Search tips
Search criteria

Results 1-25 (1290992)

Clipboard (0)

Related Articles

1.  T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity 
PLoS Medicine  2005;2(3):e78.
Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils.
Methods and Findings
In this study we address the mechanism of action of peptide immunotherapy (PIT) in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs) after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs.
This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.
Immunotherapy is one approach to treating cat allergy and asthma. One mechanism of action might be that it induces a population of CD4 positive T cells with suppressor activity
PMCID: PMC1069669  PMID: 15783262
2.  124 Heterogeneity of Allergen Epitope-specific CD4+ T Cells Responses: Steps Toward Optimal Composition for Peptide-based Immunotherapy 
The World Allergy Organization Journal  2012;5(Suppl 2):S58-S59.
Peptide-based allergen immunotherapy is a promising alternative to conventional allergy vaccine. However, the optimal composition of such vaccines, in terms of the choice of the appropriate peptides, has remained unclear. Knowledge of the epitope-specific T cell responses to allergens can give important information on the pathogenesis and regulation of allergic inflammation. In this study we sought to identify candidate allergen-epitopes that can be used to improve peptide-based allergen immunotherapy.
Tetramer Guided Epitope Mapping was first used to identify CD4+ T cell epitopes for group 1 and group 5 timothy grass pollen allergens. MHC class II tetramer technology was then used in an ex vivo approach to assess the grass pollen-specific CD4+ T cell responses in allergic and non-allergic individuals. The frequency, surface marker phenotype and cytokine profile of these cells were directly analysed by flow cytometry.
CD4+ T cell responses to Timothy grass allergens are directed to a broad range of epitopes characterized by defined immunodominance hierarchy patterns. We observed heterogeneity of phenotype within the allergen-specific CD4+ T cells that depends on the epitope for which the cells are specific. T cell epitopes associated with production of IL-10 or IFN-g are recognized at low frequencies in both allergic and healthy individuals. In contrast, allergy-associated epitopes are only recognized in allergic individuals by high frequency, terminally differentiated allergen-specific CD4+ T cells, which are susceptible to deletion by repeated stimulation with high doses of antigen. Allergen-specific immunotherapy caused significant changes in the epitopes hierarchy of the grass pollen allergen-specific memory CD4 T cell pool.
The ability to evaluate epitope-specific T cell responses to allergens can give important information on the pathogenesis and regulation of allergic inflammation and could be of great use in designing peptide-based allergy vaccination strategies. Some epitopes may play a prominent role in driving a protective response, while others may directly impair the pathogenic response.
PMCID: PMC3513055
3.  Mimotope vaccination for therapy of allergic asthma: anti-inflammatory effects in a mouse model 
One of the concerns of allergen-specific immunotherapy is the possible boost of inflammatory allergen-specific T lymphocytes. To address this problem, treatment with B cell epitopes devoid of allergen-specific T cell epitopes would be a promising alternative.
In this study, we examined the therapeutic potency of a single mimotope, mimicking a structural IgE epitope of grass pollen allergen Phl p 5 in an established memory mouse model of acute allergic asthma.
In the experimental set-up, BALB/c mice were primed with intraperitoneal injections of recombinant Phl p 5a (rPhl p 5a) and subsequently aerosol challenged with the nebulized allergen. Mice developed signs of bronchial asthma including hypereosinophilia around bronchi, goblet cell hyperplasia and enhanced mucus production.
When the mice were subsequently treated with the grass pollen mimotope coupled to keyhole limpet haemocyanin, bronchial eosinophilic inflammation and mucus hypersecretion decreased. Further, a decrease of Th2 cytokines IL-4 and IL-5 could be observed in the bronchoalveolar lavage (BAL). In contrast to rPhl p 5a, the mimotope was in vitro not able to stimulate splenocytes to proliferation or IL-5 production. Despite not affecting the levels of pre-existing IgE, vaccination with the single mimotope thus rendered anti-inflammatory effects in a mouse model of acute asthma.
From our data, we conclude that vaccination with a mimotope peptide representing a single IgE epitope of the allergen Phl p 5a and being devoid of allergen-specific T cell epitopes is able to down-regulate inflammation in acute asthma.
PMCID: PMC2999747  PMID: 19958367
epitope-specific immunotherapy; grass pollen allergy; mimotopes
4.  Suppression of GATA-3 Nuclear Import and Phosphorylation: A Novel Mechanism of Corticosteroid Action in Allergic Disease 
PLoS Medicine  2009;6(5):e1000076.
Peter Barnes and colleagues show that corticosteroids have a potent inhibitory effect on GATA-3 via two interacting mechanisms that suppress Th2 cytokine expression. This novel mechanism of corticosteroid action may help explain the efficacy of corticosteroids in allergic diseases.
GATA-3 plays a critical role in regulating the expression of the cytokines interleukin (IL)-4, IL-5, and IL-13 from T helper-2 (Th2) cells and therefore is a key mediator of allergic diseases. Corticosteroids are highly effective in suppressing allergic inflammation, but their effects on GATA-3 are unknown. We investigated the effect of the corticosteroid fluticasone propionate on GATA-3 regulation in human T-lymphocytes in vitro and in vivo.
Methods and Findings
In a T lymphocyte cell line (HuT-78) and peripheral blood mononuclear cells stimulated by anti-CD3 and anti-CD28 in vitro we demonstrated that fluticasone inhibits nuclear translocation of GATA-3 and expression of Th2 cytokines via a mechanism independent of nuclear factor-κB and is due, in part, to competition between GATA-3 and the ligand-activated glucocorticoid receptor for nuclear transport through the nuclear importer importin-α. In addition, fluticasone induces the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), the endogenous inhibitor of p38 MAPK, which is necessary for GATA-3 nuclear translocation. These inhibitory effects of fluticasone are rapid, potent, and prolonged. We also demonstrated that inhaled fluticasone inhibits GATA-3 nuclear translocation in peripheral blood lymphocytes of patients with asthma in vivo.
Corticosteroids have a potent inhibitory effect on GATA-3 via two interacting mechanisms that potently suppress Th2 cytokine expression. This novel mechanism of action of corticosteroids may account for the striking clinical efficacy of corticosteroids in the treatment of allergic diseases.
Please see later in the article for Editors' Summary
Editors' Summary
The immune system protects the human body from viruses, bacteria, parasites, and fungi. When one of these foreign invaders enters the body, immune system cells called T lymphocytes recognize specific molecules on the invader's surface and release chemical messengers (cytokines) that recruit and activate other types of immune cell, which then attack the invader. Sometimes, however, the immune system responds to a normally harmless material (for example, house-dust mites or grass pollen; scientists call these materials allergens) and triggers an allergic disease such as asthma or hay fever. Contact with an allergen activates a type of T lymphocyte called a T helper-2 (Th2) cell that subsequently makes (expresses) three cytokines called interleukin-4 (IL-4), IL-5, and IL-13. These cytokines ultimately cause inflammation (swelling) of the part of the body exposed to the allergen. Corticosteroids, which suppress the expression of cytokines by Th2 cells, are often used to treat inflammation in allergic diseases. Other treatments for these common conditions—about 50 million people in the US have an allergic disease—include minimizing exposure to allergens and diminishing the response of the immune system to allergens by using various immunotherapies.
