Search tips
Search criteria

Results 1-25 (1467939)

Clipboard (0)

Related Articles

1.  Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. 
Journal of Bacteriology  1996;178(8):2216-2223.
Transcriptional activation of the promoters of the mar/soxRS regulons by the sequence-related but independently inducible MarA and SoxS proteins renders Escherichia coli resistant to a broad spectrum of antibiotics and superoxide generators. Here, the effects of MarA and SoxS on transcription of the marRAB promoter itself were assayed in vitro by using a minimal transcription system and in vivo by assaying beta-galactosidase synthesized from marR::lacZ fusions. Purified MarA and MalE-SoxS proteins stimulated mar transcription about 6- and 15-fold, respectively, when the RNA polymerase/DNA ratio was 1. Purified MarA bound as a monomer to a 16-bp "marbox" located 69 to 54 nucleotides upstream of a putative RNA initiation site. Deletion of the marbox reduced MarA-mar binding 100-fold, abolished the stimulatory effects of MarA and SoxS on transcription in vitro, and reduced marR::lacZ synthesis about 4-fold in vivo. Deletion of upstream DNA adjoining the marbox reduced MarA binding efficiency 30-fold and transcriptional activation 2- to 3-fold, providing evidence for an accessory marbox. Although MarA and the mar operon repressor, MarR, bound to independent sites, they competed for promoter DNA in band shift experiments. Assays of marR::lacZ transcriptional fusions in marRAB deletion or soxRS deletion strains showed that the superoxide generator paraquat stimulates mar transcription via soxRS and that salicylate stimulates mar transcription both by antagonizing MarR and by a MarR-independent mechanism. Thus, transcription of the marRAB operon is autorepressed by MarR and autoactivated by MarA at a site that also can be activated by SoxS.
PMCID: PMC177928  PMID: 8636021
2.  Promoter Discrimination at Class I MarA Regulon Promoters Mediated by Glutamic Acid 89 of the MarA Transcriptional Activator of Escherichia coli▿ †  
Journal of Bacteriology  2010;193(2):506-515.
Three paralogous transcriptional activators MarA, SoxS, and Rob, activate >40 Escherichia coli promoters. To understand why MarA does not activate certain promoters as strongly as SoxS, we compared MarA, MarA mutants, and SoxS for their abilities to activate 16 promoters and to bind their cognate marbox binding sites. Replacement of the MarA glutamic acid residue 89 with alanine greatly increased the marbox binding and activation of many class I promoters. Like cells constitutive for SoxS, cells expressing the MarA with the E89A mutation were more resistant to superoxides than those harboring WT MarA. The activities of several other E89 substitutions ranked as follows: E89A > E89G > E89V > WT > E89D. Increased binding and activation occurred only at class I promoters when the 12th base of the promoter's marbox (a position at which there is no known interaction between the marbox and MarA) was not a T residue. Furthermore, WT MarA binding to a synthetic marbox in vitro was enhanced when the phosphate group between positions 12 and 13 was eliminated on one strand. The results demonstrate that relatively minor changes in a single amino acid side chain (e.g., alanine to valine or glutamic acid to aspartic acid) can strongly influence activity despite any evidence that the side chain is involved in positive interactions with either DNA or RNA polymerase. We present a model which attributes the differences in binding and activation to the interference between the β- and γ-carbons of the amino acid at position 89 and the phosphate group between positions 12 and 13.
PMCID: PMC3019838  PMID: 21097628
3.  Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob protein. 
Journal of Bacteriology  1995;177(7):1655-1661.
