PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (688114)

Clipboard (0)
None

Related Articles

1.  Characterization and Expression Analysis of Genes Directing Galactomannan Synthesis in Coffee 
Annals of Botany  2008;102(2):207-220.
Background and Aims
Galactomannans act as storage reserves for the seeds in some plants, such as guar (Cyamopsis tetragonoloba) and coffee (Coffea arabica and Coffea canephora). In coffee, the galactomannans can represent up to 25 % of the mass of the mature green coffee grain, and they exert a significant influence on the production of different types of coffee products. The objective of the current work was to isolate and characterize cDNA encoding proteins responsible for galactomannan synthesis in coffee and to study the expression of the corresponding transcripts in the developing coffee grain from C. arabica and C. canephora, which potentially exhibit slight galactomannan variations. Comparative gene expression analysis was also carried out for several other tissues of C. arabica and C. canephora.
Methods
cDNA banks, RACE-PCR and genome walking were used to generate full-length cDNA for two putative coffee mannan synthases (ManS) and two galactomannan galactosyl transferases (GMGT). Gene-specific probe-primer sets were then generated and used to carry out comparative expression analysis of the corresponding genes in different coffee tissues using quantitative RT-PCR
Key Results
Two of the putative galactomannan biosynthetic genes, ManS1 and GMGT1, were demonstrated to have very high expression in the developing coffee grain of both Coffea species during endosperm development, consistent with our proposal that these two genes are responsible for the production of the majority of the galactomannans found in the grain. In contrast, the expression data presented indicates that the ManS2 gene product is probably involved in the synthesis of the galactomannans found in green tissue.
Conclusions
The identification of genes implicated in galactomannan synthesis in coffee are presented. The data obtained will enable more detailed studies on the biosynthesis of this important component of coffee grain and contribute to a better understanding of some functional differences between grain from C. arabica and C. canephora.
doi:10.1093/aob/mcn076
PMCID: PMC2712370  PMID: 18562467
Coffea; galactomannans; mannan synthase; galactomannan galactosyl transferase; coffee grain
2.  OsLEA3-2, an Abiotic Stress Induced Gene of Rice Plays a Key Role in Salt and Drought Tolerance 
PLoS ONE  2012;7(9):e45117.
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.
doi:10.1371/journal.pone.0045117
PMCID: PMC3443202  PMID: 23024799
3.  Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress 
BMC Plant Biology  2010;10:181.
Background
Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.
Results
All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls - from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes.
Conclusions
All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously in maize, wheat and rye mitochondria. Some small thermolabile dehydrin-like proteins were induced under stress conditions applied and therefore they are likely to be involved in stress response.
doi:10.1186/1471-2229-10-181
PMCID: PMC3095311  PMID: 20718974
4.  Plant dehydrins and stress tolerance 
Plant Signaling & Behavior  2011;6(10):1503-1509.
Dehydrins (DHNs), or group 2 LEA (Late Embryogenesis Abundant) proteins, play a fundamental role in plant response and adaptation to abiotic stresses. They accumulate typically in maturing seeds or are induced in vegetative tissues following salinity, dehydration, cold and freezing stress. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y, S and K segments. The K segment representing a highly conserved 15 amino acid motif forming amphiphilic a-helix is especially important since it has been found in all dehydrins. Since more than 20 y, they are thought to play an important protective role during cellular dehydration but their precise function remains unclear. This review outlines the current status of the progress made toward the structural, physico-chemical and functional characterization of plant dehydrins and how these features could be exploited in improving stress tolerance in plants.
doi:10.4161/psb.6.10.17088
PMCID: PMC3256378  PMID: 21897131
abiotic stress; dehydration stress; drought; cold acclimation; freezing tolerance; LEA proteins; dehydrins
5.  Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta) 
The genes encoding XMT and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT).