Why Was This Study Done?
Scientists know that corticosteroids reduce allergic inflammation by binding to proteins in immune system cells called glucocorticoid receptors. After binding to a corticosteroid, these receptors move into the nucleus of the cell (the part of the cell that contains its genes), where they suppress the expression of certain proinflammatory genes. However, it is still not known how corticosteroids inhibit the expression of Th2 cytokines. A key regulator of the expression of these cytokines and of allergic inflammation is a transcription factor called GATA-3. Transcription factors are proteins that control the expression of other proteins by binding to specific sequences in the genes that encode them. In this study, the researchers try to discover more about how corticosteroids reduce allergic inflammation by investigating the effects of the corticosteroid fluticasone on the regulation of GATA-3 activity in T lymphocytes.
What Did the Researchers Do and Find?
Transcription factors have to move into the nucleus of cells (so-called nuclear translocation) to control the expression of their target genes, so the researchers first asked whether fluticasone affects the cellular localization of GATA-3. Fluticasone treatment of activated T lymphocytes growing in dishes, they report, inhibited the nuclear translocation of GATA-3 and reduced Th2 cytokine expression. Other experiments showed that the inhibition of GATA-3 nuclear translocation was partly caused by competition between the glucocorticoid receptor bound to fluticasone and GATA-3 for binding to importin-α, a protein that is required for nuclear import. However, fluticasone also prevented the nuclear translocation of GATA-3 in a second way. Before GATA-3 can bind to importin-α, phosphate groups have to be added to specific sites in GATA-3. This “phosphorylation” requires an enzyme called p38 MAP kinase, and the researchers found that fluticasone treatment of activated T lymphocytes induced the expression of MAP kinase phophatase-1, a p38 MAP kinase inhibitor. Finally, when the researchers treated seven patients with mild asthma with inhaled fluticasone, they found that fluticasone also inhibited GATA-3 nuclear translocation in the lymphocytes circulating in the patients' blood.
What Do These Findings Mean?
These findings, obtained both in the laboratory and in patients, suggest that corticosteroids inhibit the expression of Th2 cytokines and thus reduce allergic inflammation through two interacting mechanisms. They suggest that corticosteroids prevent the nuclear translocation of GATA-3, a key regulator of Th2 cytokine expression, by competing with GATA-3 for binding to importin-α and by preventing the phosphorylation of GATA-3, a modification that allows GATA-3 to bind to importin-α. This dual mechanism of corticosteroid action may help to explain why these drugs are so effective in the treatment of allergic diseases, although further experiments are needed to show that the lymphocytes resident at sites of allergic inflammation respond to corticosteroids in the same way as lymphocytes in the blood. Finally, these findings suggest that the interaction between phosphorylated GATA-3 and importin-α might be a potential target for new treatments for allergic diseases.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Institute of Allergy and Infectious Diseases provides information on allergic diseases and a simple description of the immune system
The UK National Health Service Choices service provides information about allergies
Links to other information about allergies are available from MedlinePlus (in English and Spanish)
PMCID: PMC2674207  PMID: 19436703
5.  Greater risk of incident asthma cases in adults with Allergic Rhinitis and Effect of Allergen Immunotherapy: A Retrospective Cohort Study 
Respiratory Research  2005;6(1):153.
Asthma and rhinitis are often co-morbid conditions. As rhinitis often precedes asthma it is possible that effective treatment of allergic rhinitis may reduce asthma progression.
The aim of our study is to investigate history of allergic rhinitis as a risk factor for asthma and the potential effect of allergen immunotherapy in attenuating the incidence of asthma.
Hospital-referred non-asthmatic adults, aged 18–40 years between 1990 and 1991, were retrospectively followed up until January and April 2000. At the end of follow up, available subjects were clinically examined for asthma diagnosis and history of allergen specific immunotherapy, second-hand smoking and the presence of pets in the household. A total of 436 non-asthmatic adults (332 subjects with allergic rhinitis and 104 with no allergic rhinitis nor history of atopy) were available for final analyses.
The highest OR (odds ratio) associated with a diagnosis of asthma at the end of follow-up was for the diagnosis of allergic rhinitis at baseline (OR, 7.8; 95%CI, 3.1–20.0 in the model containing the covariates of rhinitis diagnosis, sex, second-hand smoke exposure, presence of pets at home, family history of allergic disorders, sensitization to Parietaria judaica; grass pollen; house dust mites; Olea europea: orchard; perennial rye; and cat allergens). Female sex, sensitization to Parietaria judaica and the presence of pets in the home were also significantly predictive of new onset asthma in the same model. Treatment with allergen immunotherapy was significantly and inversely related to the development of new onset asthma (OR, 0.53; 95%CI, 0.32–0.86).
In the present study we found that allergic rhinitis is an important independent risk factor for asthma. Moreover, treatment with allergen immunotherapy lowers the risk of the development of new asthma cases in adults with allergic rhinitis.
PMCID: PMC1351177  PMID: 16381607
6.  New Vaccines for Mammalian Allergy Using Molecular Approaches 
Allergen-specific immunotherapy (SIT) offers a disease specific causative treatment by modifying the allergen-specific immune response allowing tolerance to higher doses of allergen and preventing progression of allergic diseases. It may be considered in patients allergic to furry animals. Current mammalian allergy vaccines are still prepared from relatively poorly defined allergen extracts and may induce immediate and late phase side effects. Although the mechanisms of SIT are still not fully understood, the more recent approaches report different strategies to reduce both allergen-specific IgE as well as T cell reactivity. The availability of recombinant allergens and synthetic peptides from the mammalian species has contributed to formulating new allergy vaccines to improve SIT for furry animal allergy. The majority of studies have focused on the major cat allergen Fel d 1 due to its extensive characterization in terms of IgE and T cell epitopes and to its dominant role in cat allergy. Here we review the most recent approaches, e.g., synthetic peptides, recombinant allergen derivatives, different hypoallergenic molecules, and recombinant allergens coupled to virus-like particles or immunomodulatory substances as well as strategies targeting the allergen to Fcγ receptors and the MHC class II pathway using a new route for administration. Many of the new vaccines hold promise but only a few of them have been investigated in clinical trials which will be the gold standard for evaluation of safety and efficacy in allergic patients.
PMCID: PMC3954059  PMID: 24672521
allergen-specific immunotherapy; Fel d 1; mammalian allergens; recombinant allergens; T cell peptides; vaccines
7.  In Vitro Evolution of Allergy Vaccine Candidates, with Maintained Structure, but Reduced B Cell and T Cell Activation Capacity 
PLoS ONE  2011;6(9):e24558.
Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients.
PMCID: PMC3172221  PMID: 21931754
8.  Differentiation stage determines pathologic and protective allergen-specific CD4+ T cell outcomes during specific immunotherapy 
The main obstacle to elucidating the role of CD4+ T cells in allergen-specific immunotherapy has been the absence of an adequately sensitive approach to directly characterize rare allergen-specific T cells without introducing substantial phenotypic modifications by in vitro amplification.
To monitor in physiological conditions, the allergen-specific CD4+ T cells generated during natural pollen exposure and during allergy vaccine.
Alder pollen allergy was used as a model for studying seasonal allergies. Allergen-specific CD4+ T cells were tracked and characterized in twelve alder pollen-allergic, six non-allergic and nine allergy vaccine-treated individuals using peptide-MHC class II tetramers.
Allergen-specific CD4+ T cells were detected in all of the alder pollen-allergic and non-allergic subjects tested. Pathogenic responses (CRTH2 expression and TH2-cytokine production) are specifically associated with terminally differentiated (CD27−) allergen-specific CD4+ T cells, which dominate in allergic individuals but are absent in non-allergic individuals. In contrast, CD27 expressing allergen-specific CD4+ T cells are present at low frequencies in both allergic and non-allergic individuals and reflect classical features of the protective immune response with high expression of IL-10 and IFN-γ. Restoration of a protective response during allergen-specific immunotherapy appears to be due to the preferential deletion of pathogenic (CD27−) allergen-specific CD4+ T cells accompanied by IL-10 induction in surviving CD27+ allergen-specific CD4+ T cells.
Differentiation stage divides allergen-specific CD4+ T cells into two distinct subpopulations with unique functional properties and different fates during allergen-specific immunotherapy.
PMCID: PMC3268867  PMID: 21975176
Immunotherapy; allergy; pollen; T cells; CD4; peptide-MHC class II tetramer; peripheral tolerance; differentiation stage; ex vivo
9.  Prevention of Birch Pollen-Related Food Allergy by Mucosal Treatment with Multi-Allergen-Chimers in Mice 
PLoS ONE  2012;7(6):e39409.
Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery) or Dau c 1 (carrot), termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy.
BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization.
Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer.
Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy.
PMCID: PMC3387141  PMID: 22768077
10.  T cell responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts1 
A panel of 133 allergens derived from 28 different sources, including fungi, trees, grasses, weeds and indoor allergens, was surveyed utilizing prediction of HLA class II binding peptides and ELISPOT assays with PBMC from allergic donors, resulting in the identification of 257 T cell epitopes. More than 90% of the epitopes were novel, and for 14 allergen sources were the first ever identified. The epitopes identified in the different allergen sources summed up to a variable fraction of the total extract response. In cases of allergens where the identified T cell epitopes accounted for a minor fraction of the extract response, fewer known protein sequences were available, suggesting that for “low epitope coverage” allergen sources, additional allergen proteins remain to be identified. IL-5 and IFN-γresponses were measured as prototype Th2 and Th1 responses, respectively. While in some cases (e.g., Orchard Grass, Alternaria, Cypress, and Russian Thistle) IL-5 production greatly exceeded IFN-γ, in others (e.g., Aspergillus, Penicillum, and Alder) the production of IFN-γ exceeded IL-5. Thus, different allergen sources are associated with variable polarization of the responding T cells. The present study represents the most comprehensive survey to date of human allergen derived T cell epitopes. These epitopes might be used to characterize T cell phenotype/T cell plasticity as a function of seasonality, or as a result of SIT treatment or varying disease severity (asthma or rhinitis).
PMCID: PMC3411923  PMID: 22786768
11.  Active or Passive Exposure to Tobacco Smoking and Allergic Rhinitis, Allergic Dermatitis, and Food Allergy in Adults and Children: A Systematic Review and Meta-Analysis 
PLoS Medicine  2014;11(3):e1001611.
In a systematic review and meta-analysis, Bahi Takkouche and colleagues examine the associations between exposure to tobacco smoke and allergic disorders in children and adults.
Please see later in the article for the Editors' Summary
Allergic rhinitis, allergic dermatitis, and food allergy are extremely common diseases, especially among children, and are frequently associated to each other and to asthma. Smoking is a potential risk factor for these conditions, but so far, results from individual studies have been conflicting. The objective of this study was to examine the evidence for an association between active smoking (AS) or passive exposure to secondhand smoke and allergic conditions.
Methods and Findings
We retrieved studies published in any language up to June 30th, 2013 by systematically searching Medline, Embase, the five regional bibliographic databases of the World Health Organization, and ISI-Proceedings databases, by manually examining the references of the original articles and reviews retrieved, and by establishing personal contact with clinical researchers. We included cohort, case-control, and cross-sectional studies reporting odds ratio (OR) or relative risk (RR) estimates and confidence intervals of smoking and allergic conditions, first among the general population and then among children.
We retrieved 97 studies on allergic rhinitis, 91 on allergic dermatitis, and eight on food allergy published in 139 different articles. When all studies were analyzed together (showing random effects model results and pooled ORs expressed as RR), allergic rhinitis was not associated with active smoking (pooled RR, 1.02 [95% CI 0.92–1.15]), but was associated with passive smoking (pooled RR 1.10 [95% CI 1.06–1.15]). Allergic dermatitis was associated with both active (pooled RR, 1.21 [95% CI 1.14–1.29]) and passive smoking (pooled RR, 1.07 [95% CI 1.03–1.12]). In children and adolescent, allergic rhinitis was associated with active (pooled RR, 1.40 (95% CI 1.24–1.59) and passive smoking (pooled RR, 1.09 [95% CI 1.04–1.14]). Allergic dermatitis was associated with active (pooled RR, 1.36 [95% CI 1.17–1.46]) and passive smoking (pooled RR, 1.06 [95% CI 1.01–1.11]). Food allergy was associated with SHS (1.43 [1.12–1.83]) when cohort studies only were examined, but not when all studies were combined.
The findings are limited by the potential for confounding and bias given that most of the individual studies used a cross-sectional design. Furthermore, the studies showed a high degree of heterogeneity and the exposure and outcome measures were assessed by self-report, which may increase the potential for misclassification.
We observed very modest associations between smoking and some allergic diseases among adults. Among children and adolescents, both active and passive exposure to SHS were associated with a modest increased risk for allergic diseases, and passive smoking was associated with an increased risk for food allergy. Additional studies with detailed measurement of exposure and better case definition are needed to further explore the role of smoking in allergic diseases.