Multiple antibiotic resistance in Escherichia coli can be mediated by induction of the SoxS or MarA protein, triggered by oxygen radicals (in the soxRS regulon) or certain antibiotics (in the marRAB regulon), respectively. These small proteins (SoxS, 107 residues; MarA, 127 residues) are homologous to the C terminus of the XylS-AraC family of proteins and are more closely related to a approximately 100-residue segment in the N terminus of Rob protein, which binds the right arm of the replication origin, oriC. We investigated whether the SoxS-MarA homology in Rob might extend to the regulation of some of the same inducible genes. Overexpression of Rob indeed conferred multiple antibiotic resistance similar to that known for SoxS and MarA (against chloramphenicol, tetracycline, nalidixic acid, and puromycin), as well as resistance to the superoxide-generating compound phenazine methosulfate. The Rob-induced antibiotic resistance depended only partially on the micF antisense RNA that down-regulates the OmpF outer membrane porin to limit antibiotic uptake. Similar antibiotic resistance was conferred by expression of a Rob fragment containing only the N-terminal 123 residues that constitute the SoxS-MarA homology. Both intact Rob and the N-terminal fragment activated expression of stress genes (inaA, fumC, sodA) but with a pattern distinct from that found for SoxS and MarA. Purified Rob protein bound a DNA fragment containing the micF promoter (50% bound at approximately 10(-9) M Rob) as strongly as it did oriC, and it bound more weakly to DNA containing the sodA, nfo, or zwf promoter (50% bound at 10(-8) to 10(-7) M). Rob formed multiple DNA-protein complexes with these fragments, as seen previously for SoxS. These data point to a DNA-binding gene activator module used in different protein contexts.
PMCID: PMC176790  PMID: 7896685
4.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. 
Journal of Bacteriology  1996;178(9):2507-2513.
The Rob protein, isolated on the basis of its ability to bind to the right arm of the Escherichia coli origin of chromosomal replication, is about 50% identical in amino acid sequence to SoxS and MarA, the direct regulators of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons, respectively. Having previously demonstrated that SoxS (as a MalE-SoxS fusion protein) and MarA are essentially identical in their abilities to activate in vitro transcription of genes of the sox-mar regulons, we investigated the properties of Rob as a transcriptional activator. We found that Rob (i) activates the transcription of zwf,fpr,fumC, micF, nfo, and sodA, (ii) requires a 21-bp soxbox-marbox-robbox sequence to activate zwf transcription, (iii) protects the soxbox/marbox/robbox from attack by DNase 1, (iv) is ambidextrous, i.e., requires the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF, (v) bends zwf and fumC DNA, and (vi) binds zwf and fumC DNA as a monomer. Since these transcription activation properties of Rob are virtually identical to those of MalE-SoxS and MarA, it appears as if the E. coli genome encodes three genes with the same functional capacity. However, in contrast to SoxS and MarA, whose syntheses are induced by specific environmental stimuli and elicit a clear defense response, Rob is expressed constitutively and its normal function is unknown.
PMCID: PMC177972  PMID: 8626315
5.  SoxS Increases the Expression of the Zinc Uptake System ZnuACB in an Escherichia coli Murine Pyelonephritis Model 
Journal of Bacteriology  2012;194(5):1177-1185.
Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple deletion mutant and its parent strain at 2 days postinfection in the kidney. One of these, znuC of the zinc transport system ZnuACB, displayed decreased expression in the triple mutant compared to that in the parental strain, and deletion of znuC from the parental strain reduced persistence. The marA rob soxS triple deletion mutant was less viable in vitro under limited-Zn and Zn-depleted conditions, while disruption of znuC caused a reduction in the growth rates for the parental and triple mutant strains to equally low levels under limited-Zn or Zn-depleted conditions. Complementation of the triple mutant with soxS, but not marA or rob, restored the parental growth rate in Zn-depleted medium, while deletion of only soxS from the parental strain led to low growth in Zn-depleted medium. Both results suggested that SoxS is a major regulator responsible for growth under Zn-depleted conditions. Gel shift experiments failed to show direct binding of SoxS to the znuCB promoter, thus suggesting indirect control of znuCB expression by SoxS. While SoxS expression in the triple mutant fully restored persistence, increased expression of znuACB via a plasmid in this mutant only partially restored wild-type levels of persistence in the kidney. This work implicates SoxS control of znuCB expression as a key factor in persistence of E. coli in murine pyelonephritis.
