Search tips
Search criteria

Results 1-25 (1261507)

Clipboard (0)

Related Articles

1.  Powerful fusion: PSI-BLAST and consensus sequences 
Bioinformatics (Oxford, England)  2008;24(18):1987-1993.
A typical PSI-BLAST search consists of iterative scanning and alignment of a large sequence database during which a scoring profile is progressively built and refined. Such a profile can also be stored and used to search against a different database of sequences. Using it to search against a database of consensus rather than native sequences is a simple add-on that boosts performance surprisingly well. The improvement comes at a price: we hypothesized that random alignment score statistics would differ between native and consensus sequences. Thus PSI-BLAST-based profile searches against consensus sequences might incorrectly estimate statistical significance of alignment scores. In addition, iterative searches against consensus databases may fail. Here, we addressed these challenges in an attempt to harness the full power of the combination of PSI-BLAST and consensus sequences.
We studied alignment score statistics for various types of consensus sequences. In general, the score distribution parameters of profile-based consensus sequence alignments differed significantly from those derived for the native sequences. PSI-BLAST partially compensated for the parameter variation. We have identified a protocol for building specialized consensus sequences that significantly improved search sensitivity and preserved score distribution parameters. As a result, PSI-BLAST profiles can be used to search specialized consensus sequences without sacrificing estimates of statistical significance. We also provided results indicating that iterative PSI-BLAST searches against consensus sequences could work very well. Overall, we showed how a widely popular and effective method could be used to identify significantly more relevant similarities among protein sequences.
PMCID: PMC2577777  PMID: 18678588
2.  Consensus sequences improve PSI-BLAST through mimicking profile–profile alignments 
Nucleic Acids Research  2007;35(7):2238-2246.
Sequence alignments may be the most fundamental computational resource for molecular biology. The best methods that identify sequence relatedness through profile–profile comparisons are much slower and more complex than sequence–sequence and sequence–profile comparisons such as, respectively, BLAST and PSI-BLAST. Families of related genes and gene products (proteins) can be represented by consensus sequences that list the nucleic/amino acid most frequent at each sequence position in that family. Here, we propose a novel approach for consensus-sequence-based comparisons. This approach improved searches and alignments as a standard add-on to PSI-BLAST without any changes of code. Improvements were particularly significant for more difficult tasks such as the identification of distant structural relations between proteins and their corresponding alignments. Despite the fact that the improvements were higher for more divergent relations, they were consistent even at high accuracy/low error rates for non-trivially related proteins. The improvements were very easy to achieve; no parameter used by PSI-BLAST was altered and no single line of code changed. Furthermore, the consensus sequence add-on required relatively little additional CPU time. We discuss how advanced users of PSI-BLAST can immediately benefit from using consensus sequences on their local computers. We have also made the method available through the Internet (
PMCID: PMC1874647  PMID: 17369271
3.  PHOG-BLAST – a new generation tool for fast similarity search of protein families 
The need to compare protein profiles frequently arises in various protein research areas: comparison of protein families, domain searches, resolution of orthology and paralogy. The existing fast algorithms can only compare a protein sequence with a protein sequence and a profile with a sequence. Algorithms to compare profiles use dynamic programming and complex scoring functions.
We developed a new algorithm called PHOG-BLAST for fast similarity search of profiles. This algorithm uses profile discretization to convert a profile to a finite alphabet and utilizes hashing for fast search. To determine the optimal alphabet, we analyzed columns in reliable multiple alignments and obtained column clusters in the 20-dimensional profile space by applying a special clustering procedure. We show that the clustering procedure works best if its parameters are chosen so that 20 profile clusters are obtained which can be interpreted as ancestral amino acid residues. With these clusters, only less than 2% of columns in multiple alignments are out of clusters. We tested the performance of PHOG-BLAST vs. PSI-BLAST on three well-known databases of multiple alignments: COG, PFAM and BALIBASE. On the COG database both algorithms showed the same performance, on PFAM and BALIBASE PHOG-BLAST was much superior to PSI-BLAST. PHOG-BLAST required 10–20 times less computer memory and computation time than PSI-BLAST.
