PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (808907)

Clipboard (0)
None

Related Articles

1.  Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1 
Molecular Biology of the Cell  2012;23(2):337-346.
The Sec6 subunit of the multisubunit exocyst tethering complex interacts with the Sec1/Munc18 protein Sec1 and with the t-SNARE Sec9. Assembly of the exocyst upon vesicle arrival at sites of secretion is proposed to release Sec9 for SNARE complex assembly and to recruit Sec1 for interaction with SNARE complexes to facilitate fusion.
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicle targeting and fusion require a conserved multisubunit protein complex termed the exocyst, which has been implicated in specific tethering of vesicles to sites of polarized exocytosis. The exocyst is directly involved in regulating soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE) complexes and membrane fusion through interactions between the Sec6 subunit and the plasma membrane SNARE protein Sec9. Here we show another facet of Sec6 function—it directly binds Sec1, another SNARE regulator, but of the Sec1/Munc18 family. The Sec6–Sec1 interaction is exclusive of Sec6–Sec9 but compatible with Sec6–exocyst assembly. In contrast, the Sec6–exocyst interaction is incompatible with Sec6–Sec9. Therefore, upon vesicle arrival, Sec6 is proposed to release Sec9 in favor of Sec6–exocyst assembly and to simultaneously recruit Sec1 to sites of secretion for coordinated SNARE complex formation and membrane fusion.
doi:10.1091/mbc.E11-08-0670
PMCID: PMC3258177  PMID: 22114349
2.  Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana 
Molecular Biology of the Cell  2013;24(4):510-520.
The exocyst complex localizes to distinct foci at the plasma membrane of Arabidopsis thaliana cells. Their localization at the plasma membrane is insensitive to BFA treatment but is decreased in an exocyst-subunit mutant. In turn, exocyst-subunit mutants show decreased exocytosis.
The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6–green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.
doi:10.1091/mbc.E12-06-0492
PMCID: PMC3571873  PMID: 23283982
3.  Cyclical Regulation of the Exocyst and Cell Polarity Determinants for Polarized Cell Growth 
Molecular Biology of the Cell  2005;16(3):1500-1512.
Polarized exocytosis is important for morphogenesis and cell growth. The exocyst is a multiprotein complex implicated in tethering secretory vesicles at specific sites of the plasma membrane for exocytosis. In the budding yeast, the exocyst is localized to sites of bud emergence or the tips of small daughter cells, where it mediates secretion and cell surface expansion. To understand how exocytosis is spatially controlled, we systematically analyzed the localization of Sec15p, a member of the exocyst complex and downstream effector of the rab protein Sec4p, in various mutants. We found that the polarized localization of Sec15p relies on functional upstream membrane traffic, activated rab protein Sec4p, and its guanine exchange factor Sec2p. The initial targeting of both Sec4p and Sec15p to the bud tip depends on polarized actin cable. However, different recycling mechanisms for rab and Sec15p may account for the different kinetics of polarization for these two proteins. We also found that Sec3p and Sec15p, though both members of the exocyst complex, rely on distinctive targeting mechanisms for their localization. The assembly of the exocyst may integrate various cellular signals to ensure that exocytosis is tightly controlled. Key regulators of cell polarity such as Cdc42p are important for the recruitment of the exocyst to the budding site. Conversely, we found that the proper localization of these cell polarity regulators themselves also requires a functional exocytosis pathway. We further report that Bem1p, a protein essential for the recruitment of signaling molecules for the establishment of cell polarity, interacts with the exocyst complex. We propose that a cyclical regulatory network contributes to the establishment and maintenance of polarized cell growth in yeast.
doi:10.1091/mbc.E04-10-0896
PMCID: PMC551511  PMID: 15647373
4.  The role of Sec3p in secretory vesicle targeting and exocyst complex assembly 
Molecular Biology of the Cell  2014;25(23):3813-3822.
The exocyst has been speculated to mediate the tethering of secretory vesicles to the plasma membrane. However, there has been no direct experimental evidence for this notion. An ectopic targeting strategy is used to provide experimental support for this model and investigate the regulators of exocyst assembly and vesicle targeting.
