Search tips
Search criteria

Results 1-25 (925077)

Clipboard (0)

Related Articles

1.  Mechanism of Cullin3 E3 Ubiquitin Ligase Dimerization 
PLoS ONE  2012;7(7):e41350.
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.
PMCID: PMC3401178  PMID: 22911784
2.  Association of SAP130/SF3b-3 with Cullin-RING ubiquitin ligase complexes and its regulation by the COP9 signalosome 
BMC Biochemistry  2008;9:1.
Cullin-RING ubiquitin E3 ligases (CRLs) are regulated by modification of an ubiquitin-like protein, Nedd8 (also known as Rub1) on the cullin subunit. Neddylation is shown to facilitate E3 complex assembly; while un-neddylated cullins are bound by CAND1 that prevents recruitment of the substrates. The level of Nedd8 modification is critically dependent on the COP9 signalosome (CSN), an eight-subunit protein complex containing Nedd8 isopeptidase activity.
We report isolation of SAP130 (SF3b-3) as a CSN1 interacting protein. SAP130 is homologous to DDB1, and is a component of SF3b RNA splicing complex and STAGA/TFTC transcription complexes, but its specific function within these complexes is unknown. We show that SAP130 can interact with a variety of cullin proteins. It forms tertiary complexes with fully assembled CRL E3 complexes such as SCFSkp2, Elongin B/C -Cul2- VHL and Cul4-DDB complex by binding to both N-terminal and C-terminal domain of cullins. SAP130 preferentially associates with neddylated cullins in vivo. However knock-down of CAND1 abolished this preference and increased association of SAP130 with Cul2. Furthermore, we provide evidence that CSN regulates SAP130-Cul2 interaction and SAP130-associated polyubiquitinating activity.
SAP130 is a cullin binding protein that is likely involved in the Nedd8 pathway. The association of SAP130 with various cullin member proteins such as Cul1, Cul2 and Cul4A is modulated by CAND1 and CSN. As an established component of transcription and RNA processing complexes, we hypothesis that SAP130 may link CRL mediated ubiquitination to gene expression.
PMCID: PMC2265268  PMID: 18173839
3.  Novel Cul3 binding proteins function to remodel E3 ligase complexes 
BMC Cell Biology  2014;15:28.
Cullins belong to a family of scaffold proteins that assemble multi-subunit ubiquitin ligase complexes to recruit protein substrates for ubiquitination via unique sets of substrate adaptor, such as Skp1 or Elongin B, and a substrate-binding protein with a conserved protein-protein interacting domain, such as leucine-rich repeats (LRR), a WD40 domain, or a zinc-finger domain. In the case of the Cullin3 (Cul3), it forms a BTB-Cul3-Rbx1 (BCR) ubiquitin ligase complex where it is believed that a BTB domain-containing protein performs dual functions where it serves as both the substrate adaptor and the substrate recognition protein.
Tandem affinity purification and LC/MS-MS analysis of the BCR complex led to the identification of 10,225 peptides. After the SEQUEST algorithm and CDART program were used for protein identification and domain prediction, we discovered a group of Cul3-bound proteins that contain either the LRR or WD40 domain (CLWs). Further biochemical analysis revealed that the LRR domain-containing CLWs could bind both Cul3 and BTB domain-containing proteins. The dual binding role for the LRR domain-containing CLWs results in causing the BTB-domain protein to become a substrate instead of an adaptor.
To further distinguish potential substrates from other components that are part of the BCR ubiquitin ligase complex, we altered the parameters in the SEQUEST algorithm to select for peptide fragments with a modified lysine residue. This method not only identifies the potential substrates of the BCR ubiquitin ligase complex, but it also pinpoints the lysine residue in which the post-translational modification occurs. Interestingly, none of the CLWs were identified by this method, supporting our hypothesis that CLWs were not potential substrates but rather additional components of the BCR ubiquitin ligase complex.
Our study identified a new set of Cul3-binding proteins known as CLWs via tandem affinity purification and LC/MS-MS analysis. Subsequently, our biochemical analysis revealed that some CLWs modify binding of BTB domain-containing proteins to the complex, causing degradation of the BTB domain-containing protein. As these CLWs were excluded from our list of substrates, we propose that CLWs serve as unique Cul3 binding proteins that provide an alternative regulatory mechanism for the complex.
PMCID: PMC4107866  PMID: 25011449
Cullin3; Tandem-affinity purification; BTB domain-containing protein; BCR ubiquitin ligase complex; Mass spectrometry; E3 ubiquitin ligase; Protein purification; Ubiquitin; Ubiquitin ligase
4.  The cullin protein family 
Genome Biology  2011;12(4):220.