Since PHOG-BLAST can compare multiple alignments of protein families, it can be used in different areas of comparative proteomics and protein evolution. For example, PHOG-BLAST helped to build the PHOG database of phylogenetic orthologous groups. An essential step in building this database was comparing protein complements of different species and orthologous groups of different taxons on a personal computer in reasonable time. When it is applied to detect weak similarity between protein families, PHOG-BLAST is less precise than rigorous profile-profile comparison method, though it runs much faster and can be used as a hit pre-selecting tool.
PMCID: PMC1522020  PMID: 16792802
4.  PSI-Search: iterative HOE-reduced profile SSEARCH searching 
Bioinformatics  2012;28(12):1650-1651.
Summary: Iterative similarity searches with PSI-BLAST position-specific score matrices (PSSMs) find many more homologs than single searches, but PSSMs can be contaminated when homologous alignments are extended into unrelated protein domains—homologous over-extension (HOE). PSI-Search combines an optimal Smith–Waterman local alignment sequence search, using SSEARCH, with the PSI-BLAST profile construction strategy. An optional sequence boundary-masking procedure, which prevents alignments from being extended after they are initially included, can reduce HOE errors in the PSSM profile. Preventing HOE improves selectivity for both PSI-BLAST and PSI-Search, but PSI-Search has ~4-fold better selectivity than PSI-BLAST and similar sensitivity at 50% and 60% family coverage. PSI-Search is also produces 2- for 4-fold fewer false-positives than JackHMMER, but is ~5% less sensitive.
Availability and implementation: PSI-Search is available from the authors as a standalone implementation written in Perl for Linux-compatible platforms. It is also available through a web interface ( and SOAP and REST Web Services (
PMCID: PMC3371869  PMID: 22539666
5.  Domain enhanced lookup time accelerated BLAST 
Biology Direct  2012;7:12.
BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i + 1. Biegert and Söding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.
We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI’s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.
DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the “Protein BLAST” link at
This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.
PMCID: PMC3438057  PMID: 22510480
6.  A comparison of profile hidden Markov model procedures for remote homology detection 
Nucleic Acids Research  2002;30(19):4321-4328.
Profile hidden Markov models (HMMs) are amongst the most successful procedures for detecting remote homology between proteins. There are two popular profile HMM programs, HMMER and SAM. Little is known about their performance relative to each other and to the recently improved version of PSI-BLAST. Here we compare the two programs to each other and to non-HMM methods, to determine their relative performance and the features that are important for their success. The quality of the multiple sequence alignments used to build models was the most important factor affecting the overall performance of profile HMMs. The SAM T99 procedure is needed to produce high quality alignments automatically, and the lack of an equivalent component in HMMER makes it less complete as a package. Using the default options and parameters as would be expected of an inexpert user, it was found that from identical alignments SAM consistently produces better models than HMMER and that the relative performance of the model-scoring components varies. On average, HMMER was found to be between one and three times faster than SAM when searching databases larger than 2000 sequences, SAM being faster on smaller ones. Both methods were shown to have effective low complexity and repeat sequence masking using their null models, and the accuracy of their E-values was comparable. It was found that the SAM T99 iterative database search procedure performs better than the most recent version of PSI-BLAST, but that scoring of PSI-BLAST profiles is more than 30 times faster than scoring of SAM models.
PMCID: PMC140544  PMID: 12364612
7.  DescFold: A web server for protein fold recognition 
BMC Bioinformatics  2009;10:416.
Machine learning-based methods have been proven to be powerful in developing new fold recognition tools. In our previous work [Zhang, Kochhar and Grigorov (2005) Protein Science, 14: 431-444], a machine learning-based method called DescFold was established by using Support Vector Machines (SVMs) to combine the following four descriptors: a profile-sequence-alignment-based descriptor using Psi-blast e-values and bit scores, a sequence-profile-alignment-based descriptor using Rps-blast e-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. In this work, we focus on the improvement of DescFold by incorporating more powerful descriptors and setting up a user-friendly web server.