Caffeine is a secondary metabolite produced by a variety of plants including Coffea canephora (robusta) and there is growing evidence that caffeine is part of a chemical defence strategy protecting young leaves and seeds from potential predators. The genes encoding XMT and DXMT, the enzymes from Coffea canephora (robusta) that catalyse the three independent N-methyl transfer reactions in the caffeine-biosynthesis pathway, have been cloned and the proteins have been expressed in Escherichia coli. Both proteins have been crystallized in the presence of the demethylated cofactor S-adenosyl-l-cysteine (SAH) and substrate (xanthosine for XMT and theobromine for DXMT). The crystals are orthorhombic, with space group P212121 for XMT and C2221 for DXMT. X-ray diffraction to 2.8 Å for XMT and to 2.5 Å for DXMT have been collected on beamline ID23-1 at the ESRF.
doi:10.1107/S1744309107009268
PMCID: PMC2330209  PMID: 17401201
caffeine; SAM; N-methyltransferases
6.  LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance 
Journal of Experimental Botany  2013;64(14):4559-4573.
In contrast to orthodox seeds that acquire desiccation tolerance during maturation, recalcitrant seeds are unable to survive drying. These desiccation-sensitive seeds constitute an interesting model for comparative analysis with phylogenetically close species that are desiccation tolerant. Considering the importance of LEA (late embryogenesis abundant) proteins as protective molecules both in drought and in desiccation tolerance, the heat-stable proteome was characterized in cotyledons of the legume Castanospermum australe and it was compared with that of the orthodox model legume Medicago truncatula. RNA sequencing identified transcripts of 16 homologues out of 17 LEA genes for which polypeptides are detected in M. truncatula seeds. It is shown that for 12 LEA genes, polypeptides were either absent or strongly reduced in C. australe cotyledons compared with M. truncatula seeds. Instead, osmotically responsive, non-seed-specific dehydrins accumulated to high levels in the recalcitrant cotyledons compared with orthodox seeds. Next, M. truncatula mutants of the ABSCISIC ACID INSENSITIVE3 (ABI3) gene were characterized. Mature Mtabi3 seeds were found to be desiccation sensitive when dried below a critical water content of 0.4g H2O g DW–1. Characterization of the LEA proteome of the Mtabi3 seeds revealed a subset of LEA proteins with severely reduced abundance that were also found to be reduced or absent in C. australe cotyledons. Transcripts of these genes were indeed shown to be ABI3 responsive. The results highlight those LEA proteins that are critical to desiccation tolerance and suggest that comparable regulatory pathways responsible for their accumulation are missing in both desiccation-sensitive genotypes, revealing new insights into the mechanistic basis of the recalcitrant trait in seeds.
doi:10.1093/jxb/ert274
PMCID: PMC3808335  PMID: 24043848
abi3; Castanospermum australe; desiccation tolerance; late embryogenesis abundant proteins; Medicago truncatula; proteomics; recalcitrant seed; RNAseq.
7.  Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora  
Journal of Experimental Botany  2012;63(11):4191-4212.
The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.
doi:10.1093/jxb/ers103
PMCID: PMC3398449  PMID: 22511801
Coffea canephora; differential expression; drought acclimation; proteomic; real-time PCR; candidate gene
8.  Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1 
Molecular Biology Reports  2011;39(3):2883-2892.
A full-length cDNA of 1,728 nt, called MsLEA3-1, was cloned from alfalfa by rapid amplification of cDNA ends from an expressed sequence tag homologous to soybean pGmPM10 (accession No. AAA91965.1). MsLEA3-1, encodes a deduced protein of 436 amino acids, a calculated molecular weight of 47.0 kDa, a theoretical isoelectric point of 5.18, and closest homology with late embryogenesis abundant proteins in soybean. Sequence homology suggested a signal peptide in the N terminus, and subcellular localization with GFP revealed that MsLEA3-1 was localized preferentially to the nucleolus. The transcript titre of MsLEA3-1 was strongly enriched in leaves compared with roots and stems of mature alfalfa plants. Gene expression of MsLEA3-1 was strongly induced when seedlings were treated with NaCl and ABA. Expression of the MsLEA3-1 transgenic was detected in transgenic tobacco. Malondialdehyde content and, electrical conductivity content were reduced and electrical conductivity and proline content were increased in transgenic tobacco compared with non-transgenic tobacco under salt stress. The results showed that accumulation of the MsLEA3-1 protein in the vegetative tissues of transgenic plants enhanced their tolerance to salt stress. These results demonstrate a role for the MsLEA3-1 protein in stress protection and suggest the potential of the MsLEA3-1 gene for genetic engineering of salt tolerance.