Please see later in the article for the Editors' Summary
Editors' Summary
The immune system protects the human body from viruses, bacteria, and other pathogens. Whenever a pathogen enters the body, immune system cells called T lymphocytes recognize specific molecules on its surface and release chemical messengers that recruit and activate other types of immune cells, which then attack the pathogen. Sometimes, however, the immune system responds to harmless materials (for example, pollen; scientists call these materials allergens) and triggers an allergic disease such as allergic rhinitis (inflammation of the inside of the nose; hay fever is a type of allergic rhinitis), allergic dermatitis (also known as eczema, a disease characterized by dry, itchy patches on the skin), and food allergy. Recent studies suggest that all these allergic (atopic) diseases are part of a continuous state called the “atopic march” in which individuals develop allergic diseases in a specific sequence that starts with allergic dermatitis during infancy, and progresses to food allergy, allergic rhinitis, and finally asthma (inflammation of the airways).
Why Was This Study Done?
Allergic diseases are extremely common, particularly in children. Allergic rhinitis alone affects 10%–30% of the world's population and up to 40% of children in some countries. Moreover, allergic diseases are becoming increasingly common. Allergic diseases affect the quality of life of patients and are financially costly to both patients and health systems. It is important, therefore, to identify the factors that cause or potentiate their development. One potential risk factor for allergic diseases is active or passive exposure to tobacco smoke. In some countries up to 80% of children are exposed to second-hand smoke so, from a public health point of view, it would be useful to know whether exposure to tobacco smoke is associated with the development of allergic diseases. Here, the researchers undertake a systematic review (a study that uses predefined criteria to identify all the research on a given topic) and a meta-analysis (a statistical approach for combining the results of several studies) to investigate this issue.
What Did the Researchers Do and Find?
The researchers identified 196 observational studies (investigations that observe outcomes in populations without trying to affect these outcomes in any way) that examined the association between smoke exposure and allergic rhinitis, allergic dermatitis, or food allergy. When all studies were analyzed together, allergic rhinitis was not associated with active smoking but was slightly associated with exposure to second-hand smoke. Specifically, compared to people not exposed to second-hand smoke, the pooled relative risk (RR) of allergic rhinitis among people exposed to second-hand smoke was 1.10 (an RR of greater than 1 indicates an increased risk of disease development in an exposed population compared to an unexposed population). Allergic dermatitis was associated with both active smoking (RR = 1.21) and exposure to second-hand smoke (RR = 1.07). In the populations of children and adolescents included in the studies, allergic rhinitis was associated with both active smoking and exposure to second-hand smoke (RRs of 1.40 and 1.09, respectively), as was allergic dermatitis (RRs of 1.36 and 1.06, respectively). Finally food allergy was associated with exposure to second-hand smoke (RR = 1.43) when cohort studies (a specific type of observational study) only were examined but not when all the studies were combined.
What Do These Findings Mean?
These findings provide limited evidence for a weak association between smoke exposure and allergic disease in adults but suggest that both active and passive smoking are associated with a modestly increased risk of allergic diseases in children and adolescents. The accuracy of these findings may be affected by the use of questionnaires to assess smoke exposure and allergic disease development in most of the studies in the meta-analysis and by the possibility that individuals exposed to smoke may have shared other characteristics that were actually responsible for their increased risk of allergic diseases. To shed more light on the role of smoking in allergic diseases, additional studies are needed that accurately measure exposure and outcomes. However, the present findings suggest that, in countries where many people smoke, 14% and 13% of allergic rhinitis and allergic dermatitis, respectively, among children may be attributable to active smoking. Thus, the elimination of active smoking among children and adolescents could prevent one in seven cases of allergic rhinitis and one in eight cases of allergic dermatitis in such countries.
Additional Information
Please access these websites via the online version of this summary at
The UK National Health Service Choices website provides information about allergic rhinitis, hay fever (including personal stories), allergic dermatitis (including personal stories), and food allergy (including personal stories)
The US National Institute of Allergy and Infectious Disease provides information about allergic diseases
The UK not-for-profit organization Allergy UK provides information about all aspects of allergic diseases and a description of the atopic march
MedlinePlus encyclopedia has pages on allergic rhinitis and allergic dermatitis (in English and Spanish)
MedlinePlus provides links to further resources about allergies, eczema, and food allergy (in English and Spanish)
PMCID: PMC3949681  PMID: 24618794
12.  Identification of antigenic epitopes on human allergens: studies with HLA transgenic mice. 
Environmental Health Perspectives  2003;111(2):245-250.
Environmental factors play an important role in the rise and manifestation of allergic conditions in genetically predisposed subjects. Increased exposure to indoor/outdoor allergens is a significant factor in the development of allergic sensitization and asthma. Recently, strong relationships between the immune response to several highly purified allergens and specific human leukocyte antigen (HLA)-DQ and -DR haplotypes have been reported. The major antigens from clinically important allergens have been cloned and sequenced. However, whether innate structural features of major allergens or peculiar immune recognition of these molecules contribute to the overly robust immune responses is not known. We generated and used transgenic (tg) mice expressing single HLA class II transgene(s) to characterize the allergen epitopes presented by particular HLA class II molecules. Next, we generated in vivo models for asthma in the HLA tg mice by intranasal challenge with allergenic extracts. Furthermore, we used a single epitope to induce an allergic lung inflammation. Our system offers a sophisticated technique for systematically identifying the genetic (individual human class II) and antigenic (individual allergenic epitopes) basis of asthma sensitivity and has important implications for new treatment strategies.
PMCID: PMC1241359  PMID: 12573914
13.  Molecular Determinants of T Cell Epitope Recognition to the Common Timothy Grass Allergen 
We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-γ, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-γ, IL-10, and IL-17 production.
PMCID: PMC3310373  PMID: 20554959
14.  Allergen hybrids – next generation vaccines for Fagales pollen immunotherapy 
Trees belonging to the order of Fagales show a distinct geographical distribution. While alder and birch are endemic in the temperate zones of the Northern Hemisphere, hazel, hornbeam and oak prefer a warmer climate. However, specific immunotherapy of Fagales pollen-allergic patients is mainly performed using birch pollen extracts, thus limiting the success of this intervention in birch-free areas.
T cells are considered key players in the modification of an allergic immune response during specific immunotherapy (SIT), therefore we thought to combine linear T cell epitope-containing stretches of the five most important Fagales allergens from birch, hazel, alder, oak and hornbeam resulting in a Fagales pollen hybrid (FPH) molecule applicable for SIT.
A Fagales pollen hybrid was generated by PCR-based recombination of low IgE-binding allergen epitopes. Moreover, a structural-variant FPH4 was calculated by in silico mutagenesis, rendering the protein unable to adopt the Bet v 1-like fold. Both molecules were produced in Escherichia coli, characterized physico-chemically as well as immunologically, and tested in mouse models of allergic sensitization as well as allergy prophylaxis.
Using spectroscopic analyses, both proteins were monomeric, and the secondary structure elements of FPH resemble the ones typical for Bet v 1-like proteins, whereas FPH4 showed increased amounts of unordered structure. Both molecules displayed reduced binding capacities of Bet v 1-specific IgE antibodies. However, in a mouse model, the proteins were able to induce high IgG titres cross-reactive with all parental allergens. Moreover, prophylactic treatment with the hybrid proteins prevented pollen extract-induced allergic lung inflammation in vivo.