PMCID: PMC3294818  PMID: 22210763
6.  Activation of the E. coli marA/soxS/rob regulon in response to transcriptional activator concentration 
Journal of molecular biology  2008;380(2):278-284.
The paralogous transcriptional activators, MarA, SoxS and Rob, activate a common set of promoters, the marA/soxS/rob regulon of Escherichia coli, by binding a cognate site (marbox) upstream of each promoter. The extent of activation varies from one promoter to another and is only poorly correlated with the in vitro affinity of the activator for the specific marbox. Here, we examine the dependence of promoter activation on the level of activator in vivo by manipulating the steady-state concentrations of MarA and SoxS in Lon protease mutants and measuring promoter activation using lacZ transcriptional fusions. We found that: (i) the MarA concentrations needed for half-maximal stimulation varied by at least 19-fold among the 10 promoters tested; (ii) most marboxes were not saturated when there were 24,000 molecules of MarA per cell; (iii) the correlation between MarA concentration needed for half-maximal promoter activity in vivo with marbox binding affinity in vitro was poor and (iv) the two activators differed in their promoter activation profiles. The marRAB and sodA promoters could both be saturated by MarA and SoxS in vivo. However, saturation by MarA resulted in greater marRAB and lesser sodA transcription than did saturation by SoxS implying that the two activators interact with RNAP in different ways at the different promoters. Thus, the concentration and nature of activator determines which regulon promoters are activated and the extent of their activation.
PMCID: PMC2614912  PMID: 18514222
gene regulation; AraC protein family; stress response
7.  ompW is cooperatively upregulated by MarA and SoxS in response to menadione 
Microbiology  2013;159(Pt 4):715-725.
OmpW is a minor porin whose biological function has not been clearly defined. Evidence obtained in our laboratory indicates that in Salmonella enterica serovar Typhimurium the expression of OmpW is activated by SoxS upon exposure to paraquat and it is required for resistance. SoxS belongs to the AraC family of transcriptional regulators, like MarA and Rob. Due to their high structural similarity, the genes under their control have been grouped in the mar/sox/rob regulon, which presents a DNA-binding consensus sequence denominated the marsox box. In this work, we evaluated the role of the transcription factors MarA, SoxS and Rob of S. enterica serovar Typhimurium in regulating ompW expression in response to menadione. We determined the transcript and protein levels of OmpW in different genetic backgrounds; in the wild-type and Δrob strains ompW was upregulated in response to menadione, while in the ΔmarA and ΔsoxS strains the induction was abolished. In a double marA soxS mutant, ompW transcript levels were lowered after exposure to menadione, and only complementation in trans with both genes restored the positive regulation. Using transcriptional fusions and electrophoretic mobility shift assays with mutant versions of the promoter region we demonstrated that two of the predicted sites were functional. Additionally, we demonstrated that MarA increases the affinity of SoxS for the ompW promoter region. In conclusion, our study shows that ompW is upregulated in response to menadione in a cooperative manner by MarA and SoxS through a direct interaction with the promoter region.
PMCID: PMC3709825  PMID: 23393149
8.  Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli. 
Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response.
PMCID: PMC284635  PMID: 7986007
9.  The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. 
Journal of Bacteriology  1997;179(6):1857-1866.
The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence played no role in marA-mediated multiple antibiotic resistance. Taken together, the data show that the S. typhimurium mar locus is structurally and functionally similar to marRABEc and that a lesion in marASt has no effect on S. typhimurium virulence for BALB/c mice.
PMCID: PMC178907  PMID: 9068629
10.  Role of the mar-sox-rob Regulon in Regulating Outer Membrane Porin Expression▿† 
Journal of Bacteriology  2011;193(9):2252-2260.