Electronic supplementary material
The online version of this article (doi:10.1007/s11033-011-1048-z) contains supplementary material, which is available to authorized users.
doi:10.1007/s11033-011-1048-z
PMCID: PMC3271230  PMID: 21681426
Medicago sativa L.; Late embryogenesis abundant protein; Gene expression; Subcellular localization; Expression; Salt stress; Transgenic tobacco
9.  JcLEA, a Novel LEA-Like Protein from Jatropha curcas, Confers a High Level of Tolerance to Dehydration and Salinity in Arabidopsis thaliana 
PLoS ONE  2013;8(12):e83056.
Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.
doi:10.1371/journal.pone.0083056
PMCID: PMC3877014  PMID: 24391737
10.  The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits 
BMC Genomics  2011;12:5.
Background
Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics.
Results
The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study.
Conclusion
We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research.
doi:10.1186/1471-2164-12-5
PMCID: PMC3025959  PMID: 21208403
11.  Microcollinearity in an ethylene receptor coding gene region of the Coffea canephora genome is extensively conserved with Vitis vinifera and other distant dicotyledonous sequenced genomes 
BMC Plant Biology  2009;9:22.
Background
Coffea canephora, also called Robusta, belongs to the Rubiaceae, the fourth largest angiosperm family. This diploid species (2x = 2n = 22) has a fairly small genome size of ≈ 690 Mb and despite its extreme economic importance, particularly for developing countries, knowledge on the genome composition, structure and evolution remain very limited. Here, we report the 160 kb of the first C. canephora Bacterial Artificial Chromosome (BAC) clone ever sequenced and its fine analysis.
Results
This clone contains the CcEIN4 gene, encoding an ethylene receptor, and twenty other predicted genes showing a high gene density of one gene per 7.8 kb. Most of them display perfect matches with C. canephora expressed sequence tags or show transcriptional activities through PCR amplifications on cDNA libraries. Twenty-three transposable elements, mainly Class II transposon derivatives, were identified at this locus. Most of these Class II elements are Miniature Inverted-repeat Transposable Elements (MITE) known to be closely associated with plant genes. This BAC composition gives a pattern similar to those found in gene rich regions of Solanum lycopersicum and Medicago truncatula genomes indicating that the CcEIN4 regions may belong to a gene rich region in the C. canephora genome. Comparative sequence analysis indicated an extensive conservation between C. canephora and most of the reference dicotyledonous genomes studied in this work, such as tomato (S. lycopersicum), grapevine (V. vinifera), barrel medic M. truncatula, black cottonwood (Populus trichocarpa) and Arabidopsis thaliana. The higher degree of microcollinearity was found between C. canephora and V. vinifera, which belong respectively to the Asterids and Rosids, two clades that diverged more than 114 million years ago.
Conclusion
This study provides a first glimpse of C. canephora genome composition and evolution. Our data revealed a remarkable conservation of the microcollinearity between C. canephora and V. vinifera and a high conservation with other distant dicotyledonous reference genomes. Altogether, these results provide valuable information to identify candidate genes in C. canephora genome and serve as a foundation to establish strategies for whole genome sequencing. Future large-scale sequence comparison between C. canephora and reference sequenced genomes will help in understanding the evolutionary history of dicotyledonous plants.
doi:10.1186/1471-2229-9-22
PMCID: PMC2656508  PMID: 19243618
12.  Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment 
BMC Plant Biology  2002;2:5.
Background
Dehydrins are known as Group II late embryogenesis abundant proteins. Their high hydrophilicity and thermostability suggest that they may be structure stabilizers with detergent and chaperone-like properties. They are localised in the nucleus, cytoplasm, and plasma membrane. We have recently found putative dehydrins in the mitochondria of some cereals in response to cold. It is not known whether dehydrin-like proteins accumulate in plant mitochondria in response to stimuli other than cold stress.