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.
doi:10.1091/mbc.E14-04-0907
PMCID: PMC4230786  PMID: 25232005
5.  The rab Exchange Factor Sec2p Reversibly Associates with the Exocyst 
Molecular Biology of the Cell  2006;17(6):2757-2769.
Activation of the rab GTPase, Sec4p, by its exchange factor, Sec2p, is needed for polarized transport of secretory vesicles to exocytic sites and for exocytosis. A small region in the C-terminal half of Sec2p regulates its localization. Loss of this region results in temperature-sensitive growth and the depolarized accumulation of secretory vesicles. Here, we show that Sec2p associates with the exocyst, an octameric effector of Sec4p involved in tethering secretory vesicles to the plasma membrane. Specifically, the exocyst subunit Sec15p directly interacts with Sec2p. This interaction normally occurs on secretory vesicles and serves to couple nucleotide exchange on Sec4p to the recruitment of the Sec4p effector. The mislocalization of Sec2p mutants correlates with dramatically enhanced binding to the exocyst complex. We propose that Sec2p is normally released from the exocyst after vesicle tethering so that it can recycle onto a new round of vesicles. The mislocalization of Sec2p mutants results from a failure to be released from Sec15p, blocking this recycling pathway.
doi:10.1091/mbc.E05-10-0917
PMCID: PMC1474791  PMID: 16611746
6.  Dominant Negative Alleles of SEC10 Reveal Distinct Domains Involved in Secretion and Morphogenesis in Yeast 
Molecular Biology of the Cell  1998;9(7):1725-1739.
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.
PMCID: PMC25411  PMID: 9658167
7.  The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster 
The Journal of Cell Biology  2005;169(6):953-963.
The exocyst is an octameric complex required for polarized secretion. Some components of the exocyst are found on the plasma membrane, whereas others are recruited to Golgi membranes, suggesting that exocyst assembly tethers vesicles to their site of fusion. We have found that in Drosophila melanogaster oocytes the majority of the exocyst component Sec5 is unexpectedly present in clathrin-coated pits and vesicles at the plasma membrane. In oocytes, the major substrate for clathrin-dependent endocytosis is the vitellogenin receptor Yolkless. A truncation mutant of Sec5 (sec5E13) allows the formation of normally sized oocytes but with greatly reduced yolk uptake. We find that in sec5E13 oocytes Yolkless accumulates aberrantly in late endocytic compartments, indicating a defect in the endocytic cycling of the receptor. An analogous truncation of the yeast SEC5 gene results in normal secretion but a temperature-sensitive defect in endocytic recycling. Thus, the exocyst may act in both Golgi to plasma membrane traffic and endocytic cycling, and hence in oocytes is recruited to clathrin-coated pits to facilitate the rapid recycling of Yolkless.
doi:10.1083/jcb.200411053
PMCID: PMC2171629  PMID: 15955846
8.  The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p 
The Journal of Cell Biology  2013;202(3):509-526.
The exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins to confer both specificity and directionality to vesicular traffic.
A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic.
doi:10.1083/jcb.201211148
PMCID: PMC3734085  PMID: 23897890
9.  Fission Yeast Sec3 Bridges the Exocyst Complex to the Actin Cytoskeleton 
Traffic (Copenhagen, Denmark)  2012;13(11):1481-1495.
The exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co-ordinator of cell morphology in fission yeast.
doi:10.1111/j.1600-0854.2012.01408.x
PMCID: PMC3531892  PMID: 22891673
actin; endocytosis; exocyst; morphology; Schizosaccharomyces pombe
10.  Fission Yeast Sec3 and Exo70 Are Transported on Actin Cables and Localize the Exocyst Complex to Cell Poles 
PLoS ONE  2012;7(6):e40248.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.
doi:10.1371/journal.pone.0040248
PMCID: PMC3386988  PMID: 22768263
11.  Sec3-containing Exocyst Complex Is Required for Desmosome Assembly in Mammalian Epithelial Cells 
Molecular Biology of the Cell  2010;21(1):152-164.