Cullin proteins are molecular scaffolds that have crucial roles in the post-translational modification of cellular proteins involving ubiquitin. The mammalian cullin protein family comprises eight members (CUL1 to CUL7 and PARC), which are characterized by a cullin homology domain. CUL1 to CUL7 assemble multi-subunit Cullin-RING E3 ubiquitin ligase (CRL) complexes, the largest family of E3 ligases with more than 200 members. Although CUL7 and PARC are present only in chordates, other members of the cullin protein family are found in Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and yeast. A cullin protein tethers both a substrate-targeting unit, often through an adaptor protein, and the RING finger component in a CRL. The cullin-organized CRL thus positions a substrate close to the RING-bound E2 ubiquitin-conjugating enzyme, which catalyzes the transfer of ubiquitin to the substrate. In addition, conjugation of cullins with the ubiquitin-like molecule Nedd8 modulates activation of the corresponding CRL complex, probably through conformational regulation of the interactions between cullin's carboxy-terminal tail and CRL's RING subunit. Genetic studies in several model organisms have helped to unravel a multitude of physiological functions associated with cullin proteins and their respective CRLs. CRLs target numerous substrates and thus have an impact on a range of biological processes, including cell growth, development, signal transduction, transcriptional control, genomic integrity and tumor suppression. Moreover, mutations in CUL7 and CUL4B genes have been linked to hereditary human diseases.
PMCID: PMC3218854  PMID: 21554755
5.  Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy 
Cell Division  2007;2:5.
Recent investigation of Cullin 4 (CUL4) has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1) to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN) that removes this important modification. Recently, multiple WD40-repeat proteins (WDR) were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF). Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.
PMCID: PMC1805432  PMID: 17280619
6.  Cul4B regulates neural progenitor cell growth 
BMC Neuroscience  2012;13:112.
Cullin ubiquitin ligases are activated via the covalent modification of Cullins by the small ubiquitin-like protein nedd8 in a process called neddylation. Genetic mutations of cullin-4b (cul4b) cause a prevalent type of X-linked intellectual disability (XLID) in males, but the physiological function of Cul4B in neuronal cells remains unclear.
There are three major isoforms of Cul4B (1, 2, and 3) in human and rodent tissues. By examining the endogenous Cul4B isoforms in the brain, this study demonstrates that Cul4B-1 and Cul4B-2 isoforms are unneddylated and more abundant in the brain whereas the lesser species Cul4B-3 that misses the N-terminus present in the other two isoforms is neddylated. The data suggest that the N-terminus of Cul4B inhibits neddylation in the larger isoforms. Immunostaining of human NT-2 cells also shows that most Cul4B is unneddylated, especially when it is localized in the process in G0-synchronized cells. This study demonstrates that Cul4B accumulates during mitosis and downregulation of Cul4B arrests NPCs and NT-2 cells in the G2/M phase of the cell cycle. In both human and rodent brain tissues, Cul4B-positive cells accumulate β-catenin in the dentate subgranular zone and the subventricular zone. These Cul4B-positive cells also co-express the MPM-2 mitotic epitope, suggesting that Cul4B is also necessary for mitosis progression in vivo.
This study provides first evidence that unneddylated Cul4B isoforms exist in the brain and are necessary for mitosis progression in NPCs. The data suggest that unneddylated Cul4B isoforms specifically inhibits β-catenin degradation during mitosis. Furthermore, unneddylated Cul4B may play a role in addition to cell cycle since it is exclusively localized to the processes in starved NT-2 cells. Further analyses of the different isoforms of Cul4B will help understand the cognitive deficits in Cul4B-linked XLID and give insights into drug and biomarker discoveries.
PMCID: PMC3506489  PMID: 22992378
Cullin; Neurogenesis; Ubiquitination; Neddylation; Mental retardation; β-catenin
7.  Structural Basis for Cul3 Protein Assembly with the BTB-Kelch Family of E3 Ubiquitin Ligases* 
The Journal of Biological Chemistry  2013;288(11):7803-7814.
Background: BTB-Kelch proteins, including KLHL11, are proposed to bind Cul3 through a “3-box” motif to form E3 ubiquitin ligases.
Results: We solved crystal structures of the KLHL11-Cul3 complex and four Kelch domains.
Conclusion: The 3-box forms a hydrophobic groove that binds a specific N-terminal extension of Cul3.
Significance: Dimeric BTB-Kelch proteins bind two Cul3 molecules and support a two-site model for substrate recognition.
Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein “3-box” motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.
PMCID: PMC3597819  PMID: 23349464
Proteasome; Protein-Protein Interactions; Signaling; Ubiquitination; X-ray Crystallography; β-Propeller; Degradation
8.  Role of Individual Subunits of the Neurospora crassa CSN Complex in Regulation of Deneddylation and Stability of Cullin Proteins 
PLoS Genetics  2010;6(12):e1001232.
The Cop9 signalosome (CSN) is an evolutionarily conserved multifunctional complex that controls ubiquitin-dependent protein degradation in eukaryotes. We found seven CSN subunits in Neurospora crassa in a previous study, but only one subunit, CSN-2, was functionally characterized. In this study, we created knockout mutants for the remaining individual CSN subunits in N. crassa. By phenotypic observation, we found that loss of CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, or CSN-7 resulted in severe defects in growth, conidiation, and circadian rhythm; the defect severity was gene-dependent. Unexpectedly, CSN-3 knockout mutants displayed the same phenotype as wild-type N. crassa. Consistent with these phenotypic observations, deneddylation of cullin proteins in csn-1, csn-2, csn-4, csn-5, csn-6, or csn-7 mutants was dramatically impaired, while deletion of csn-3 did not cause any alteration in the neddylation/deneddylation state of cullins. We further demonstrated that CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, and CSN-7, but not CSN-3, were essential for maintaining the stability of Cul1 in SCF complexes and Cul3 and BTB proteins in Cul3-BTB E3s, while five of the CSN subunits, but not CSN-3 and CSN-5, were also required for maintaining the stability of SKP-1 in SCF complexes. All seven CSN subunits were necessary for maintaining the stability of Cul4-DDB1 complexes. In addition, CSN-3 was also required for maintaining the stability of the CSN-2 subunit and FWD-1 in the SCFFWD-1 complex. Together, these results not only provide functional insights into the different roles of individual subunits in the CSN complex, but also establish a functional framework for understanding the multiple functions of the CSN complex in biological processes.
Author Summary
Protein degradation is precisely controlled in cells. The ubiquitin-mediated protein degradation pathway is highly conserved in eukaryotes, and the activity of ubiquitin ligases is regulated by the Cop9 signalosome (CSN), a multisubunit complex that is evolutionarily conserved from yeast to humans. Determining how the CSN complex functions biologically is crucial for understanding regulation of the ubiquitin-mediated protein degradation pathway. The filamentous fungus N. crassa is commonly used to study protein degradation. Its CSN complex contains seven subunits (CSN-1 to CSN-7). In this study, we generated knockout mutants of individual CSN subunits and observed the phenotypes of each mutant. We demonstrated that six of the seven CSN subunits were essential for cleaving the ubiquitin-like protein Nedd8 from cullin proteins (which act as scaffolds for ubiquitin ligases). In contrast, loss of the CSN-3 subunit had no effect on cullin neddylation. We also found that each CSN subunit had distinct roles in maintaining the stability of key components of cullin-based ubiquitin ligases. In summary, we systematically investigated the unequal contributions of CSN subunits to deneddylation and the maintenance of cullin-based ubiquitin ligases in N. crassa. Our work establishes a framework for understanding the function of CSN subunits in other eukaryotes.
PMCID: PMC2996332  PMID: 21151958
9.  Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism* 
The Journal of Biological Chemistry  2012;287(35):29679-29689.
Background: A detailed description of the kinetics of deneddylation of cullin by CSN has been lacking.
Results: Selected factors and SCF subunits are able to inhibit deneddylation to varying degrees. CSN interferes with SCF-mediated ubiquitination through a noncatalytic mechanism.
Conclusion: Deneddylation of Cul1 by CSN is regulated by F-box protein, substrate, and other factors.
Significance: Our work reported here could facilitate the development of directed therapies.
COP9 signalosome (CSN) mediates deconjugation of the ubiquitin-like protein Nedd8 from the cullin subunits of SCF and other cullin-RING ubiquitin ligases (CRLs). This process is essential to maintain the proper activity of CRLs in cells. Here, we report a detailed kinetic characterization of CSN-mediated deconjugation of Nedd8 from SCF. CSN is an efficient enzyme, with a kcat of ∼1 s−1 and Kmfor neddylated Cul1-Rbx1 of ∼200 nm, yielding a kcat/Km near the anticipated diffusion-controlled limit. Assembly with an F-box-Skp1 complex markedly inhibited deneddylation, although the magnitude varied considerably, with Fbw7-Skp1 inhibiting by ∼5-fold but Skp2-Cks1-Skp1 by only ∼15%. Deneddylation of both SCFFbw7 and SCFSkp2-Cks1 was further inhibited ∼2.5-fold by the addition of substrate. Combined, the inhibition by Fbw7-Skp1 plus its substrate cyclin E was greater than 10-fold. Unexpectedly, our results also uncover significant product inhibition by deconjugated Cul1, which results from the ability of Cul1 to bind tightly to CSN. Reciprocally, CSN inhibits the ubiquitin ligase activity of deneddylated Cul1. We propose a model in which assembled CRL complexes engaged with substrate are normally refractory to deneddylation. Upon consumption of substrate and subsequent deneddylation, CSN can remain stably bound to the CRL and hold it in low state of reduced activity.