The hybrid molecules showed a more efficient uptake and processing by dendritic cells resulting in a modified T cell response. The proteins had a lower IgE-binding capacity compared with the parental allergens, thus the high safety profile and increased efficacy emphasize clinical application for the treatment of Fagales multi-sensitization.
PMCID: PMC4041320  PMID: 24330218
allergen-specific immunotherapy; birch pollen allergy; Fagales pollen allergy; hybrid protein; immunomodulation; protein remodelling
15.  Peptide immunotherapy for childhood allergy - addressing translational challenges 
Allergic sensitisation usually begins early in life. The number of allergens a patient is sensitised to can increase over time and the development of additional allergic conditions is increasingly recognised. Targeting allergic disease in childhood is thus likely to be the most efficacious means of reducing the overall burden of allergic disease. Specific immunotherapy involves administering protein allergen to tolerise allergen reactive CD4+ T cells, thought key in driving allergic responses. Yet specific immunotherapy risks allergic reactions including anaphylaxis as a consequence of preformed allergen-specific IgE antibodies binding to the protein, subsequent cross-linking and mast cell degranulation. CD4+ T cells direct their responses to short "immunodominant" peptides within the allergen. Such peptides can be given therapeutically to induce T cell tolerance without facilitating IgE cross-linking. Peptide immunotherapy (PIT) offers attractive treatment potential for allergic disease. However, PIT has not yet been shown to be effective in children. This review discusses the immunological mechanisms implicated in PIT and briefly covers outcomes from adult PIT trials. This provides a context for discussion of the challenges for the application of PIT, both generally and more specifically in relation to children.
PMCID: PMC3339362  PMID: 22409934
Allergy; Children; Peptide Immunotherapy
16.  126 Creation of a Humanized Model for Respiratory Allergy Using a Human Mugwort-specificT-Cell Receptor and HLA-DR1 
Currently, T cell receptor (TCR) transgenic (tg) mice with a murine TCR specific for chicken ovalbumin in the context of a murine restriction element (I-Ad) are frequently used in allergy research to investigate T helper cell differentiation and allergy treatment in vivo.
We here aimed to generate double tg mice expressing a human TCR specific for the immuno-dominant epitope of the major mugwort (Artemisia vulgaris) pollen allergen Art v 1 in the context of the human restriction element HLA-DR1 to provide a valid model for studying allergy development and treatment in vivo. To obtain high expression levels the allergen-specific human TCR variable sequences were chimerized with murine TCR constant sequences. Resulting transgenes were cloned into the pTcass vector system and thus put under the transcriptional control of the natural TCR alpha and beta promotor/enhancer elements. Allergen-specific TCR tg founder mice were cross-bread with HLA-DR1+ B10.M-DR1dlAb1-Ea mice.
Immunophenotyping of double tg TCR/HLA-DR1 mice revealed clear-cut expression of the Art v 1-specific TRBV18 chain on peripheral blood CD3+ T lymphocytes and HLA-DR1 expression on CD14+ monocytes and B220+ B lymphocytes. In vitro, splenocytes from TCR/HLA-DR1 double tg mice but not of HLA-DR1 single tg mice or wt mice specifically proliferated upon incubation with the human-relevant immuno-dominant Art v 125 to 36 peptide or whole Art v 1 protein. No proliferation was observed upon incubation with control peptides or proteins. Allergen-specific cellular proliferation is accompanied by the production of a balanced cytokine milieu including IFN-gamma, IL-2, IL-4, IL-6, IL-13 and IL-17 (>50 pg/mL per 2 × 105 splenocytes). No cytokine secretion was evident upon incubation of splenocytes with a control peptide or medium alone. Importantly, double tg mice are proficient to mount both IgG2a and IgG1, IgE responses when i.p. immunized with antigen plus alum.
A fully humanized allergy model, in which all components of the allergen-specific synapse are well-defined enables to analyze the relevant T-cell dependent (and independent) pathways by which allergic diseases can be influenced in vivo and will provide important insights into the pathophysiology of allergic diseases and their possible cure in the future.
PMCID: PMC3513154
17.  Induction of Immune Tolerance in Asthmatic Mice by Vaccination with DNA Encoding an Allergen–Cytotoxic T Lymphocyte-Associated Antigen 4 Combination ▿ 
Allergen-specific immunotherapy is a potential treatment for allergic diseases. We constructed an allergen–cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-encoding DNA vaccine, administered it directly to antigen-presenting cells (APCs), and investigated its ability and mechanisms to ameliorate allergic airway inflammation in an asthmatic mouse model. An allergen-CTLA-4 DNA plasmid (OVA-CTLA-4-pcDNA3.1) encoding an ovalbumin (OVA) and the mouse CTLA-4 extracellular domain was constructed and transfected into COS-7 cells to obtain the fusion protein OVA-CTLA-4, which was able to bind the B7 ligand on dendritic cells (DCs), and induced CD25+ Foxp3+ regulatory T (Treg) cells by the coculture of naive CD4+ T cells with DCs in vitro. In an animal study, BALB/c mice were sensitized and challenged with OVA to establish the asthmatic model. Vaccination with a high dose of OVA-CTLA-4-pcDNA3.1 significantly decreased interleukin-4 (IL-4) and IL-5 levels and eosinophil counts and prevented OVA-induced reduction of the gamma interferon level in the bronchoalveolar lavage fluid. In addition, these mice suffered less severe airway inflammation and had lower levels of OVA-specific IgE and IgG1 titers in serum. Also, high-dose OVA-CTLA-4-pcDNA3.1 vaccination inhibited the development of airway hyperreactivity and prevented OVA-induced reduction of the percentages of Foxp3+ Treg cells in the spleen. Our results indicate that a high dose of allergen-CTLA-4-encoding DNA vaccine was more effective in preventing an allergen-induced Th2-skewed immune response through the induction of Treg cells and may be a new alternative therapy for asthma.
PMCID: PMC3122522  PMID: 21346053
18.  Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic 
Clinical and Experimental Allergy  2013;43(6):684-697.
Peanut allergy is a life-threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy.
To identify short, HLA-degenerate CD4+ T cell epitope-based peptides of the major peanut allergen Ara h 1 that target allergen-specific T cells without causing IgE-mediated inflammatory cell activation, as candidates for safe peanut-specific immunotherapy.
Ara h 1-specific CD4+ T cell lines (TCL) were generated from peripheral blood mononuclear cells (PBMC) of peanut-allergic subjects using CFSE-based methodology. T cell epitopes were identified using CFSE and thymidine-based proliferation assays. Epitope HLA-restriction was investigated using blocking antibodies, HLA-genotyping and epitope prediction algorithms. Functional peanut-specific IgE reactivity to peptides was assessed by basophil activation assay.