Multiple factors control the expression of the outer membrane porins OmpF and OmpC in Escherichia coli. In this work, we investigated the role of the mar-sox-rob regulon in regulating outer membrane porin expression in response to salicylate. We provide both genetic and physiological evidence that MarA and Rob can independently activate micF transcription in response to salicylate, leading to reduced OmpF expression. MarA was also found to repress OmpF expression through a MicF-independent pathway. In the case of OmpC, we found that its transcription was moderately increased in response to salicylate. However, this increase was independent of MarA and Rob. Finally, we found that the reduction in OmpF expression in a tolC mutant is due primarily to Rob. Collectively, this work further clarifies the coordinated role of MarA and Rob in regulating the expression of the outer membrane porins.
PMCID: PMC3133058  PMID: 21398557
11.  Evidence that Regulatory Protein MarA of Escherichia coli Represses rob by Steric Hindrance▿  
Journal of Bacteriology  2010;192(15):3977-3982.
The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site (“marbox”) at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.
PMCID: PMC2916391  PMID: 20453091
12.  Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. 
Journal of Bacteriology  1995;177(24):7100-7104.
Expression of the marA or soxS genes is induced by exposure of Escherichia coli to salicylate or superoxides, respectively. This, in turn, enhances the expression of a common set of promoters (the mar/soxRS regulons), resulting in both multiple antibiotic and superoxide resistance. Since MarA protein is highly homologous to SoxS, and since a MalE-SoxS fusion protein has recently been shown to activate soxRS regulon transcription, the ability of MarA to activate transcription of these genes was tested. MarA was overexpressed as a histidine-tagged fusion protein, purified, cleaved with thrombin (leaving one N-terminal histidine residue), and renatured. Like MalE-SoxS, MarA (i) activated the transcription of zwf, fpr, fumC, micF, nfo, and sodA; (ii) required a 21-bp "soxbox" sequence to activate zwf transcription; and (iii) was "ambidextrous," i.e., required the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF. Thus, the mar and soxRS systems use activators with very similar specificities and mechanisms of action to respond to different environmental signals.
PMCID: PMC177587  PMID: 8522515
13.  Constitutive SoxS Expression in a Fluoroquinolone-Resistant Strain with a Truncated SoxR Protein and Identification of a New Member of the marA-soxS-rob Regulon, mdtG▿  
Elevated levels of fluoroquinolone resistance are frequently found among Escherichia coli clinical isolates. This study investigated the antibiotic resistance mechanisms of strain NorE5, derived in vitro by exposing an E. coli clinical isolate, PS5, to two selection steps with increasing concentrations of norfloxacin. In addition to the amino acid substitution in GyrA (S83L) present in PS5, NorE5 has an amino acid change in ParC (S80R). Furthermore, we now find by Western blotting that NorE5 has a multidrug resistance phenotype resulting from the overexpression of the antibiotic resistance efflux pump AcrAB-TolC. Microarray and gene fusion analyses revealed significantly increased expression in NorE5 of soxS, a transcriptional activator of acrAB and tolC. The high soxS activity is attributable to a frameshift mutation that truncates SoxR, rendering it a constitutive transcriptional activator of soxS. Furthermore, microarray and reverse transcription-PCR analyses showed that mdtG (yceE), encoding a putative efflux pump, is overexpressed in the resistant strain. SoxS, MarA, and Rob activated an mdtG::lacZ fusion, and SoxS was shown to bind to the mdtG promoter, showing that mdtG is a member of the marA-soxS-rob regulon. The mdtG marbox sequence is in the backward or class I orientation within the promoter, and its disruption resulted in a loss of inducibility by MarA, SoxS, and Rob. Thus, chromosomal mutations in parC and soxR are responsible for the increased antibiotic resistance of NorE5.
PMCID: PMC2825980  PMID: 20008776
14.  Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli▿  
Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.
PMCID: PMC2863627  PMID: 20211899
15.  Transcriptional Cross Talk within the mar-sox-rob Regulon in Escherichia coli Is Limited to the rob and marRAB Operons 
Journal of Bacteriology  2012;194(18):4867-4875.