In seeking more powerful descriptors, the profile-profile alignment score generated from the COMPASS algorithm was first considered as a new descriptor (i.e., PPA). When considering a profile-profile alignment between two proteins in the context of fold recognition, one protein is regarded as a template (i.e., its 3D structure is known). Instead of a sequence profile derived from a Psi-blast search, a structure-seeded profile for the template protein was generated by searching its structural neighbors with the assistance of the TM-align structural alignment algorithm. Moreover, the COMPASS algorithm was used again to derive a profile-structural-profile-alignment-based descriptor (i.e., PSPA). We trained and tested the new DescFold in a total of 1,835 highly diverse proteins extracted from the SCOP 1.73 version. When the PPA and PSPA descriptors were introduced, the new DescFold boosts the performance of fold recognition substantially. Using the SCOP_1.73_40% dataset as the fold library, the DescFold web server based on the trained SVM models was further constructed. To provide a large-scale test for the new DescFold, a stringent test set of 1,866 proteins were selected from the SCOP 1.75 version. At a less than 5% false positive rate control, the new DescFold is able to correctly recognize structural homologs at the fold level for nearly 46% test proteins. Additionally, we also benchmarked the DescFold method against several well-established fold recognition algorithms through the LiveBench targets and Lindahl dataset.
The new DescFold method was intensively benchmarked to have very competitive performance compared with some well-established fold recognition methods, suggesting that it can serve as a useful tool to assist in template-based protein structure prediction. The DescFold server is freely accessible at
PMCID: PMC2803855  PMID: 20003426
8.  Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence 
PLoS Computational Biology  2016;12(7):e1005038.
Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain duplications, the reconstruction of the history of protein architectures, and the estimation of protein domain age. Website and software:
Author Summary
Current sequence databases contain hundreds of billions of nucleotides coding for genes and a classification of these sequences is a primary problem in genomics. A reasonable way to organize these sequences is through their predicted domains, but the identification of domains in very divergent sequences, spanning the entire phylogenetic tree of species, is a difficult problem. By generating multiple probabilistic models for a domain, describing the spread of evolutionary patterns in different phylogenetic clades, we can effectively explore domains that are likely to be coded in gene sequences. Through a machine learning approach and optimization techniques, coding for expected evolutionary constraints, we filter the many possibilities of domain identification found for a gene and propose the most likely domain architecture associated to it. The application of this novel approach to the full genome of Plasmodium falciparum, to a dataset of sequences from three SCOP datasets highlights the interest of exploring multiple pathways of domain evolution in the aim of extracting biological information from genomic sequences. Our new computational approach was developed with the hope of providing a novel tier of accurate and precise tools that complement existing tools such as HMMer, HHblits and PSI-BLAST, by exploring in a novel way the large amount of sequence data available. The existence of powerful databases for sequences, domains and architectures help make this hope a reality.
PMCID: PMC4966962  PMID: 27472895
9.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 
Nucleic Acids Research  1997;25(17):3389-3402.
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
PMCID: PMC146917  PMID: 9254694
10.  PairsDB atlas of protein sequence space 
Nucleic Acids Research  2007;36(Database issue):D276-D280.
Sequence similarity/database searching is a cornerstone of molecular biology. PairsDB is a database intended to make exploring protein sequences and their similarity relationships quick and easy. Behind PairsDB is a comprehensive collection of protein sequences and BLAST and PSI-BLAST alignments between them. Instead of running BLAST or PSI-BLAST individually on each request, results are retrieved instantaneously from a database of pre-computed alignments. Filtering options allow you to find a set of sequences satisfying a set of criteria—for example, all human proteins with solved structure and without transmembrane segments. PairsDB is continually updated and covers all sequences in Uniprot. The data is stored in a MySQL relational database. Data files will be made available for download at PairsDB can also be accessed interactively at PairsDB data is a valuable platform to build various downstream automated analysis pipelines. For example, the graph of all-against-all similarity relationships is the starting point for clustering protein families, delineating domains, improving alignment accuracy by consistency measures, and defining orthologous genes. Moreover, query-anchored stacked sequence alignments, profiles and consensus sequences are useful in studies of sequence conservation patterns for clues about possible functional sites.