A total of 145 Ara h 1-specific TCL were generated from 18 HLA-diverse peanut-allergic subjects. The TCL recognized 20-mer peptides throughout Ara h 1. Nine 20-mers containing the most frequently recognized epitopes were selected and their recognition confirmed in 18 additional peanut-allergic subjects. Ten core epitopes were mapped within these 20-mers. These were HLA-DQ and/or HLA–DR restricted, with each presented on at least two different HLA-molecules. Seven short (≤ 20 aa) non-basophil-reactive peptides encompassing all core epitopes were designed and validated in peanut-allergic donor PBMC T cell assays.
Conclusions and Clinical Relevance
Short CD4+ T cell epitope-based Ara h 1 peptides were identified as novel candidates for a safe, T cell targeted peanut-specific immunotherapy for HLA-diverse populations.
PMCID: PMC3709139  PMID: 23711131
Ara h 1; CD4+ T cell; Immunotherapy; peanut allergy; peptide; T cell epitope
19.  Immunoglobulin E–independent Major Histocompatibility Complex–restricted T Cell Peptide Epitope–induced Late Asthmatic Reactions  
The Journal of Experimental Medicine  1999;189(12):1885-1894.
Intradermal administration of short overlapping peptides derived from chain 1 of the cat allergen Fel d 1 (FC1P) that did not cross-link IgE, elicited isolated late asthmatic reactions with no visible early or late cutaneous response in 9/40 cat-allergic asthmatics. Four of the nine were human histocompatibility leukocyte antigen DR13–positive, as compared with only 1/31 nonreactors. The other five reactors expressed either DR1 or DR4. To confirm major histocompatibility complex restriction, fibroblast cell lines transfected with HLA-DR molecules were used to present FC1Ps to cat allergen–specific T cell lines derived from subjects before peptide injection. FC1P3 (peptide 28–44 of Fel d 1 chain 1) was recognized in the context of DR13 alleles (DRB1*1301, 1302) and induced specific T cell proliferation and IL-5 production. T cells from a DR1+ responder proliferated and produced IL-5 in the presence of FC1P3 and DR1 (DRB1*0101) fibroblast cell lines, whereas T cells from a DR4+ subject recognized FC1P2 (peptide 22–37) when presented by DRB1*0405. We conclude that short, allergen-derived peptides can directly initiate a major histocompatibility complex–restricted, T cell–dependent late asthmatic reaction, without the requirement for an early IgE/mast cell–dependent response, in sensitized asthmatic subjects.
PMCID: PMC2192970  PMID: 10377184
T lymphocyte; Fel d 1; allergen; allergy; human histocompatibility leukocyte antigen
20.  Novel birch pollen specific immunotherapy formulation based on contiguous overlapping peptides 
Synthetic contiguous overlapping peptides (COPs) may represent an alternative to allergen extracts or recombinant allergens for allergen specific immunotherapy. In combination, COPs encompass the entire allergen sequence, providing all potential T cell epitopes, while preventing IgE conformational epitopes of the native allergen.
Individual COPs were derived from the sequence of Bet v 1, the major allergen of birch pollen, and its known crystal structure, and designed to avoid IgE binding. Three sets of COPs were tested in vitro in competition ELISA and basophil degranulation assays. Their in vivo reactivity was determined by intraperitoneal challenge in rBet v 1 sensitized mice as well as by skin prick tests in volunteers with allergic rhinoconjunctivitis to birch pollen.
The combination, named AllerT, of three COPs selected for undetectable IgE binding in competition assays and for the absence of basophil activation in vitro was unable to induce anaphylaxis in sensitized mice in contrast to rBet v 1. In addition no positive reactivity to AllerT was observed in skin prick tests in human volunteers allergic to birch pollen. In contrast, a second set of COPs, AllerT4-T5 displayed some residual IgE binding in competition ELISA and a weak subliminal reactivity to skin prick testing.
The hypoallergenicity of contiguous overlapping peptides was confirmed by low, if any, IgE binding activity in vitro, by the absence of basophil activation and the absence of in vivo induction of allergic reactions in mouse and human.
Trial registration NCT01719133
PMCID: PMC3672070  PMID: 23725004
IgE; Peptides; Immunotherapy; Birch; Pollen
21.  Tregs and allergic disease 
Journal of Clinical Investigation  2004;114(10):1389-1397.
Allergic diseases such as asthma, rhinitis, and eczema are increasing in prevalence and affect up to 15% of populations in Westernized countries. The description of Tregs as T cells that prevent development of autoimmune disease led to considerable interest in whether these Tregs were also normally involved in prevention of sensitization to allergens and whether it might be possible to manipulate Tregs for the therapy of allergic disease. Current data suggest that Th2 responses to allergens are normally suppressed by both CD4+CD25+ Tregs and IL-10 Tregs. Furthermore, suppression by these subsets is decreased in allergic individuals. In animal models, Tregs could be induced by high- or low-dose inhaled antigen, and prior induction of such Tregs prevented subsequent development of allergen sensitization and airway inflammation in inhaled challenge models. For many years, allergen-injection immunotherapy has been used for the therapy of allergic disease, and this treatment may induce IL-10 Tregs, leading to both suppression of Th2 responses and a switch from IgE to IgG4 antibody production. Improvements in allergen immunotherapy, such as peptide therapy, and greater understanding of the biology of Tregs hold great promise for the treatment and prevention of allergic disease.
PMCID: PMC525754  PMID: 15545986
22.  Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro. 
Journal of Clinical Investigation  1996;98(7):1676-1683.
Bee venom phospholipase A2 (PLA) is the major allergen in bee sting allergy. It displays three peptide and a glycopeptide T cell epitopes, which are recognized by both allergic and non-allergic bee venom sensitized subjects. In this study PLA- and PLA epitope-specific T cell and cytokine responses in PBMC of bee sting allergic patients were investigated before and after 2 mo of rush immunotherapy with whole bee venom. After successful immunotherapy, PLA and T cell epitope peptide-specific T cell proliferation was suppressed. In addition the PLA- and peptide-induced secretion of type 2 (IL-4, IL-5, and IL-13), as well as type 1 (IL-2 and IFN-gamma) cytokines were abolished, whereas tetanus toxoid-induced cytokine production and proliferation remained unchanged. By culturing PBMC with Ag in the presence of IL-2 or IL-15 the specifically tolerized T cell response could be restored with respect to specific proliferation and secretion of the type 1 T cell cytokines, IL-2 and IFN-gamma. In contrast, IL-4, IL-5, and IL-13 remained suppressed. Treatment of tolerized T cells with IL-4 only partially restored proliferation and induced formation of distinct type 2 cytokine pattern. In spite of the allergen-specific tolerance in T cells, in vitro produced anti-PLA IgE and IgG4 Ab and their corresponding serum levels slightly increased during immunotherapy, while the PLA-specific IgE/IgG4 ratio changed in favor of IgG4. These findings indicate that bee venom immunotherapy induces a state of peripheral tolerance in allergen-specific T cells, but not in specific B cells. The state of T cell tolerance and cytokine pattern can be in vitro modulated by the cytokines IL-2, IL-4, and IL-15, suggesting the importance of microenvironmental cytokines leading to success or failure in immunotherapy.