Bacteria possess multiple mechanisms to survive exposure to various chemical stresses and antimicrobial compounds. In the enteric bacterium Escherichia coli, three homologous transcription factors—MarA, SoxS, and Rob—play a central role in coordinating this response. Three separate systems are known to regulate the expression and activities of MarA, SoxS, and Rob. However, a number of studies have shown that the three do not function in isolation but rather are coregulated through transcriptional cross talk. In this work, we systematically investigated the extent of transcriptional cross talk in the mar-sox-rob regulon. While the three transcription factors were found to have the potential to regulate each other's expression when ectopically expressed, the only significant interactions observed under physiological conditions were between mar and rob systems. MarA, SoxS, and Rob all activate the marRAB promoter, more so when they are induced by their respective inducers: salicylate, paraquat, and decanoate. None of the three proteins affects the soxS promoter, though unexpectedly, it was mildly repressed by decanoate by an unknown mechanism. SoxS is the only one of the three proteins to repress the rob promoter. Surprisingly, salicylate somewhat activates transcription of rob, while decanoate represses it a bit. Rob, in turn, activates not only its downstream promoters in response to salicylate but also the marRAB promoter. These results demonstrate that the mar and rob systems function together in response to salicylate.
PMCID: PMC3430332  PMID: 22753060
16.  An Excretory Function for the Escherichia coli Outer Membrane Pore TolC: Upregulation of marA and soxS Transcription and Rob Activity Due to Metabolites Accumulated in tolC Mutants ▿  
Journal of Bacteriology  2009;191(16):5283-5292.
Efflux pumps function to rid bacteria of xenobiotics, including antibiotics, bile salts, and organic solvents. TolC, which forms an outer membrane channel, is an essential component of several efflux pumps in Escherichia coli. We asked whether TolC has a role during growth in the absence of xenobiotics. Because tolC transcription is activated by three paralogous activators, MarA, SoxS, and Rob, we examined the regulation of these activators in tolC mutants. Using transcriptional fusions, we detected significant upregulation of marRAB and soxS transcription and Rob protein activity in tolC mutants. Three mechanisms could be distinguished: (i) activation of marRAB transcription was independent of marRAB, soxR, and rob functions; (ii) activation of soxS transcription required SoxR, a sensor of oxidants; and (iii) Rob protein was activated posttranscriptionally. This mechanism is similar to the mechanisms of upregulation of marRAB, soxS, and Rob by treatment with certain phenolics, superoxides, and bile salts, respectively. The transcription of other marA/soxS/rob regulon promoters, including tolC itself, was also elevated in tolC mutants. We propose that TolC is involved in the efflux of certain cellular metabolites, not only xenobiotics. As these metabolites accumulate during growth, they trigger the upregulation of MarA, SoxS, and Rob, which in turn upregulate tolC and help rid the bacteria of these metabolites, thereby restoring homeostasis.
PMCID: PMC2725600  PMID: 19502391
17.  Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. 
Journal of Bacteriology  1993;175(10):2888-2894.
A genetic approach was undertaken to identify normal bacterial genes whose products function to limit the effective concentration of antibiotics. In this approach, a multicopy plasmid library containing cloned Escherichia coli chromosomal sequences was screened for transformants that showed increased resistance to a number of unrelated antibiotics. Three such plasmids were identified, and all contained sequences originating from the mar locus. DNA sequence analysis of the minimal complementation unit revealed that the resistance phenotype was associated with the presence of the marA gene on the plasmids. The putative marA gene product is predicted to contain a helix-turn-helix DNA binding domain that is very similar to analogous domains found in three other E. coli proteins. One such similarity was to the SoxS gene product, the elevated expression of which has previously been associated with the multiple antibiotic resistance (Mar) phenotype. Constitutive expression of marA conferred antibiotic resistance even in cells carrying a deletion of the chromosomal mar locus. We have also found that transformants bearing marA plasmids show a significant reduction in ompF translation but not transcription, similar to previously described mar mutants. However, this reduction in ompF expression plays only a minor role in the resistance mechanism, suggesting that functions encoded by genes unlinked to mar must be affected by marA. These results suggest that activation of marA is the ultimate event that occurs at the mar locus during the process that results in multiple antibiotic resistance.