Results
We have found five putative dehydrins in the mitochondria of winter wheat, rye and maize seedlings. Two of these polypeptides had the same molecular masses in all three species (63 and 52 kD) and were thermostable. Drought, freezing, cold, and exogenous ABA treatment led to higher accumulation of dehydrin-like protein (dlp) 63 kD in the rye and wheat mitochondria. Protein 52 kD was induced by cold adaptation and ABA. Some accumulation of these proteins in the maize mitochondria was found after cold exposition only. The other three proteins appeared to be heat-sensitive and were either slightly induced or not induced at all by all treatments used.
Conclusions
We have found that, not only cold, but also drought, freezing and exogenous ABA treatment result in accumulation of the thermostable dehydrins in plant mitochondria. Most cryotolerant species such as wheat and rye accumulate more heat-stable dehydrins than cryosensitive species such as maize. It has been supposed that their function is to stabilize proteins in the membrane or in the matrix. Heat-sensitive putative dehydrins probably are not involved in the stress reaction and adaptation of plants.
doi:10.1186/1471-2229-2-5
PMCID: PMC116594  PMID: 12057012
13.  Dehydration-Specific Induction of Hydrophilic Protein Genes in the Anhydrobiotic Nematode Aphelenchus avenae 
Eukaryotic Cell  2004;3(4):966-975.
Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations that are required for anhydrobiosis, we developed a novel SL1-based mRNA differential display technique to clone genes that are upregulated by dehydration in A. avenae. Three such genes, Aav-lea-1, Aav-ahn-1, and Aav-glx-1, encode, respectively, a late embryogenesis abundant (LEA) group 3 protein, a novel protein that we named anhydrin, and the antioxidant enzyme glutaredoxin. Strikingly, the predicted LEA and anhydrin proteins are highly hydrophilic and lack significant secondary structure in the hydrated state. The dehydration-induced upregulation of Aav-lea-1 and Aav-ahn-1 was confirmed by Northern hybridization and quantitative PCR experiments. Both genes were also upregulated by an osmotic upshift, but not by cold, heat, or oxidative stress. Experiments to investigate the relationship between mRNA levels and protein expression for these genes are in progress. LEA proteins occur commonly in plants, accumulating during seed maturation and desiccation stress; the presence of a gene encoding an LEA protein in an anhydrobiotic nematode suggests that some mechanisms of coping with water loss are conserved between plants and animals.
doi:10.1128/EC.3.4.966-975.2004
PMCID: PMC500876  PMID: 15302829
14.  Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean 
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species.
doi:10.1093/dnares/dsr040
PMCID: PMC3276264  PMID: 22184637
plant genome; cis-acting promoter elements; cold; dehydration; microarray
15.  Late Embryogenesis Abundant (LEA) proteins in legumes 
Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA) proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan, and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirm the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions.
doi:10.3389/fpls.2013.00190
PMCID: PMC3691520  PMID: 23805145
legumes; common bean; soybean; Medicago; LEA proteins; water deficit; abiotic stress
16.  LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana 
BMC Genomics  2008;9:118.
Background
LEA (late embryogenesis abundant) proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown.
Results
We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE) and/or low temperature response (LTRE) elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded.
Conclusion
The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for future efforts to elucidate the functional role of these enigmatic proteins.
doi:10.1186/1471-2164-9-118
PMCID: PMC2292704  PMID: 18318901
17.  Organization and molecular evolution of a disease-resistance gene cluster in coffee trees 
BMC Genomics  2011;12:240.
Background
Most disease-resistance (R) genes in plants encode NBS-LRR proteins and belong to one of the largest and most variable gene families among plant genomes. However, the specific evolutionary routes of NBS-LRR encoding genes remain elusive. Recently in coffee tree (Coffea arabica), a region spanning the SH3 locus that confers resistance to coffee leaf rust, one of the most serious coffee diseases, was identified and characterized. Using comparative sequence analysis, the purpose of the present study was to gain insight into the genomic organization and evolution of the SH3 locus.