PMCID: PMC507602  PMID: 8833918
23.  Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice 
Respiratory Research  2010;11(1):14.
Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV), increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma.
We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants) and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR) and host immunological responses.
Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice that received chronic allergen challenge, regardless of neonatal PVM infection, and were not dependent on signalling via the IL-4 receptor.
In this mouse model, interaction between early-life viral infection and allergen sensitisation/challenge is essential for development of the characteristic features of childhood asthma, including allergic inflammation and a Th2-biased immune response.
PMCID: PMC2842242  PMID: 20122285
24.  New approaches to transcutaneous immunotherapy: targeting dendritic cells with novel allergen conjugates 
Purpose of review
This review summarizes recent preclinical and human studies evaluating allergen-specific immunotherapy via the transcutaneous route, and provides a rationale for the application of modified allergens with reduced allergenicity. Furthermore, it covers approaches to generate hypoallergenic conjugates for specific dendritic cell targeting.
Recent findings
Efficacy and safety of specific immunotherapy by application of allergens to the skin have been demonstrated in both animal models as well as clinical trials. However, localized adverse events have been reported, and delivery of antigens via barrier-disrupted skin has been linked to the induction of unwanted T helper 2-biased immune responses and allergic sensitization. Coupling of carbohydrates to allergens has been shown to induce formation of nanoparticles, which can specifically target dendritic cells and potentiate immune responses, and by masking B-cell epitopes, can render the molecules hypoallergenic.
Due to its abundance of immunocompetent cells, the skin represents an attractive target tissue for novel and enhanced immunotherapeutic approaches. However, in order to avoid adverse events and therapy-induced sensitizations, transcutaneous immunotherapy requires the use of formulations with reduced allergenic potential. Combining novel hypoallergenic conjugates with painless transcutaneous immunization techniques may provide an efficient and patient-friendly alternative to the standard specific immunotherapy practices.
PMCID: PMC3814987  PMID: 24169433
allergen conjugates; carbohydrates; C-type lectin receptors; dendritic cells; transcutaneous immunotherapy
25.  T cells that are naturally tolerant to cartilage-derived type II collagen are involved in the development of collagen-induced arthritis 
Arthritis Research  2000;2(4):315-326.
The immunodominant T-cell epitope that is involved in collagen-induced arthritis (CIA) is the glycosylated type II collagen (CII) peptide 256-270. In CII transgenic mice, which express the immunodominant CII 256-270 epitope in cartilage, the CII-specific T cells are characterized by a partially tolerant state with low proliferative activity in vitro, but with maintained effector functions, such as IFN-γ secretion and ability to provide B cell help. These mice were still susceptible to CIA. The response was mainly directed to the glycosylated form of the CII 256-270 peptide, rather than to the nonglycosylated peptide. Tolerance induction was rapid; transferred T cells encountered CII within a few days. CII immunization several weeks after thymectomy of the mice did not change their susceptibility to arthritis or the induction of partial T-cell tolerance, excluding a role for recent thymic emigrants. Thus, partially tolerant CII autoreactive T cells are maintained and are crucial for the development of CIA.
A discussion is ongoing regarding the possible role of cartilage-directed autoimmunity as a part of the pathogenesis of rheumatoid arthritis (RA). One possibility is that the association of RA with shared epitope-expressing DR molecules reflects a role for major histocompatibility complex (MHC) class II molecules as peptide receptors, and that the predilection of the inflammatory attack for the joint indicates a role for cartilage as a source of the antigenic peptides. A direct role for CII in the development of arthritis is apparent in the CIA model, in which a definite role for MHC class II molecules and a role for CII-derived peptides have been demonstrated [1,2,3]. Remarkably, it was found that the identified MHC class II molecule in the CIA model Aq has a structurally similar peptide binding pocket to that of the shared epitope, expressing DR4 molecules [4]. In fact, DR4 (DRB1*0401) and DR1 (DRB1*0101) transgenic mice are susceptible to CIA because of an immune response to a peptide that is almost identical to that which is involved in Aq-expressing mice [5,6]. They are both derived from position 260-273 of the CII molecule; the peptide binds to the Aqmolecule with isoleucine 260 in the P1 pocket, but with phenylalanine 263 in the P1 pocket of the DR4 and DR1 molecules.
Although these findings do not prove a role for CII in RA, they show that such recognition is possible and that there are structural similarities when comparing mouse with human. However, there are also strong arguments against such a possibility. First, arthritis can evolve without evidence for a cartilage-specific autoimmunity, as seen with various adjuvant-induced arthritis models [7,8] and in several observations using transgenic animals with aberrant immunity to ubiquitously expressed proteins [9,10,11]. Moreover, the MHC association in the adjuvant arthritis models correlates with severity of the disease rather than susceptibility [7,8], as has also been observed in RA [12]. Second, it has not been possible to identify the CII-reactive T cells from RA joints, or to achieve a strong and significant CII proliferative response from T cells derived from RA joints. Most recently these negative observations were corroborated using DR4+CII peptide tetramer reagents [13]. On the other hand, it has also been difficult to isolate autoreactive CII-specific T cells from CIA, and it can be anticipated that, even in the CIA model, T cells that are specific for CII will be hard to find in the joints [4].
We believe that the explanations for these observations in both experimental animals and humans are related to tolerance. The CIA model in the mouse is usually induced with heterologous CII, and is critically dependent on an immune response to the glycosylated CII peptide 256-270, which is bound to the MHC class II Aq molecule. In CII transgenic mice, expressing the heterologous (rat) form of the immunodominant CII 256-270 epitope in cartilage, we observed partial T-cell tolerance. This tolerance is characterized by a low proliferative activity, but with maintained effector functions such as production of IFN-γ and the ability to give help to B cells to produce anti-CII IgG antibodies [14]. Interestingly, these mice were susceptible to arthritis. However, a possibility was that T cells that had newly emerged from the thymus and that were not yet tolerized when the mice were immunized with CII led to the induction of arthritis. We have now addressed this possibility and found that induction of tolerance occurs within a few days, and that mice lacking recent thymic emigrants (ie thymectomized mice) display partially tolerant T cells and susceptibility to arthritis to the same extent as nonthymectomized mice. In addition we found that T cells that are reactive with the nonmodified peptides are relatively more affected by tolerance than T cells that are reactive with the more immunodominant glycosylated variants.
To investigate the possibility that T cells that are naturally tolerant to the cartilage protein CII are involved in the development of arthritis, and to exclude a role for nontolerized recent thymic T-cell emigrants in the development of arthritis.