PMCID: PMC204606  PMID: 8491710
18.  marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. 
Journal of Bacteriology  1988;170(12):5416-5422.
Mar (multiple antibiotic resistant) mutants of Escherichia coli express chromosomally mediated resistance to a variety of structurally unrelated hydrophilic and hydrophobic antibiotics. Insertion of transposon Tn5 into the marA locus at min 34.05 on the chromosome completely reverses the Mar phenotype (A. M. George and S. B. Levy, J. Bacteriol. 155:531-540, 1983). We found that among changes in the outer membrane of Mar mutants, porin OmpF was greatly reduced, although Mar mutants were more resistant than cells lacking only OmpF. Transduction of the marA region from a Mar strain, but not a wild-type strain, led to loss of OmpF. P1 transduction of marA::Tn5 into a Mar mutant partially restored OmpF levels. Therefore, OmpF reduction required a mutation in the marA region. Mar mutants of an ompF-lacZ operon fusion strain expressed 50 to 75% of the beta-galactosidase activity of the isogenic non-Mar parental strain, while Mar mutants of a protein fusion strain expressed less than 10% of the enzyme activity in the non-Mar strain. These changes were completely reversed by insertion of marA::Tn5. The responsiveness of OmpF-LacZ to osmolarity and temperature changes was similar in Mar and wild-type strains. Although some transcriptional control may have been present, OmpF reduction appeared to occur primarily by a posttranscriptional mechanism. The steady-state levels of ompF mRNA were twofold lower and the mRNA was five times less stable in the Mar mutant than in the wild-type strain. Expression of micF, which lowers ompF mRNA levels, was elevated in Mar strains, as revealed by a micF-lacZ fusion. Studies with strains deleted for the micF locus showed that the marA-dependent reduction of OmpF required an intact micF locus. Our findings suggest that the marA locus directly or indirectly increases micF expression, causing a posttranscriptional decrease in ompF mRNA and reduced amounts of OmpF.
PMCID: PMC211632  PMID: 2848006
19.  Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon 
Microbiology  2010;156(Pt 2):570-578.
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human β-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human β-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human α-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
PMCID: PMC2890090  PMID: 19926649
20.  Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli 
Molecular microbiology  2008;69(6):1450-1455.
The Escherichia coli tolC encodes a major outer membrane protein with multiple functions in export (e. g., diverse xenobiotics, hemolysin) and as an attachment site for phage and colicins. tolC is regulated in part by MarA, SoxS and Rob, three paralogous transcriptional activators which bind a sequence called the marbox and which activate multiple antibiotic and superoxide resistance functions. Two previously identified tolC promoters, p1 and p2, are not regulated by MarA, SoxS or Rob but p2 is activated by EvgAS and PhoPQ which also regulate other functions. Using transcriptional fusions and primer extension assays, we show here that tolC has two additional strong overlapping promoters, p3 and p4, which are downstream of p1, p2 and the marbox and are activated by MarA, SoxS and Rob. p3 and p4 are configured so that a single marbox suffices to activate transcription from both promoters. At the p3 promoter, the marbox is separated by 20 bp from the −10 hexamer for RNA polymerase but at the p4 promoter, the same marbox is separated by 30 bp from the −10 hexamer. The multiple tolC promoters may allow the cell to respond to diverse environments by coordinating tolC transcription with other appropriate functions.
PMCID: PMC2574956  PMID: 18673442
gene regulation; outer membrane protein; transcriptional start sites; efflux pumps; antibiotic resistance
21.  Identification and analysis of aarP, a transcriptional activator of the 2'-N-acetyltransferase in Providencia stuartii. 