PMCID: PMC3436198  PMID: 22767593
Analytical Biochemistry; Enzyme Kinetics; Protein Degradation; Protein-Protein Interactions; Ubiquitin Ligase; CSN; Cop9; Cul1; Nedd8; Deneddylation
10.  UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation 
BMC Biology  2012;10:36.
The proteins from the UBA-UBX family interact with ubiquitylated proteins via their UBA domain and with p97 via their UBX domain, thereby acting as substrate-binding adaptors for the p97 ATPase. In particular, human UBXN7 (also known as UBXD7) mediates p97 interaction with the transcription factor HIF1α that is actively ubiquitylated in normoxic cells by a CUL2-based E3 ligase, CRL2. Mass spectrometry analysis of UBA-UBX protein immunoprecipitates showed that they interact with a multitude of E3 ubiquitin-ligases. Conspicuously, UBXN7 was most proficient in interacting with cullin-RING ligase subunits. We therefore set out to determine whether UBXN7 interaction with cullins was direct or mediated by its ubiquitylated targets bound to the UBA domain.
We show that UBXN7 interaction with cullins is independent of ubiquitin- and substrate-binding. Instead, it relies on the UIM motif in UBXN7 that directly engages the NEDD8 modification on cullins. To understand the functional consequences of UBXN7 interaction with neddylated cullins, we focused on HIF1α, a CUL2 substrate that uses UBXD7/p97 as a ubiquitin-receptor on its way to proteasome-mediated degradation. We find that UBXN7 over-expression converts CUL2 to its neddylated form and causes the accumulation of non-ubiquitylated HIF1α. Both of these effects are strictly UIM-dependent and occur only when UBXN7 contains an intact UIM motif. We also show that HIF1α carrying long ubiquitin-chains can recruit alternative ubiquitin-receptors, lacking p97's ATP-dependent segregase activity.
Our study shows that independently of its function as a ubiquitin-binding adaptor for p97, UBXN7 directly interacts with neddylated cullins and causes the accumulation of the CUL2 substrate HIF1α. We propose that by sequestering CUL2 in its neddylated form, UBXN7 negatively regulates the ubiquitin-ligase activity of CRL2 and this might prevent recruitment of ubiquitin-receptors other than p97 to nuclear HIF1α.
PMCID: PMC3349548  PMID: 22537386
cullin; NEDD8; p97; ubiquitin-dependent degradation; UBXD7
11.  Regulation of Cullin RING E3 Ubiquitin Ligases by CAND1 In Vivo 
PLoS ONE  2011;6(1):e16071.
Cullin RING ligases are multi-subunit complexes consisting of a cullin protein which forms a scaffold onto which the RING protein Rbx1/2 and substrate receptor subunits assemble. CAND1, which binds to cullins that are not conjugated with Nedd8 and not associated with substrate receptors, has been shown to function as a positive regulator of Cullin ligases in vivo. Two models have been proposed to explain this requirement: (i) CAND1 sequesters cullin proteins and thus prevents autoubiquitination of substrate receptors, and (ii) CAND1 is required to promote the exchange of bound substrate receptors. Using mammalian cells, we show that CAND1 is predominantly cytoplasmically localized and that cullins are the major CAND1 interacting proteins. However, only small amounts of CAND1 bind to Cul1 in cells, despite low basal levels of Cul1 neddylation and approximately equal cytoplasmic endogenous protein concentrations of CAND1 and Cul1. Compared to F-box protein substrate receptors, binding of CAND1 to Cul1 in vivo is weak. Furthermore, preventing binding of F-box substrate receptors to Cul1 does not increase CAND1 binding. In conclusion, our study suggests that CAND1 does not function by sequestering cullins in vivo to prevent substrate receptor autoubiquitination and is likely to regulate cullin RING ligase activity via alternative mechanisms.