Materials and methods:
A mutated mouse CII, expressing glutamic acid instead of aspartic acid at position 266, was expressed in a transgenic mouse called MMC (mutated mouse collagen) that has been described earlier [14]. The mice were thymectomized, or sham-operated, at 7 weeks of age and allowed to recover for 4 weeks before being immunized with rat CII in complete Freund's adjuvant. Arthritis development was recorded and sera analyzed for anti-CII IgG, IgG1 and IgG2a levels. To assay T-cell effector functions, other MMC and control mice were immunized in the hind footpads with rat CII in complete Freund's adjuvant, and the draining popliteal lymph nodes were taken 10 days later. The lymph node cells (LNCs) were used for proliferation assay, IFN-γ enzyme-linked immunosorbent assay (ELISA) and B-cell enzyme-linked immunospot (ELISPOT). For the proliferation assay, 106 cells were put in triplicate cultures in microtitre wells together with antigen and incubated for 72h before thymidine-labelling and harvesting 15-18h later. For IFN-γ ELISA analysis, supernatant from the proliferation plates was removed before harvesting and used in an ELISA to quantify the amount of IFN-γ produced [15]. B-cell ELISPOT was performed to enumerate the number of cells producing anti-CII IgG [16].
T-cell lines that were reactive towards rat CII were established by immunization with rat CII. An established T-cell line that was reactive with CII and specific for the CII 256-270 peptide was restimulated with freshly collected, irradiated, syngenic spleen cells and rat CII for 3 days followed by 2 weeks of IL-2 containing medium. Immediately before transfer, the cells were labelled with the cytoplasmic dye 5 (and 6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) [17]. Labelled cells (107) were injected intravenously into transgenic MMC mice and nontransgenic littermates. The mice were killed 4 days after cell transfer, and the concentration of CFSE-labelled cells was determined by flow cytometry.
Results and discussion:
To investigate whether and how quickly CII-reactive T cells will encounter CII in vivo, an established T-cell line that is reactive towards rat CII was labelled with the cytoplasmic dye CFSE and transferred into MMC-QD and control mice. Four days later the mice were killed, and it was found that MMC-transgenic mice had dramatically fewer CFSE-labelled cells in the spleen than did nontransgenic littermates (0.11% compared with 0.57%). Similarly, reduced numbers of CFSE-positive cells were observed in blood. This indicates that the T cells encountered the mutated CII that was present in the cartilage of MMC mice, but not in the nontransgenic littermates. Presumably, CII from cartilage is spread by antigen-presenting cells (APCs) to peripheral lymphoid organs. This observation also suggests that newly exported T cells from the thymus will be tolerized to CII in the periphery within less than 4 days.
To further investigate whether the MMC mice harbours naïve or tolerized T cells, the mice were immunized with CII at different time points after thymectomy that were well in excess of the times required for their encounter with CII. After 10 days, the response was analyzed in vitro towards both the nonglycosylated and the glycosylated CII 256-270 peptides as well as towards purified protein derivative. The galactosylated form of the peptide (Fig. 1) was used because this is the most immunodominant modification [18]. In contrast to control mice, LNCs from transgenic mice did not proliferate significantly towards the nonglycosylated peptide, indicating that these cells have been specifically tolerized, which is in accordance with earlier observations [14]. A reduced, but still significant proliferation was also observed toward the immunodominant glycosylated CII peptide. Most important, however, was that the proliferative response in the MMC mice did not decrease after thymectomy. Similarly, a significant IFN-γ production towards the glycosylated CII peptide was observed in the MMC mice. The response was somewhat reduced compared with that observed in nontransgenic littermates, and this was especially true for the response toward the nonglycosylated peptide. Again, no decrease in the MMC response by thymectomy was observed. Taken together, the T-cell response in transgenic mice was reduced in comparison with that in the nontransgenic littermates. Furthermore, the response in transgenic animals did not decrease by thymectomy (4 or 8 weeks before immunization), showing that autoreactive T cells are still maintained (and partially tolerized) with significant effector functions at least up to 8 weeks after thymectomy, excluding a exclusive role for recent thymic emigrants in the autoimmune response towards CII. To investigate whether thymectomized mice, lacking recent CII-specific thymic emigrants, were susceptible to CIA, mice were immunized with CII 4 weeks after thymectomy and were observed for arthritis development during the following 10 weeks. Clearly, the thymectomized MMC mice were susceptible to arthritis (five out of 18 developed arthritis; Fig. 2), and no significant differences in susceptibility between thymectomized and sham-operated mice, or between males and females, were seen. In accordance with earlier results [14], MMC transgenic mice had a significantly reduced susceptibility to arthritis as compared with the nontransgenic littermates (P < 0.0001 for arthritic scores, disease onset and incidence). All mice were bled at 35 days after immunization, and the total levels of anti-CII IgG were determined. Transgenic mice developed levels of anti-CII IgG significantly above background, but the antibody titres were lower than in nontransgenic littermates (P < 0.0001). No effect on the antibody levels by thymectomy was observed, nor did thethymectomy affect the distribution of IgG1 versus IgG2a titres,indicating that the observed tolerance is not associated with a shift from a T-helper-1- to a T-helper-2-like immune response. These findings show that T cells that are specific for a tissue-specific matrix protein, CII, are partially tolerized within a few days after thymus export and that these tolerized cells are maintained after thymectomy. Most important, mice that lack newly exported CII reactive T cells are still susceptible to CIA, suggesting that the partially tolerant T cells are involved in development of arthritis.
In the light of these data it is possible to explain some of the findings in RA. T-cell reactivity to CII has been shown in RA patients, but with a very weak proliferative activity [19,20]. This is fully compatible with observations in mouse and rat CIA when autologous CII, and not heterologous CII, are used for immunization. This is particularly true if the responses are recorded during the chronic phase of disease, in which the antigen-specific T-cell responses seem to be suppressed in both humans and experimental animals. These observations were confirmed in a recent report [21] in which it was shown that CII-reactive T-cell activity could be detected in RA patients if IFN-γ production but not proliferation was measured. In the present studies in mice the strongest response is seen towards post-translational modifications of the peptide. Because the T-cell contact points are the same whether the peptide is bound to DR4 or to Aq, it is fully possible that post-translational modifications of the peptide also plays a significant role in humans [22]. The fact that IgG antibodies specific for CII are found in many RA patients could be explained by maintained B-cell helper functions of CII-reactive T cells. In fact, it has been reported [23,24] that the occurrence of IgG antibodies to CII is associated with shared epitope DR4 molecules. These observations are thus compatible with a role for CII reactivity in RA. To avoid any confusion, it needs to be stressed that RA is a heterogeneous syndrome in which not only CII, but also other cartilage proteins and other mechanisms are of importance. Such a pathogenic heterogeneity is reflected by the multitude of experimental animal models that have demonstrated how many different pathways may lead to arthritis [25].
PMCID: PMC17814  PMID: 11056672
autoimmunity; rheumatoid arthritis; T lymphocytes; tolerance; transgenic

Results 1-25 (1290992)