PMCID: PMC2238971  PMID: 17986464
11.  Homologous over-extension: a challenge for iterative similarity searches 
Nucleic Acids Research  2010;38(7):2177-2189.
We have characterized a novel type of PSI-BLAST error, homologous over-extension (HOE), using embedded PFAM domain queries on searches against a reference library containing Pfam-annotated UniProt sequences and random synthetic sequences. PSI-BLAST makes two types of errors: alignments to non-homologous regions and HOE alignments that begin in a homologous region, but extend beyond the homology into neighboring sequence regions. When the neighboring sequence region contains a non-homologous domain, PSI-BLAST can incorporate the unrelated sequence into its position specific scoring matrix, which then finds non-homologous proteins with significant expectation values. HOE accounts for the largest fraction of the initial false positive (FP) errors, and the largest fraction of FPs at iteration 5. In searches against complete protein sequences, 5–9% of alignments at iteration 5 are non-homologous. HOE frequently begins in a partial protein domain; when partial domains are removed from the library, HOE errors decrease from 16 to 3% of weighted coverage (hard queries; 35–5% for sampled queries) and no-error searches increase from 2 to 58% weighed coverage (hard; 16–78% sampled). When HOE is reduced by not extending previously found sequences, PSI-BLAST specificity improves 4–8-fold, with little loss in sensitivity.
PMCID: PMC2853128  PMID: 20064877
12.  Compressive genomics for protein databases 
Bioinformatics  2013;29(13):i283-i290.
Motivation: The exponential growth of protein sequence databases has increasingly made the fundamental question of searching for homologs a computational bottleneck. The amount of unique data, however, is not growing nearly as fast; we can exploit this fact to greatly accelerate homology search. Acceleration of programs in the popular PSI/DELTA-BLAST family of tools will not only speed-up homology search directly but also the huge collection of other current programs that primarily interact with large protein databases via precisely these tools.
Results: We introduce a suite of homology search tools, powered by compressively accelerated protein BLAST (CaBLASTP), which are significantly faster than and comparably accurate with all known state-of-the-art tools, including HHblits, DELTA-BLAST and PSI-BLAST. Further, our tools are implemented in a manner that allows direct substitution into existing analysis pipelines. The key idea is that we introduce a local similarity-based compression scheme that allows us to operate directly on the compressed data. Importantly, CaBLASTP’s runtime scales almost linearly in the amount of unique data, as opposed to current BLASTP variants, which scale linearly in the size of the full protein database being searched. Our compressive algorithms will speed-up many tasks, such as protein structure prediction and orthology mapping, which rely heavily on homology search.
Availability: CaBLASTP is available under the GNU Public License at
PMCID: PMC3851851  PMID: 23812995
13.  Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty 
BMC Bioinformatics  2009;10(Suppl 3):S1.
Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets.
Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty.
The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search.
PMCID: PMC2665049  PMID: 19344477
14.  SIB-BLAST: a web server for improved delineation of true and false positives in PSI-BLAST searches 
Nucleic Acids Research  2009;37(Web Server issue):W53-W56.
A SIB-BLAST web server ( has been established for investigators to use the SimpleIsBeautiful (SIB) algorithm for sequence-based homology detection. SIB was developed to overcome the model corruption frequently observed in the later iterations of PSI-BLAST searches. The algorithm compares resultant hits from the second iteration to the final iteration of a PSI-BLAST search, calculates the figure of merit for each ‘overlapped’ hit and re-ranks the hits according to their figure of merit. By validating hits generated from the last profile against hits from the first profile when the model is least corrupted, the true and false positives are better delineated, which in turn, improves the accuracy of iterative PSI-BLAST searches. Notably, this improvement to PSI-BLAST comes at minimal computational cost as SIB-BLAST utilizes existing results already produced in a PSI-BLAST search.