PMCID: PMC3020946  PMID: 21249194
12.  BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase 
Molecular and Cellular Biology  2005;25(1):162-171.
The concentrations and functions of many eukaryotic proteins are regulated by the ubiquitin pathway, which consists of ubiquitin activation (E1), conjugation (E2), and ligation (E3). Cullins are a family of evolutionarily conserved proteins that assemble by far the largest family of E3 ligase complexes. Cullins, via a conserved C-terminal domain, bind with the RING finger protein Roc1 to recruit the catalytic function of E2. Via a distinct N-terminal domain, individual cullins bind to a protein motif present in multiple proteins to recruit specific substrates. Cullin 3 (Cul3), but not other cullins, binds directly with BTB domains to constitute a potentially large number of BTB-CUL3-ROC1 E3 ubiquitin ligases. Here we report that the human BTB-Kelch protein Keap1, a negative regulator of the antioxidative transcription factor Nrf2, binds to CUL3 and Nrf2 via its BTB and Kelch domains, respectively. The KEAP1-CUL3-ROC1 complex promoted NRF2 ubiquitination in vitro and knocking down Keap1 or CUL3 by short interfering RNA resulted in NRF2 protein accumulation in vivo. We suggest that Keap1 negatively regulates Nrf2 function in part by targeting Nrf2 for ubiquitination by the CUL3-ROC1 ligase and subsequent degradation by the proteasome. Blocking NRF2 degradation in cells expressing both KEAP1 and NRF2 by either inhibiting the proteasome activity or knocking down Cul3, resulted in NRF2 accumulation in the cytoplasm. These results may reconcile previously observed cytoplasmic sequestration of NRF2 by KEAP1 and suggest a possible regulatory step between KEAP1-NRF2 binding and NRF2 degradation.
PMCID: PMC538799  PMID: 15601839
13.  Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity 
Molecular Biology of the Cell  2011;22(24):4706-4715.
Cullin RING E3 ligases require covalent modification with Nedd8 for activity. Neddylation is reversed by the COP9 signalosome (CSN). We characterize the role of CSN-dependent deneddylation in vivo and propose a model in which CSN binds to cullin ligases in their active conformation and functions to recruit important regulatory factors.
Cullin RING ligases (CRLs) are the largest family of cellular E3 ubiquitin ligases and mediate polyubiquitination of a number of cellular substrates. CRLs are activated via the covalent modification of the cullin protein with the ubiquitin-like protein Nedd8. This results in a conformational change in the cullin carboxy terminus that facilitates the ubiquitin transfer onto the substrate. COP9 signalosome (CSN)-mediated cullin deneddylation is essential for CRL activity in vivo. However, the mechanism through which CSN promotes CRL activity in vivo is currently unclear. In this paper, we provide evidence that cullin deneddylation is not intrinsically coupled to substrate polyubiquitination as part of the CRL activation cycle. Furthermore, inhibiting substrate-receptor autoubiquitination is unlikely to account for the major mechanism through which CSN regulates CRL activity. CSN also did not affect recruitment of the substrate-receptor SPOP to Cul3, suggesting it may not function to facilitate the exchange of Cul3 substrate receptors. Our results indicate that CSN binds preferentially to CRLs in the neddylation-induced, active conformation. Binding of the CSN complex to active CRLs may recruit CSN-associated proteins important for CRL regulation. The deneddylating activity of CSN would subsequently promote its own dissociation to allow progression through the CRL activation cycle.
PMCID: PMC3237615  PMID: 22013077
14.  The SCFHOS/β-TRCP-ROC1 E3 Ubiquitin Ligase Utilizes Two Distinct Domains within CUL1 for Substrate Targeting and Ubiquitin Ligation 
Molecular and Cellular Biology  2000;20(4):1382-1393.
We describe a purified ubiquitination system capable of rapidly catalyzing the covalent linkage of polyubiquitin chains onto a model substrate, phosphorylated IκBα. The initial ubiquitin transfer and subsequent polymerization steps of this reaction require the coordinated action of Cdc34 and the SCFHOS/β-TRCP-ROC1 E3 ligase complex, comprised of four subunits (Skp1, cullin 1 [CUL1], HOS/β-TRCP, and ROC1). Deletion analysis reveals that the N terminus of CUL1 is both necessary and sufficient for binding Skp1 but is devoid of ROC1-binding activity and, hence, is inactive in catalyzing ubiquitin ligation. Consistent with this, introduction of the N-terminal CUL1 polypeptide into cells blocks the tumor necrosis factor alpha-induced and SCF-mediated degradation of IκB by forming catalytically inactive complexes lacking ROC1. In contrast, the C terminus of CUL1 alone interacts with ROC1 through a region containing the cullin consensus domain, to form a complex fully active in supporting ubiquitin polymerization. These results suggest the mode of action of SCF-ROC1, where CUL1 serves as a dual-function molecule that recruits an F-box protein for substrate targeting through Skp1 at its N terminus, while the C terminus of CUL1 binds ROC1 to assemble a core ubiquitin ligase.