Journal of Bacteriology  1995;177(12):3407-3413.
The aarP gene has been identified in a search for activators of the 2-N-acetyltransferase [encoded by aac(2')-Ia] in Providencia stuartii. Introduction of aarP into P. stuartii on a multicopy plasmid resulted in a 9.9-fold increase in the accumulation of beta-galactosidase from an aac(2')-lacZ fusion. Northern (RNA) blot analysis demonstrated that this increased aac(2')-Ia expression occurred at the level of mRNA accumulation. The deduced AarP protein was 15,898 Da in size and exhibited significant homology to a number of transcriptional activators in the AraC/XyIS family, including TetD,Rob, MarA, and SoxS. The similarity of AarP to the MarA and SoxS proteins prompted an investigation to determine whether AarP is involved in activation of genes in either the multiple antibiotic resistance (Mar) phenotype or redox stress (SoxRS) system. Introduction of aarP on a multicopy plasmid into either P. stuartii or Escherichia coli conferred a Mar phenotype with higher levels of resistance to tetracycline, chloramphenicol, and ciprofloxacin. Multiple copies of aarP in E. coli also resulted in activation of the endonuclease IV gene (nfo), a gene in the SoxRS regulon of E. coli. The function of aarP in its single-copy state was addressed by using allelic replacement to construct an aarP::Cm disruption, which resulted in a fivefold reduction in the accumulation of aac(2')-Ia mRNA. Analysis of aarP regulation showed that aarP mRNA accumulation was slightly increased by exposure to tetracycline and dramatically increased in cells containing the aarB3 (aar3) mutation, which was previously shown to increase transcription of the aac(2')-Ia gene. (P.N. Rather, E. Oroz, K.J. Shaw, R. Hare, and G. Miller, J. Bacteriol. 175:6492-6498).
PMCID: PMC177042  PMID: 7768849
22.  Two functions of the C-terminal domain of Escherichia coli Rob: mediating “sequestration-dispersal” as a novel off-on switch for regulating Rob’s activity as a transcription activator and preventing degradation of Rob by Lon protease 
Journal of molecular biology  2009;388(3):415-430.
In Escherichia coli, Rob activates transcription of the SoxRS/MarA/Rob regulon. Previous work revealed that Rob resides in 3–4 immunostainable foci, that dipyridyl and bile salts are inducers of its activity, and that inducers bind to Rob’s C-terminal domain (CTD). We propose that sequestration inactivates Rob by blocking its access to the transcriptional machinery and that inducers activate Rob by mediating its dispersal, allowing interaction with RNA polymerase. To test “sequestration-dispersal” as a new mechanism for regulating the activity of transcriptional activators, we fused Rob’s CTD to SoxS and used indirect immunofluorescence microscopy to determine the effect of inducers on SoxS-Rob’s cellular localization. Unlike native SoxS, which is uniformly distributed throughout the cell, SoxS-Rob is sequestered without inducer, but is rapidly dispersed when cells are treated with inducer. In this manner, Rob’s CTD serves as an anti-sigma factor in regulating the co-sigma factor-like activity of SoxS when fused to it. Rob’s CTD also protects its N-terminus from Lon protease, since Lon’s normally rapid degradation of SoxS is blocked in the chimera. Accordingly, Rob’s CTD has novel regulatory properties that can be bestowed on another E. coli protein.