Results
Sequence analysis of the SH3 region in three coffee genomes, Ea and Ca subgenomes from the allotetraploid C. arabica and Cc genome from the diploid C. canephora, revealed the presence of 5, 3 and 4 R genes in Ea, Ca, and Cc genomes, respectively. All these R-gene sequences appeared to be members of a CC-NBS-LRR (CNL) gene family that was only found at the SH3 locus in C. arabica. Furthermore, while homologs were found in several dicot species, comparative genomic analysis failed to find any CNL R-gene in the orthologous regions of other eudicot species. The orthology relationship among the SH3-CNL copies in the three analyzed genomes was determined and the duplication/deletion events that shaped the SH3 locus were traced back. Gene conversion events were detected between paralogs in all three genomes and also between the two sub-genomes of C. arabica. Significant positive selection was detected in the solvent-exposed residues of the SH3-CNL copies.
Conclusion
The ancestral SH3-CNL copy was inserted in the SH3 locus after the divergence between Solanales and Rubiales lineages. Moreover, the origin of most of the SH3-CNL copies predates the divergence between Coffea species. The SH3-CNL family appeared to evolve following the birth-and-death model, since duplications and deletions were inferred in the evolution of the SH3 locus. Gene conversion between paralog members, inter-subgenome sequence exchanges and positive selection appear to be the major forces acting on the evolution of SH3-CNL in coffee trees.
doi:10.1186/1471-2164-12-240
PMCID: PMC3113787  PMID: 21575174
18.  Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae) 
Planta  2012;236(1):313-326.
Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids.
Electronic supplementary material
The online version of this article (doi:10.1007/s00425-012-1613-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00425-012-1613-2
PMCID: PMC3382651  PMID: 22349733
Chlorogenic acids; Coffea; Gene expression; Gene structure; Mapping; Phenylalanine ammonia lyase
19.  A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus 
Molecular Biology of the Cell  2011;22(11):1896-1906.
This article identifies novel stress-protective proteins that belong to the family of intrinsically unstructured proteins, DprA and DprB, which are associated with the cytosol and the peroxisomes in Aspergillus fumigatus.
 During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.
doi:10.1091/mbc.E10-11-0914
PMCID: PMC3103405  PMID: 21490150
20.  Dehydrin-like Proteins in the Necrotrophic Fungus Alternaria brassicicola Have a Role in Plant Pathogenesis and Stress Response 
PLoS ONE  2013;8(10):e75143.
In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.
doi:10.1371/journal.pone.0075143
PMCID: PMC3788798  PMID: 24098369
21.  Complex Regulation by Apetala2 Domain-Containing Transcription Factors Revealed through Analysis of the Stress-Responsive TdCor410b Promoter from Durum Wheat 
PLoS ONE  2013;8(3):e58713.
Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.
doi:10.1371/journal.pone.0058713
PMCID: PMC3602543  PMID: 23527011
22.  Recent Advances in the Genetic Transformation of Coffee 
Coffee is one of the most important plantation crops, grown in about 80 countries across the world. The genus Coffea comprises approximately 100 species of which only two species, that is, Coffea arabica (commonly known as arabica coffee) and Coffea canephora (known as robusta coffee), are commercially cultivated. Genetic improvement of coffee through traditional breeding is slow due to the perennial nature of the plant. Genetic transformation has tremendous potential in developing improved coffee varieties with desired agronomic traits, which are otherwise difficult to achieve through traditional breeding. During the last twenty years, significant progress has been made in coffee biotechnology, particularly in the area of transgenic technology. This paper provides a detailed account of the advances made in the genetic transformation of coffee and their potential applications.
doi:10.1155/2012/580857
PMCID: PMC3437269  PMID: 22970380
23.  Spare PRELI Gene Loci: Failsafe Chromosome Insurance? 
PLoS ONE  2012;7(5):e37949.
Background
LEA (late embryogenesis abundant) proteins encode conserved N-terminal mitochondrial signal domains and C-terminal (A/TAEKAK) motif repeats, long-presumed to confer cell resistance to stress and death cues. This prompted the hypothesis that LEA proteins are central to mitochondria mechanisms that connect bioenergetics with cell responses to stress and death signaling. In support of this hypothesis, recent studies have demonstrated that mammalian LEA protein PRELI can act as a biochemical hub, which upholds mitochondria energy metabolism, while concomitantly promoting B cell resistance to stress and induced death. Hence, it is important to define in vivo the physiological relevance of PRELI expression.