PMCID: PMC85290  PMID: 10648623
15.  Structural basis for a reciprocal regulation between SCF and CSN 
Cell reports  2012;2(3):616-627.
SCF (Skp1-Cul1-Fboxes) E3 ligases are activated by ligation to the ubiquitin-like protein Nedd8, which is reversed by the deneddylating Cop9 Signalosome (CSN). However, CSN also promotes SCF substrate turnover through unknown mechanisms. Through biochemical and electron microscopy analyses, we determined molecular models of CSN complexes with SCFSkp2/Cks1 and SCFFbw7 and found that CSN occludes both SCF functional sites – the catalytic Rbx1-Cul1 C-terminal domain and the substrate receptor. Indeed, CSN binding prevents SCF interactions with E2 enzymes and a ubiquitination substrate, and inhibits SCF-catalyzed ubiquitin chain formation independent of deneddylation. Importantly, CSN prevents neddylation of the bound cullin, unless binding of a ubiquitination substrate triggers SCF dissociation and neddylation. Taken together, the results provide a model for how reciprocal regulation sensitizes CSN to the SCF assembly state, and inhibits a catalytically-competent SCF until a ubiquitination substrate drives its own degradation by displacing CSN, thereby promoting cullin neddylation and substrate ubiquitination.
PMCID: PMC3703508  PMID: 22959436
16.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation 
Cell  2008;134(6):995-1006.
Cullin-RING Ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5ctd-Rbx1 and SAXS analysis of NEDD8~Cul1ctd-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.
PMCID: PMC2628631  PMID: 18805092
17.  CAND1-Mediated Substrate Adaptor Recycling Is Required for Efficient Repression of Nrf2 by Keap1 
Molecular and Cellular Biology  2006;26(4):1235-1244.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
PMCID: PMC1367193  PMID: 16449638
18.  Flexible Cullins in Cullin-RING E3 Ligases Allosterically Regulate Ubiquitination* 
The Journal of Biological Chemistry  2011;286(47):40934-40942.
Background: Protein ubiquitination regulates critical biological processes, including degradation of malfunctioning proteins.
Results: We show that Cul1, Cul4A, and Cul5 are not rigid. All are flexible scaffolds with preferred distributions of conformational states.
Conclusion: Cullin flexibilities are regulated allosterically, allowing the cullin-RING E3 ubiquitin ligases to increase the E2-substrate distance to a specific range, facilitating polyubiquitination.
Significance: Cullins are not inert scaffolds and allosterically regulate ubiquitination.
How do the cullins, with conserved structures, accommodate substrate-binding proteins with distinct shapes and sizes? Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from E2 to the substrate, tagging the substrate for degradation. They contain substrate-binding, adaptor, cullin, and Rbx proteins. Previously, we showed that substrate-binding and Rbx proteins are flexible. This allows shortening of the E2-substrate distance for initiation of ubiquitination or increasing the distance to accommodate the polyubiquitin chain. However, the role of the cullin remained unclear. Is cullin a rigid scaffold, or is it flexible and actively assists in the ubiquitin transfer reaction? Why are there different cullins, and how do these cullins specifically facilitate ubiquitination for different substrates? To answer these questions, we performed structural analysis and molecular dynamics simulations based on Cul1, Cul4A, and Cul5 crystal structures. Our results show that these three cullins are not rigid scaffolds but are flexible with conserved hinges in the N-terminal domain. However, the degrees of flexibilities are distinct among the different cullins. Of interest, Cul1 flexibility can also be changed by deletion of the long loop (which is absent in Cul4A) in the N-terminal domain, suggesting that the loop may have an allosteric functional role. In all three cases, these conformational changes increase the E2-substrate distance to a specific range to facilitate polyubiquitination, suggesting that rather than being inert scaffold proteins, cullins allosterically regulate ubiquitination.
PMCID: PMC3220518  PMID: 21937436
Computer Modeling; E3 Ubiquitin Ligase; Protein Complexes; Protein Conformation; Protein Dynamics; Protein Folding; Ubiquitination
19.  HIV relies on neddylation for ubiquitin ligase-mediated functions 
Retrovirology  2013;10:138.