In epithelial cells, Sec3 associates with Exocyst complexes enriched at desmosomes and centrosomes, distinct from Sec6/8 complexes at the apical junctional complex. RNAi-mediated suppression of Sec3 alters trafficking of desmosomal cadherins and impairs desmosome morphology and function, without noticeable effect on adherens junctions.
The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell–cell contact in response to E-cadherin–mediated adhesive interactions, and this event is an important early step in the assembly of intercellular junctions. Sec3 has been hypothesized to function as a spatial landmark for the development of polarity in budding yeast, but its role in epithelial cells has not been investigated. Here, we provide evidence in support of a function for a Sec3-containing Exocyst complex in the assembly or maintenance of desmosomes, adhesive junctions that link intermediate filament networks to sites of strong intercellular adhesion. We show that Sec3 associates with a subset of Exocyst complexes that are enriched at desmosomes. Moreover, we found that membrane recruitment of Sec3 is dependent on cadherin-mediated adhesion but occurs later than that of the known Exocyst components Sec6 and Sec8 that are recruited to adherens junctions. RNA interference-mediated suppression of Sec3 expression led to specific impairment of both the morphology and function of desmosomes, without noticeable effect on adherens junctions. These results suggest that two different exocyst complexes may function in basal–lateral membrane trafficking and will enable us to better understand how exocytosis is spatially organized during development of epithelial plasma membrane domains.
doi:10.1091/mbc.E09-06-0459
PMCID: PMC2801709  PMID: 19889837
12.  Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p 
The Journal of Cell Biology  2004;167(5):889-901.
Exocytosis in the budding yeast Saccharomyces cerevisiae occurs at discrete domains of the plasma membrane. The protein complex that tethers incoming vesicles to sites of secretion is known as the exocyst. We have used photobleaching recovery experiments to characterize the dynamic behavior of the eight subunits that make up the exocyst. One subset (Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, and Exo84p) exhibits mobility similar to that of the vesicle-bound Rab family protein Sec4p, whereas Sec3p and Exo70p exhibit substantially more stability. Disruption of actin assembly abolishes the ability of the first subset of subunits to recover after photobleaching, whereas Sec3p and Exo70p are resistant. Immunogold electron microscopy and epifluorescence video microscopy indicate that all exocyst subunits, except for Sec3p, are associated with secretory vesicles as they arrive at exocytic sites. Assembly of the exocyst occurs when the first subset of subunits, delivered on vesicles, joins Sec3p and Exo70p on the plasma membrane. Exocyst assembly serves to both target and tether vesicles to sites of exocytosis.
doi:10.1083/jcb.200408124
PMCID: PMC2172445  PMID: 15583031
13.  Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex 
The Journal of Cell Biology  2005;170(4):583-594.
Rho GTPases are important regulators of polarity in eukaryotic cells. In yeast they are involved in regulating the docking and fusion of secretory vesicles with the cell surface. Our analysis of a Rho3 mutant that is unable to interact with the Exo70 subunit of the exocyst reveals a normal polarization of the exocyst complex as well as other polarity markers. We also find that there is no redundancy between the Rho3–Exo70 and Rho1–Sec3 pathways in the localization of the exocyst. This suggests that Rho3 and Cdc42 act to polarize exocytosis by activating the exocytic machinery at the membrane without the need to first recruit it to sites of polarized growth. Consistent with this model, we find that the ability of Rho3 and Cdc42 to hydrolyze GTP is not required for their role in secretion. Moreover, our analysis of the Sec3 subunit of the exocyst suggests that polarization of the exocyst may be a consequence rather than a cause of polarized exocytosis.
doi:10.1083/jcb.200504108
PMCID: PMC2171504  PMID: 16103227
14.  Developmentally distinct activities of the exocyst enable rapid cell elongation and determine meristem size during primary root growth in Arabidopsis 
BMC Plant Biology  2014;14(1):386.