PMCID: PMC2703926  PMID: 19429693
15.  Hidden Markov model speed heuristic and iterative HMM search procedure 
BMC Bioinformatics  2010;11:431.
Profile hidden Markov models (profile-HMMs) are sensitive tools for remote protein homology detection, but the main scoring algorithms, Viterbi or Forward, require considerable time to search large sequence databases.
We have designed a series of database filtering steps, HMMERHEAD, that are applied prior to the scoring algorithms, as implemented in the HMMER package, in an effort to reduce search time. Using this heuristic, we obtain a 20-fold decrease in Forward and a 6-fold decrease in Viterbi search time with a minimal loss in sensitivity relative to the unfiltered approaches. We then implemented an iterative profile-HMM search method, JackHMMER, which employs the HMMERHEAD heuristic. Due to our search heuristic, we eliminated the subdatabase creation that is common in current iterative profile-HMM approaches. On our benchmark, JackHMMER detects 14% more remote protein homologs than SAM's iterative method T2K.
Our search heuristic, HMMERHEAD, significantly reduces the time needed to score a profile-HMM against large sequence databases. This search heuristic allowed us to implement an iterative profile-HMM search method, JackHMMER, which detects significantly more remote protein homologs than SAM's T2K and NCBI's PSI-BLAST.
PMCID: PMC2931519  PMID: 20718988
16.  Fold-specific sequence scoring improves protein sequence matching 
BMC Bioinformatics  2016;17(1):328.
Sequence matching is extremely important for applications throughout biology, particularly for discovering information such as functional and evolutionary relationships, and also for discriminating between unimportant and disease mutants. At present the functions of a large fraction of genes are unknown; improvements in sequence matching will improve gene annotations. Universal amino acid substitution matrices such as Blosum62 are used to measure sequence similarities and to identify distant homologues, regardless of the structure class. However, such single matrices do not take into account important structural information evident within the different topologies of proteins and treats substitutions within all protein folds identically. Others have suggested that the use of structural information can lead to significant improvements in sequence matching but this has not yet been very effective. Here we develop novel substitution matrices that include not only general sequence information but also have a topology specific component that is unique for each CATH topology. This novel feature of using a combination of sequence and structure information for each protein topology significantly improves the sequence matching scores for the sequence pairs tested. We have used a novel multi-structure alignment method for each homology level of CATH in order to extract topological information.
We obtain statistically significant improved sequence matching scores for 73 % of the alpha helical test cases. On average, 61 % of the test cases showed improvements in homology detection when structure information was incorporated into the substitution matrices. On average z-scores for homology detection are improved by more than 54 % for all cases, and some individual cases have z-scores more than twice those obtained using generic matrices. Our topology specific similarity matrices also outperform other traditional similarity matrices and single matrix based structure methods. When default amino acid substitution matrix in the Psi-blast algorithm is replaced by our structure-based matrices, the structure matching is significantly improved over conventional Psi-blast. It also outperforms results obtained for the corresponding HMM profiles generated for each topology.
We show that by incorporating topology-specific structure information in addition to sequence information into specific amino acid substitution matrices, the sequence matching scores and homology detection are significantly improved. Our topology specific similarity matrices outperform other traditional similarity matrices, single matrix based structure methods, also show improvement over conventional Psi-blast and HMM profile based methods in sequence matching. The results support the discriminatory ability of the new amino acid similarity matrices to distinguish between distant homologs and structurally dissimilar pairs.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-016-1198-z) contains supplementary material, which is available to authorized users.
PMCID: PMC5006591  PMID: 27578239
Sequence matching; Protein fold families; CATH topologies; Distant homologies; Blosom62; Structure alignment; HMM; Psi-blast
17.  High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABERTOOTH 
BMC Bioinformatics  2010;11:251.
Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins.