HIV and SIV defeat antiviral proteins by usurping Cullin-RING E3 ubiquitin ligases (CRLs) and likely influence other cellular processes through these as well. HIV-2 viral protein X (Vpx) engages the cullin4-containing CRL4 complex to deplete the antiviral protein SAMHD1. Vif expressed by HIV-1 and HIV-2 taps a cullin5 ubiquitin ligase complex to mark the antiviral protein APOBEC3G for destruction. Viral Protein R of HIV-1 (Vpr) assembles with the CRL4 ubiquitin ligase complex to deplete uracil-N-glycosylase2 (UNG2). Covalent attachment of the ubiquitin-like protein side-chain NEDD8 functionally activates cullins which are common to all of these processes.
The requirement for neddylation in HIV-1 and HIV-2 infectivity was tested in the presence of APOBEC3G and SAMHD1 respectively. Further the need for neddylation in HIV-1 Vpr-mediated depletion of UNG2 was probed. Treatment with MLN4924, an adenosine sulfamate analog which hinders the NEDD8 activating enzyme NAE1, blocked neddylation of cullin4A (CUL4A). The inhibitor hindered HIV-1 infection in the presence of APOBEC3G, even when Vif was expressed, and it stopped HIV-2 infection in the presence of SAMHD1 and Vpx. Consistent with these findings, MLN4924 prevented Vpx-mediated depletion of SAMHD1 in macrophages infected with Vpx-expressing HIV-2, as well as HIV-1 Vif-mediated destruction of APOBEC3G. It also stemmed Vpr-mediated UNG2 elimination from cells infected with HIV-1.
Neddylation plays an important role in HIV-1 and HIV-2 infection. This observation is consistent with the essential parts that cullin-based ubiquitin ligases play in overcoming cellular anti-viral defenses.
PMCID: PMC3842660  PMID: 24245672
HIV; SAMHD1; APOBEC3G; Vif; Vpr; Vpx; UNG2; CUL4A; CUL5; NEDD8; MLN4924
20.  C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues 
Developmental biology  2010;346(1):113-126.
Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. C. elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCFLIN-23 target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCFLIN-23 complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.
PMCID: PMC2955628  PMID: 20659444
CAND1; CRL; cullin; Nedd8; neddylation; ubiquitin ligase; seam cells
21.  Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms 
PLoS Genetics  2009;5(1):e1000328.
CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells.
Author Summary
Ubiquitin-mediated proteolysis plays a central role in controlling intracellular levels of essential regulatory molecules in all eukaryotic organisms. This protein degradation pathway has a large number of components, including hundreds of ubiquitin protein ligases (E3s) that are predicted to have regulatory roles in cell homeostasis, cell cycle control, and development. Recent research revealed the molecular composition of CULLIN3 (CUL3)-based E3 ligases, which are essential enzymes in both metazoans and plants. Here, we report that in the model plant A. thaliana, CUL3 modulates the emission of ethylene, a gaseous plant hormone that controls a variety of processes such as fruit ripening and stress response. In particular, we provide evidence that CUL3 regulates root growth by a novel ethylene-dependant pathway. Thus, we showed that CUL3 knockdown inhibits primary root growth by reducing the root meristem size. Finally, we also identified a function of CUL3 in distal root patterning. Indeed, CUL3 function is required for normal division and organisation of the root stem cell niche and columella root cap cells. Overall, our results show that Arabidopsis CUL3 is essential for plant growth and development, not only during embryogenesis but also at post-embryonic stages.
PMCID: PMC2607017  PMID: 19132085
22.  The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1 
Molecular and Cellular Biology  2000;20(21):8185-8197.
Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IκBα ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity—ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.
PMCID: PMC86428  PMID: 11027288
23.  Pathogenic Bacteria Target NEDD8-Conjugated Cullins to Hijack Host-Cell Signaling Pathways 
PLoS Pathogens  2010;6(9):e1001128.
The cycle inhibiting factors (Cif), produced by pathogenic bacteria isolated from vertebrates and invertebrates, belong to a family of molecules called cyclomodulins that interfere with the eukaryotic cell cycle. Cif blocks the cell cycle at both the G1/S and G2/M transitions by inducing the stabilization of cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Using yeast two-hybrid screens, we identified the ubiquitin-like protein NEDD8 as a target of Cif. Cif co-compartmentalized with NEDD8 in the host cell nucleus and induced accumulation of NEDD8-conjugated cullins. This accumulation occurred early after cell infection and correlated with that of p21 and p27. Co-immunoprecipitation revealed that Cif interacted with cullin-RING ubiquitin ligase complexes (CRLs) through binding with the neddylated forms of cullins 1, 2, 3, 4A and 4B subunits of CRL. Using an in vitro ubiquitylation assay, we demonstrate that Cif directly inhibits the neddylated CUL1-associated ubiquitin ligase activity. Consistent with this inhibition and the interaction of Cif with several neddylated cullins, we further observed that Cif modulates the cellular half-lives of various CRL targets, which might contribute to the pathogenic potential of diverse bacteria.