Background
Exocytosis is integral to root growth: trafficking components of systems that control growth (e.g., PIN auxin transport proteins) to the plasma membrane, and secreting materials that expand the cell wall to the apoplast. Spatiotemporal regulation of exocytosis in eukaryotes often involves the exocyst, an octameric complex that tethers selected secretory vesicles to specific sites on the plasma membrane and facilitates their exocytosis. We evaluated Arabidopsis lines with mutations in four exocyst components (SEC5, SEC8, EXO70A1 and EXO84B) to explore exocyst function in primary root growth.
Results
The mutants have root growth rates that are 82% to 11% of wild-type. Even in lines with the most severe defects, the organization of the quiescent center and tissue layers at the root tips appears similar to wild-type, although meristematic, transition, and elongation zones are shorter. Reduced cell production rates in the mutants are due to the shorter meristems, but not to lengthened cell cycles. Additionally, mutants demonstrate reduced anisotropic cell expansion in the elongation zone, but not the meristematic zone, resulting in shorter mature cells that are similar in shape to wild-type. As expected, hypersensitivity to brefeldin A links the mutant root growth defect to altered vesicular trafficking. Several experimental approaches (e.g., dose–response measurements, localization of signaling components) failed to identify aberrant auxin or brassinosteroid signaling as a primary driver for reduced root growth in exocyst mutants.
Conclusions
The exocyst participates in two spatially distinct developmental processes, apparently by mechanisms not directly linked to auxin or brassinosteroid signaling pathways, to help establish root meristem size, and to facilitate rapid cell expansion in the elongation zone.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0386-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0386-0
PMCID: PMC4302519  PMID: 25551204
Exocyst; Root growth; Meristem; Cell expansion; Auxin; Brassinosteroid
15.  The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth 
Molecular Biology of the Cell  2014;25(8):1312-1326.
The Neurospora crassa exocyst presents two distinct localization patterns. EXO-70 and -84 colocalize with a region of the Spitzenkörper occupied by secretory macrovesicles. In contrast, SEC-3, -5, -6, -8, and -15 localize distinctively at the apical plasma membrane.
Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane–associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.
doi:10.1091/mbc.E13-06-0299
PMCID: PMC3982996  PMID: 24523289
16.  Exocyst Sec5 Regulates Exocytosis of Newcomer Insulin Granules Underlying Biphasic Insulin Secretion 
PLoS ONE  2013;8(7):e67561.
The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca2+ channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.
doi:10.1371/journal.pone.0067561
PMCID: PMC3699660  PMID: 23844030
17.  The Role of the Exocyst in Matrix Metalloproteinase Secretion and Actin Dynamics during Tumor Cell Invadopodia Formation 
Molecular Biology of the Cell  2009;20(16):3763-3771.
Invadopodia are actin-rich membrane protrusions formed by tumor cells that degrade the extracellular matrix for invasion. Invadopodia formation involves membrane protrusions driven by Arp2/3-mediated actin polymerization and secretion of matrix metalloproteinases (MMPs) at the focal degrading sites. The exocyst mediates the tethering of post-Golgi secretory vesicles at the plasma membrane for exocytosis and has recently been implicated in regulating actin dynamics during cell migration. Here, we report that the exocyst plays a pivotal role in invadopodial activity. With RNAi knockdown of the exocyst component Exo70 or Sec8, MDA-MB-231 cells expressing constitutively active c-Src failed to form invadopodia. On the other hand, overexpression of Exo70 promoted invadopodia formation. Disrupting the exocyst function by siEXO70 or siSEC8 treatment or by expression of a dominant negative fragment of Exo70 inhibited the secretion of MMPs. We have also found that the exocyst interacts with the Arp2/3 complex in cells with high invasion potential; blocking the exocyst-Arp2/3 interaction inhibited Arp2/3-mediated actin polymerization and invadopodia formation. Together, our results suggest that the exocyst plays important roles in cell invasion by mediating the secretion of MMPs at focal degrading sites and regulating Arp2/3-mediated actin dynamics.
doi:10.1091/mbc.E08-09-0967
PMCID: PMC2777935  PMID: 19535457
18.  Actin cables and the exocyst form two independent morphogenesis pathways in the fission yeast 
Molecular Biology of the Cell  2011;22(1):44-53.