We develop a sequence alignment method that combines the prediction of a structural profile based on the protein's sequence with the alignment of that profile using our recently published alignment tool SABERTOOTH. In particular, we predict the contact vector of protein structures using an artificial neural network based on position-specific scoring matrices generated by PSI-BLAST and align these predicted contact vectors. The resulting sequence alignments are assessed using two different tests: First, we assess the alignment quality by measuring the derived structural similarity for cases in which structures are available. In a second test, we quantify the ability of the significance score of the alignments to recognize structural and evolutionary relationships. As a benchmark we use a representative set of the SCOP (structural classification of proteins) database, with similarities ranging from closely related proteins at SCOP family level, to very distantly related proteins at SCOP fold level. Comparing these results with some prominent sequence alignment tools, we find that SABERTOOTH produces sequence alignments of better quality than those of Clustal W, T-Coffee, MUSCLE, and PSI-BLAST. HHpred, one of the most sophisticated and computationally expensive tools available, outperforms our alignment algorithm at family and superfamily levels, while the use of SABERTOOTH is advantageous for alignments at fold level. Our alignment scheme will profit from future improvements of structural profiles prediction.
We present the automatic sequence alignment tool SABERTOOTH that computes pairwise sequence alignments of very high quality. SABERTOOTH is especially advantageous when applied to alignments of remotely related proteins. The source code is available at, free for academic users upon request.
PMCID: PMC2885375  PMID: 20470364
18.  Accelerated Profile HMM Searches 
PLoS Computational Biology  2011;7(10):e1002195.
Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.
Author Summary
Searching sequence databases is one of the most important applications in computational molecular biology. The main workhorse in the field is the BLAST suite of programs. Since the introduction of BLAST in the 1990's, important theoretical advances in homology search methodology have been made using probabilistic inference methods and hidden Markov models (HMMs). However, previous software implementations of these newer probabilistic methods were slower than BLAST by about 100-fold. This hindered their utility, because computation speed is so critical with the rapidly increasing size of modern sequence databases. Here I describe the acceleration methods I implemented in a new, freely available profile HMM software package, HMMER3. HMMER3 makes profile HMM searches about as fast as BLAST, while retaining the power of using probabilistic inference technology.
PMCID: PMC3197634  PMID: 22039361
19.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements 
Nucleic Acids Research  2001;29(14):2994-3005.
PSI-BLAST is an iterative program to search a database for proteins with distant similarity to a query sequence. We investigated over a dozen modifications to the methods used in PSI-BLAST, with the goal of improving accuracy in finding true positive matches. To evaluate performance we used a set of 103 queries for which the true positives in yeast had been annotated by human experts, and a popular measure of retrieval accuracy (ROC) that can be normalized to take on values between 0 (worst) and 1 (best). The modifications we consider novel improve the ROC score from 0.758 ± 0.005 to 0.895 ± 0.003. This does not include the benefits from four modifications we included in the ‘baseline’ version, even though they were not implemented in PSI-BLAST version 2.0. The improvement in accuracy was confirmed on a small second test set. This test involved analyzing three protein families with curated lists of true positives from the non-redundant protein database. The modification that accounts for the majority of the improvement is the use, for each database sequence, of a position-specific scoring system tuned to that sequence’s amino acid composition. The use of composition-based statistics is particularly beneficial for large-scale automated applications of PSI-BLAST.
PMCID: PMC55814  PMID: 11452024
20.  The effectiveness of position- and composition-specific gap costs for protein similarity searches 
Bioinformatics  2008;24(13):i15-i23.
Motivation: The flexibility in gap cost enjoyed by hidden Markov models (HMMs) is expected to afford them better retrieval accuracy than position-specific scoring matrices (PSSMs). We attempt to quantify the effect of more general gap parameters by separately examining the influence of position- and composition-specific gap scores, as well as by comparing the retrieval accuracy of the PSSMs constructed using an iterative procedure to that of the HMMs provided by Pfam and SUPERFAMILY, curated ensembles of multiple alignments.
Results: We found that position-specific gap penalties have an advantage over uniform gap costs. We did not explore optimizing distinct uniform gap costs for each query. For Pfam, PSSMs iteratively constructed from seeds based on HMM consensus sequences perform equivalently to HMMs that were adjusted to have constant gap transition probabilities, albeit with much greater variance. We observed no effect of composition-specific gap costs on retrieval performance. These results suggest possible improvements to the PSI-BLAST protein database search program.