Author Summary
Among the arsenal of virulence factors used by bacterial pathogens to infect and manipulate their hosts, cyclomodulins are a growing family of bacterial toxins that interfere with the eukaryotic cell-cycle. Cif is one of these cyclomodulins produced by both mammalian and invertebrate pathogenic bacteria. Cif blocks the host cell cycle by inducing the accumulation of two regulators of cell cycle progression: the cyclin-dependent kinase inhibitors p21 and p27. To decipher the mode of action of Cif, we performed yeast two-hybrid screenings. We show that Cif binds to NEDD8 and induce accumulation of neddylated cullins early after infection. Cullins are scaffold components of cullin-RING ubiquitin ligases (CRLs), which ubiquitinate proteins and target them for degradation by the 26S proteasome. We demonstrate that Cif directly inhibits the ubiquitin ligase activity of these CRLs and consequently the targeting of p21 and p27 for ubiquitin-dependent degradation. Targeting at NEDD8 represents a novel strategy for modulation of host cell functions by bacterial pathogens. By inhibiting the most prominent class of ubiquitin-ligases, Cif controls the stability of a cohort of key regulators and impinge on not only cell cycle progression but also on many cellular and biological processes such as immunity, development, transcription, and cell signaling.
PMCID: PMC2947998  PMID: 20941356
24.  "Cullin 4 makes its mark on chromatin" 
Cell Division  2006;1:14.
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regualted chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.
PMCID: PMC1533813  PMID: 16831222
25.  Analysis of the Cullin Binding Sites of the E4orf6 Proteins of Human Adenovirus E3 Ubiquitin Ligases 
Journal of Virology  2014;88(7):3885-3897.
E4orf6 proteins of human adenoviruses form Cullin-based E3 ubiquitin ligase complexes that degrade cellular proteins, which impedes efficient viral replication. These complexes also include the viral E1B55K product, which is believed to recruit most substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as serotypes representing some species form Cul5-based complexes (species B2, C, D, and E), whereas others utilize Cul2 (species A and F). Adenovirus type 16 (Ad16; species B1) binds significant levels of both. In this report, we show that the Cul2 binding sequence in E4orf6 of Ad12 (species A) and Ad40 (species F) resembles the cellular consensus Cul2 box. Mutation within this Cul2 box prevents binding not only of Cul2 but also in some cases Elongin C and reduces the ability to degrade target proteins, such as Mre11 and p53. A comparable Cul2 box is not present in E4orf6 of Ad5 and other serotypes that bind Cul5; however, creation of this Cul2 box sequence in Ad5 E4orf6 promoted binding to Cul2 and Cul2-dependent degradation of Mre11. E4orf6 of Ad16 also binds Cul2; however, unlike Ad40, it does not contain an Ad12-like Cul2 box, suggesting that Ad16 binds Cul2 in a unique but perhaps nonfunctional manner, as only Cul5 binding complexes appeared able to degrade Mre11. Our extensive analyses have thus far failed to identify a consensus Cul5 binding sequence, suggesting that association occurs via a novel and perhaps complex pattern of protein-protein interactions. Nevertheless, the identification of the Cul2 box may allow prediction of Cullin specificity for all E4orf6-containing Adenoviridae.
IMPORTANCE The work described in this paper is a continuation of our in-depth studies on the Cullin-based E3 ligase complexes formed by the viral E4orf6 and E1B55K proteins of all human adenoviruses. This complex induces the degradation of a growing series of cellular proteins that impede efficient viral replication. Some human adenovirus species utilize Cul5, whereas others bind Cul2. In this paper, we are the first to identify the E4orf6 Cul2 binding site, which conforms in sequence to a classic cellular Cul2 box. Ours is the first detailed biochemical and genetic analysis of a Cul2-based adenovirus ligase and provides insights into both the cooperative interactions in forming Cullin-based ligases as well as the universality of formation of all adenovirus ligase complexes. Our work now permits future analysis of the evolutionary significance of the ligase complex, work that is currently in progress in our lab.
PMCID: PMC3993529  PMID: 24453364

Results 1-25 (925077)