In fission yeast, long-range transport and vesicle tethering by the exocyst are individually dispensable but together essential for cell morphogenesis. Both pathways function downstream of Cdc42. The exocyst localizes to growing cell tips independently of the cytoskeleton and instead depends on PIP2.
Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.
doi:10.1091/mbc.E10-08-0720
PMCID: PMC3016976  PMID: 21148300
19.  par-1, Atypical pkc, and PP2A/B55 sur-6 Are Implicated in the Regulation of Exocyst-Mediated Membrane Trafficking in Caenorhabditis elegans 
G3: Genes|Genomes|Genetics  2013;4(1):173-183.
The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process.
doi:10.1534/g3.113.006718
PMCID: PMC3887533  PMID: 24192838
Caenorhabditis elegans; exocyst; PP2A; par-1; pkc-3
20.  The Multiprotein Exocyst Complex Is Essential for Cell Separation in Schizosaccharomyces pombe 
Molecular Biology of the Cell  2002;13(2):515-529.
Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. A mulitlayered division septum is assembled in concert with ring constriction. Finally, cleavage of the inner layer of the division septum results in the liberation of daughter cells. Although numerous studies have focused on actomyosin ring and division septum assembly, little information is available on the mechanism of cell separation. Here we describe a mutant, sec8-1, that is defective in cell separation but not in other aspects of cytokinesis. sec8-1 mutants accumulate ∼100-nm vesicles and have reduced secretion of acid phosphatase, suggesting that they are defective in exocytosis. Sec8p is a component of the exocyst complex. Using biochemical methods, we show that Sec8p physically interacts with other members of the exocyst complex, including Sec6p, Sec10p, and Exo70p. These exocyst proteins localize to regions of active exocytosis—at the growing ends of interphase cells and in the medial region of cells undergoing cytokinesis—in an F-actin–dependent and exocytosis-independent manner. Analysis of a number of mutations in various exocyst components has established that these components are essential for cell viability. Interestingly, all exocyst mutants analyzed appear to be able to elongate and to assemble division septa but are defective for cell separation. We therefore propose that the fission yeast exocyst is involved in targeting of enzymes responsible for septum cleavage. We further propose that cell elongation and division septum assembly can continue with minimal levels of exocyst function.
doi:10.1091/mbc.01-11-0542
PMCID: PMC65646  PMID: 11854409
21.  Live-cell imaging of exocyst links its spatiotemporal dynamics to various stages of vesicle fusion 
The Journal of Cell Biology  2013;201(5):673-680.
Live-cell imaging of the exocyst subunit Sec8 reveals how the protein’s spatiotemporal dynamics correlate with its roles in vesicle fusion.
Tethers play ubiquitous roles in membrane trafficking and influence the specificity of vesicle attachment. Unlike soluble N-ethyl-maleimide–sensitive fusion attachment protein receptors (SNAREs), the spatiotemporal dynamics of tethers relative to vesicle fusion are poorly characterized. The most extensively studied tethering complex is the exocyst, which spatially targets vesicles to sites on the plasma membrane. By using a mammalian genetic replacement strategy, we were able to assemble fluorescently tagged Sec8 into the exocyst complex, which was shown to be functional by biochemical, trafficking, and morphological criteria. Ultrasensitive live-cell imaging revealed that Sec8-TagRFP moved to the cell cortex on vesicles, which preferentially originated from the endocytic recycling compartment. Surprisingly, Sec8 remained with vesicles until full dilation of the fusion pore, supporting potential coupling with SNARE fusion machinery. Fluorescence recovery after photobleaching analysis of Sec8 at cell protrusions revealed that a significant fraction was immobile. Additionally, Sec8 dynamically repositioned to the site of membrane expansion, suggesting that it may respond to local cues during early cell polarization.
doi:10.1083/jcb.201212103
PMCID: PMC3664709  PMID: 23690179
22.  The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA 
The Journal of Cell Biology  2008;181(6):985-998.