Availability: The scripts for performing evaluations are available upon request from the authors.
PMCID: PMC2718649  PMID: 18586708
21.  Improving Retrieval Efficacy of Homology Searches using the False Discovery Rate 
Over the past few decades, discovery based on sequence homology has become a widely accepted practice. Consequently, comparative accuracy of retrieval algorithms (e.g., BLAST) has been rigorously studied for improvement. Unlike most components of retrieval algorithms, the E-value threshold criterion has yet to be thoroughly investigated. An investigation of the threshold is important as it exclusively dictates which sequences are declared relevant and irrelevant. In this paper, we introduce the false discovery rate (FDR) statistic as a replacement for the uniform threshold criterion in order to improve efficacy in retrieval systems. Using NCBI’s BLAST and PSI-BLAST software packages, we demonstrate the applicability of such a replacement in both non-iterative (BLASTFDR) and iterative (PSI-BLASTFDR) homology searches. For each application, we performed an evaluation of retrieval efficacy with five different multiple testing methods on a large training database. For each algorithm, we choose the best performing method, Benjamini-Hochberg, as the default statistic. As measured by the Threshold Average Precision, BLASTFDR yielded 14.1% better retrieval performance than BLAST on a large (5,161 queries) test database and PSI-BLASTFDR attained 11.8% better retrieval performance than PSI-BLAST. The C++ source code specific to BLASTFDR and PSI-BLASTFDR and instructions are available at
PMCID: PMC4568567  PMID: 26357264
Homology search; false discovery rate; retrieval efficacy; uniform E-value thresholding
22.  PSI-BLAST pseudocounts and the minimum description length principle 
Nucleic Acids Research  2008;37(3):815-824.
Position specific score matrices (PSSMs) are derived from multiple sequence alignments to aid in the recognition of distant protein sequence relationships. The PSI-BLAST protein database search program derives the column scores of its PSSMs with the aid of pseudocounts, added to the observed amino acid counts in a multiple alignment column. In the absence of theory, the number of pseudocounts used has been a completely empirical parameter. This article argues that the minimum description length principle can motivate the choice of this parameter. Specifically, for realistic alignments, the principle supports the practice of using a number of pseudocounts essentially independent of alignment size. However, it also implies that more highly conserved columns should use fewer pseudocounts, increasing the inter-column contrast of the implied PSSMs. A new method for calculating pseudocounts that significantly improves PSI-BLAST's; retrieval accuracy is now employed by default.
PMCID: PMC2647318  PMID: 19088134
23.  Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information 
BMC Bioinformatics  2006;7:124.
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function.
In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively.
A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
PMCID: PMC1450308  PMID: 16526956
24.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure 
Nucleic Acids Research  2002;30(1):281-283.
The Conserved Domain Database (CDD) is a compilation of multiple sequence alignments representing protein domains conserved in molecular evolution. It has been populated with alignment data from the public collections Pfam and SMART, as well as with contributions from colleagues at NCBI. The current version of CDD (v.1.54) contains 3693 such models. CDD alignments are linked to protein sequence and structure data in Entrez. The molecular structure viewer Cn3D serves as a tool to interactively visualize alignments and three-dimensional structure, and to link three-dimensional residue coordinates to descriptions of evolutionary conservation. CDD can be accessed on the World Wide Web at Protein query sequences may be compared against databases of position-specific score matrices derived from alignments in CDD, using a service named CD-Search, which can be found at CD-Search runs reverse-position-specific BLAST (RPS-BLAST), a variant of the widely used PSI-BLAST algorithm. CD-Search is run by default for protein–protein queries submitted to NCBI’s BLAST service at
PMCID: PMC99109  PMID: 11752315
25.  Predicting residue-wise contact orders in proteins by support vector regression 
BMC Bioinformatics  2006;7:425.
The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships.
We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods.
The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
PMCID: PMC1618864  PMID: 17014735

Results 1-25 (1261507)