Methods and Findings
Given the ubiquitous PRELI expression during mouse development, embryo lethality could be anticipated. Thus, conditional gene targeting was engineered by insertion of flanking loxP (flox)/Cre recognition sites on PRELI chromosome 13 (Chr 13) locus to abort its expression in a tissue-specific manner. After obtaining mouse lines with homozygous PRELI floxed alleles (PRELIf/f), the animals were crossed with CD19-driven Cre-recombinase transgenic mice to investigate whether PRELI inactivation could affect B-lymphocyte physiology and survival. Mice with homozygous B cell-specific PRELI deletion (CD19-Cre/Chr13 PRELI−/−) bred normally and did not show any signs of morbidity. Histopathology and flow cytometry analyses revealed that cell lineage identity, morphology, and viability were indistinguishable between wild type CD19-Cre/Chr13 PRELI+/+ and CD19-Cre/Chr13 PRELI−/− deficient mice. Furthermore, B cell PRELI gene expression seemed unaffected by Chr13 PRELI gene targeting. However, identification of additional PRELI loci in mouse Chr1 and Chr5 provided an explanation for the paradox between LEA-dependent cytoprotection and the seemingly futile consequences of Chr 13 PRELI gene inactivation. Importantly, PRELI expression from spare gene loci appeared ample to surmount Chr 13 PRELI gene deficiency.
Conclusions
These findings suggest that PRELI is a vital LEA B cell protein with failsafe genetics.
doi:10.1371/journal.pone.0037949
PMCID: PMC3364194  PMID: 22666421
24.  Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress 
BMC Plant Biology  2012;12:140.
Background
Dehydrins (DHNs) protect plant cells from desiccation damage during environmental stress, and also participate in host resistance to various pathogens. In this study, we aimed to identify and characterize the DHN gene families from Vitis vinifera and wild V. yeshanensis, which is tolerant to both drought and cold, and moderately resistant to powdery mildew.
Results
Four DHN genes were identified in both V. vinifera and V. yeshanensis, which shared a high sequence identity between the two species but little homology between the genes themselves. These genes were designated DHN1, DHN2, DHN3 and DHN4. All four of the DHN proteins were highly hydrophilic and were predicted to be intrinsically disordered, but they differed in their isoelectric points, kinase selectivities and number of functional motifs. Also, the expression profiles of each gene differed appreciably from one another. Grapevine DHN1 was not expressed in vegetative tissues under normal growth conditions, but was induced by drought, cold, heat, embryogenesis, as well as the application of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). It was expressed earlier in V. yeshanensis under drought conditions than in V. vinifera, and also exhibited a second round of up-regulation in V. yeshanensis following inoculation with Erysiphe necator, which was not apparent in V. vinifera. Like DHN1, DHN2 was induced by cold, heat, embryogenesis and ABA; however, it exhibited no responsiveness to drought, E. necator infection, SA or MeJA, and was also expressed constitutively in vegetative tissues under normal growth conditions. Conversely, DHN3 was only expressed during seed development at extremely low levels, and DHN4 was expressed specifically during late embryogenesis. Neither DHN3 nor DHN4 exhibited responsiveness to any of the treatments carried out in this study. Interestingly, the presence of particular cis-elements within the promoter regions of each gene was positively correlated with their expression profiles.
Conclusions
The grapevine DHN family comprises four divergent members. While it is likely that their functions overlap to some extent, it seems that DHN1 provides the main stress-responsive function. In addition, our results suggest a close relationship between expression patterns, physicochemical properties, and cis-regulatory elements in the promoter regions of the DHN genes.
doi:10.1186/1471-2229-12-140
PMCID: PMC3460772  PMID: 22882870
Grapevine; Dehydrin; Stress-induced expression; Powdery mildew; Promoter
25.  An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora 
BMC Plant Biology  2011;11:30.
Background
Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency.
Results
Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories.
Conclusion
We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance.
doi:10.1186/1471-2229-11-30
PMCID: PMC3045888  PMID: 21303543

Results 1-25 (688114)