PMCID: PMC2728042  PMID: 19289129
gene regulation; intracellular localization; immunofluorescence microscopy; anti-sigma factor; proteolysis
23.  Overexpression of the marA or soxS Regulatory Gene in Clinical Topoisomerase Mutants of Escherichia coli 
The contribution of regulatory genes to fluoroquinolone resistance was studied with clinical Escherichia coli strains bearing mutations in gyrA and parC and with different levels of fluoroquinolone resistance. Expression of marA and soxS was evaluated by Northern blot analysis of isolates that demonstrated increased organic solvent tolerance, a phenotype that has been linked to overexpression of marA, soxS, and rob. Among 25 cyclohexane-tolerant strains detected by a screen for increased organic solvent tolerance (M. Oethinger, W. V. Kern, J. D. Goldman, and S. B. Levy, J. Antimicrob. Chemother. 41:111–114, 1998), we found 5 Mar mutants and 4 Sox mutants. A further Mar mutant was detected among 11 fluoroquinolone-resistant, cyclohexane-susceptible E. coli strains used as controls. Comparison of the marOR sequences of clinical Mar mutants with that of E. coli K-12 (GenBank accession no. M96235) revealed point mutations in marR in all mutants which correlated with loss of repressor function as detected in a marO::lacZ transcriptional assay. We found four other amino acid changes in MarR that did not lead to loss of function. Two of these changes, present in 20 of the 35 sequenced marOR fragments, identified a variant genotype of marOR. Isolates with the same gyrA and parC mutations showed increased fluoroquinolone resistance when the mutations were accompanied by overexpression of marA or soxS. These data support the hypothesis that high-level fluoroquinolone resistance involves mutations at several chromosomal loci, comprising structural and regulatory genes.
PMCID: PMC105868  PMID: 9687412
24.  Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression 
Virulence  2012;3(3):280-285.
Escherichia coli is one of the most frequent bacteria implicated in biofilm formation, which is a dynamic process whose first step consists in bacteria adhesion to surfaces through type 1 fimbriae. Salicylate induces a number of morphological and physiological alterations in bacteria including the activation of the transcriptional regulator MarA. In this report the effects of salicylate on biofilm formation and their relationship with MarA were studied. An inverse relationship was observed between in vitro biofilm formation and salicylate concentration added to the culture medium. Salicylate increases the expression of marA and decreases the expression of fimA and fimB genes in the wild-type strain. In addition, the fimA and fimB expression was decreased in a MarR mutant in which marA was also overexpressed. In conclusion, the expression of type 1 fimbriae in presence of salicylate may be regulated by the level of marA expression through fimB regulator, albeit through neither the ompX nor the tolC genes.
PMCID: PMC3442840  PMID: 22546909
Escherichia coli; MarA; biofilm; salicylate; type 1 fimbriae
25.  Posttranscriptional Activation of the Transcriptional Activator Rob by Dipyridyl in Escherichia coli 
Journal of Bacteriology  2002;184(5):1407-1416.
The transcriptional activator Rob consists of an N-terminal domain (NTD) of 120 amino acids responsible for DNA binding and promoter activation and a C-terminal domain (CTD) of 169 amino acids of unknown function. Although several thousand molecules of Rob are normally present per Escherichia coli cell, they activate promoters of the rob regulon poorly. We report here that in cells treated with either 2,2"- or 4,4"-dipyridyl (the latter is not a metal chelator), Rob-mediated transcription of various rob regulon promoters was increased substantially. A small, growth-phase-dependent effect of dipyridyl on the rob promoter was observed. However, dipyridyl enhanced Rob's activity even when rob was regulated by a heterologous (lac) promoter showing that the action of dipyridyl is mainly posttranscriptional. Mutants lacking from 30 to 166 of the C-terminal amino acids of Rob had basal levels of activity similar to that of wild-type cells, but dipyridyl treatment did not enhance this activity. Thus, the CTD is not an inhibitor of Rob but is required for activation of Rob by dipyridyl. In contrast to its relatively low activity in vivo, Rob binding to cognate DNA and activation of transcription in vitro is similar to that of MarA, which has a homologous NTD but no CTD. In vitro nuclear magnetic resonance studies demonstrated that 2,2"-dipyridyl binds to Rob but not to the CTD-truncated Rob or to MarA, suggesting that the effect of dipyridyl on Rob is direct. Thus, it appears that Rob can be converted from a low activity state to a high-activity state by a CTD-mediated mechanism in vivo or by purification in vitro.
PMCID: PMC134866  PMID: 11844771

Results 1-25 (1467939)