PMCID: PMC3295399  PMID: 22174441
Causal modelling; cell differentiation; cell production; d-sep test; Picea mariana; secondary wall formation; xylogenesis
23.  Cambial activity and xylem cell development in Pinus cembra and Pinus sylvestris at their climatic limits in the Eastern Alps in 2007 
Phyton; annales rei botanicae  2011;51(2):299-313.
Summary
It has been frequently stressed that at distributional boundaries, like at the Alpine timberline and within dry inner Alpine environments, tree growth will be affected first by changing climate conditions. Climate in 2007 was characterized by the occurrence of exceptionally mild temperatures in spring (3.4 and 2.7 °C above long-term mean (LTM) at timberline and the valley sites, respectively) with an almost continuous drought period recorded in April and slightly warmer than average temperatures throughout summer (1.3 °C above LTM at both sites).
We compared temporal dynamics of cambial activity and xylem cell development in Pinus cembra at the Alpine timberline (1950 m a.s.l.) and Pinus sylvestris at a xeric inner Alpine site (750 m a.s.l.) by repeated cellular analyses of micro-cores (n = 5 trees/site). While onset of wood formation in P. sylvestris and P. cembra differed by about two weeks (12 and 27 April, respectively), maximum daily growth rates peaked on 6 May at the valley site and on 23 June at timberline. At both sites maximum tracheid production was reached prior to occurrence of more favourable climatic conditions during summer, i.e. an increase in precipitation and temperature. Xylem formation ended on 31 August and 28 October at the xeric site and at timberline, respectively.
This study demonstrates the plasticity of tree-ring formation along an altitudinal transect in response to water availability and temperature. Whether early achievement of maximum growth rates is an adaptation to cope with extreme environmental conditions prevailing at limits of tree growth needs to be analysed more closely by taking belowground carbon allocation into account.
PMCID: PMC3837289  PMID: 24273354
Alpine timberline; cambium; dry inner Alpine valley; intra-annual growth; Scots pine; Stone pine; wood anatomy; xylogenesis
24.  Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca) 
BMC Plant Biology  2010;10:106.
Background
Laser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD.
Results
We describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca) stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA). Transcript levels of β-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues.
Conclusions
Methods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated by LMD from woody conifer stems. Patterns of gene expression are demonstrated in specific tissues that may be masked in analysis of heterogenous samples. Combined analysis of transcripts, proteins and metabolites of individual tissues will facilitate future characterization of complex processes of woody plant development, including periodic stem growth and dormancy, cell specialization, and defense and may be applied widely to other plant species.
doi:10.1186/1471-2229-10-106
PMCID: PMC3095273  PMID: 20540781
25.  THE DEVELOPMENT OF THE SECONDARY WALL OF THE XYLEM IN ACER PSEUDOPLATANUS 
The Journal of Cell Biology  1964;23(2):327-337.
The development of the spirally thickened xylem element from a cambium initial of sycamore Acer pseudoplatanus has been traced by means of electron microscopy. The narrow elongated cambial initial undergoes considerable expansion in all dimensions. The cytoplasm at this stage is distributed in a thin skin between the cell wall and a large vacuole. No correlation has been observed between the distribution of any organelle and the pattern of the eventual thickenings. After the sites of thickening deposition have become apparent, the most conspicuous feature of the cell is the proliferation of Golgi bodies and vesicles. It is suggested that the material of the developing thickenings stems from direct apposition of the material in the Golgi vesicles. After glutaraldehyde fixation, microtubules (200 to 220 A in diameter) are seen to be sited in specific relation to the thickenings, the orientation of the tubules mirroring that of the fibrils seen in the thickenings. Possible reasons for absence of an observable pattern in the expanded but relatively undifferentiated cell are given, and the possible roles of the Golgi apparatus and microtubules in the thickening production are discussed
PMCID: PMC2106525  PMID: 14222817

Results 1-25 (804465)