Invadopodia are actin-based membrane protrusions formed at contact sites between invasive tumor cells and the extracellular matrix with matrix proteolytic activity. Actin regulatory proteins participate in invadopodia formation, whereas matrix degradation requires metalloproteinases (MMPs) targeted to invadopodia. In this study, we show that the vesicle-tethering exocyst complex is required for matrix proteolysis and invasion of breast carcinoma cells. We demonstrate that the exocyst subunits Sec3 and Sec8 interact with the polarity protein IQGAP1 and that this interaction is triggered by active Cdc42 and RhoA, which are essential for matrix degradation. Interaction between IQGAP1 and the exocyst is necessary for invadopodia activity because enhancement of matrix degradation induced by the expression of IQGAP1 is lost upon deletion of the exocyst-binding site. We further show that the exocyst and IQGAP1 are required for the accumulation of cell surface membrane type 1 MMP at invadopodia. Based on these results, we propose that invadopodia function in tumor cells relies on the coordination of cytoskeletal assembly and exocytosis downstream of Rho guanosine triphosphatases.
doi:10.1083/jcb.200709076
PMCID: PMC2426946  PMID: 18541705
23.  Sec3p Is Needed for the Spatial Regulation of Secretion and for the Inheritance of the Cortical Endoplasmic ReticulumV⃞ 
Molecular Biology of the Cell  2003;14(12):4770-4782.
Sec3p is a component of the exocyst complex that tethers secretory vesicles to the plasma membrane at exocytic sites in preparation for fusion. Unlike all other exocyst structural genes, SEC3 is not essential for growth. Cells lacking Sec3p grow and secrete surprisingly well at 25°C; however, late markers of secretion, such as the vesicle marker Sec4p and the exocyst subunit Sec8p, localize more diffusely within the bud. Furthermore, sec3Δ cells are strikingly round relative to wild-type cells and are unable to form pointed mating projections in response to α factor. These phenotypes support the proposed role of Sec3p as a spatial landmark for secretion. We also find that cells lacking Sec3p exhibit a dramatic defect in the inheritance of cortical ER into the bud, whereas the inheritance of mitochondria and Golgi is unaffected. Overexpression of Sec3p results in a prominent patch of the endoplasmic reticulum (ER) marker Sec61p-GFP at the bud tip. Cortical ER inheritance in yeast has been suggested to involve the capture of ER tubules at the bud tip. Sec3p may act in this process as a spatial landmark for cortical ER inheritance.
doi:10.1091/mbc.E03-04-0229
PMCID: PMC284782  PMID: 12960429
24.  An Internal Domain of Exo70p Is Required for Actin-independent Localization and Mediates Assembly of Specific Exocyst Components 
Molecular Biology of the Cell  2009;20(1):153-163.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.
doi:10.1091/mbc.E08-02-0157
PMCID: PMC2613103  PMID: 18946089
25.  A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant 
PLoS Genetics  2015;11(1):e1004945.
During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a ‘TIR-NBS only’ immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.
Author Summary
Secretory pathways play an important role in the plant immune response by delivering antimicrobial compounds and metabolites to the site of infection. The evolutionarily conserved exocyst complex is involved in exocytosis, the final step in the secretory pathway. We showed that loss of the function of EXO70B1, a subunit of exocyst complex, results in activated defense responses, and enhanced resistance to a range of pathogens. We found that EXO70B1 associates with the SNARE complex protein SNAP33, which is involved in focal secretion of defense-related proteins. Enhanced disease resistance and cell death in the exo70B1 mutant are dependent on TIR-NBS2 (TN2), an atypical intracellular immune receptor-like protein that lacks leucine-rich repeats. TN2 physically associates with EXO70B1, and TN2 transcripts accumulate at much higher levels in the exo70B1 mutant. These data are consistent with a model where activation of a receptor pathway containing TIR-NBS2 is responsible for activated defense responses and cell death in exo70B1. Our data further suggest that this, and possibly other, exocyst components could be targets of effectors that are guarded by immune receptors.
doi:10.1371/journal.pgen.1004945
PMCID: PMC4305288  PMID: 25617755

Results 1-25 (808907)