PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (756027)

Clipboard (0)
None

Related Articles

1.  The Two Variants of Oxysterol Binding Protein-related Protein-1 Display Different Tissue Expression Patterns, Have Different Intracellular Localization, and Are Functionally Distinct 
Molecular Biology of the Cell  2003;14(3):903-915.
Oxysterol binding protein (OSBP) homologs comprise a family of 12 proteins in humans (Jaworski et al., 2001; Lehto et al., 2001). Two variants of OSBP-related protein (ORP) 1 have been identified: a short one that consists of the carboxy-terminal ligand binding domain only (ORP1S, 437 aa) and a longer N-terminally extended form (ORP1L, 950 aa) encompassing three ankyrin repeats and a pleckstrin homology domain (PHD). We now report that the two mRNAs show marked differences in tissue expression. ORP1S predominates in skeletal muscle and heart, whereas ORP1L is the most abundant form in brain and lung. On differentiation of primary human monocytes into macrophages, both ORP1S and ORP1L mRNAs were induced, the up-regulation of ORP1L being >100-fold. The intracellular localization of the two ORP1 variants was found to be different. Whereas ORP1S is largely cytosolic, the ORP1L variant localizes to late endosomes. A significant amount of ORP1S but only little ORP1L was found in the nucleus. The ORP1L ankyrin repeat region (aa 1–237) was found to localize to late endosomes such as the full-length protein. This localization was even more pronounced for a fragment that additionally includes the PHD (aa 1–408). The amino-terminal region of ORP1L consisting of the ankyrin repeat and PHDs is therefore likely to be responsible for the targeting of ORP1L to late endosomes. Interestingly, overexpression of ORP1L was found to enhance the LXRα-mediated transactivation of a reporter gene, whereas ORP1S failed to influence this process. The results suggest that the two forms of ORP1 are functionally distinct and that ORP1L is involved in control of cellular lipid metabolism.
doi:10.1091/mbc.E02-08-0459
PMCID: PMC151568  PMID: 12631712
2.  Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βlll spectrin 
The Journal of Cell Biology  2007;176(4):459-471.
The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150Glued, which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L.
doi:10.1083/jcb.200606077
PMCID: PMC2063981  PMID: 17283181
3.  OSBP-Related Proteins (ORPs) in Human Adipose Depots and Cultured Adipocytes: Evidence for Impacts on the Adipocyte Phenotype 
PLoS ONE  2012;7(9):e45352.
Oxysterol-binding protein (OSBP) homologues, ORPs, are implicated in lipid homeostatic control, vesicle transport, and cell signaling. We analyzed here the quantity of ORP mRNAs in human subcutaneous (s.c.) and visceral adipose depots, as well as in the Simpson-Golabi-Behmel syndrome (SGBS) adipocyte cell model. All of the ORP mRNAs were present in the s.c and visceral adipose tissues, and the two depots shared an almost identical ORP mRNA expression pattern. SGBS adipocytes displayed a similar pattern, suggesting that the adipose tissue ORP expression pattern mainly derives from adipocytes. During SGBS cell adipogenic differentiation, ORP2, ORP3, ORP4, ORP7, and ORP8 mRNAs were down-regulated, while ORP11 was induced. To assess the impacts of ORPs on adipocyte differentiation, ORP3 and ORP8, proteins down-regulated during adipogenesis, were overexpressed in differentiating SGBS adipocytes, while ORP11, a protein induced during adipogenesis, was silenced. ORP8 overexpression resulted in reduced expression of the aP2 mRNA, while down-regulation of adiponectin and aP2 was observed in ORP11 silenced cells. Furthermore, ORP8 overexpression or silencing of ORP11 markedly decreased cellular triglyceride storage. These data identify the patterns of ORP expression in human adipose depots and SGBS adipocytes, and provide the first evidence for a functional impact of ORPs on the adipocyte phenotype.
doi:10.1371/journal.pone.0045352
PMCID: PMC3448648  PMID: 23028956
4.  Oxysterol Binding Protein–related Protein 9 (ORP9) Is a Cholesterol Transfer Protein That Regulates Golgi Structure and Function 
Molecular Biology of the Cell  2009;20(5):1388-1399.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.
doi:10.1091/mbc.E08-09-0905
PMCID: PMC2649274  PMID: 19129476
5.  A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking 
The Journal of Cell Biology  2011;192(1):121-135.
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes.
Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
doi:10.1083/jcb.201004142
PMCID: PMC3019559  PMID: 21220512
6.  Multivesicular Body Formation Requires OSBP–Related Proteins and Cholesterol 
PLoS Genetics  2010;6(8):e1001055.
In eukaryotes, different subcellular organelles have distinct cholesterol concentrations, which is thought to be critical for biological functions. Oxysterol-binding protein-related proteins (ORPs) have been assumed to mediate nonvesicular cholesterol trafficking in cells; however, their in vivo functions and therefore the biological significance of cholesterol in each organelle are not fully understood. Here, by generating deletion mutants of ORPs in Caenorhabditis elegans, we show that ORPs are required for the formation and function of multivesicular bodies (MVBs). In an RNAi enhancer screen using obr quadruple mutants (obr-1; -2; -3; -4), we found that MVB–related genes show strong genetic interactions with the obr genes. In obr quadruple mutants, late endosomes/lysosomes are enlarged and membrane protein degradation is retarded, although endocytosed soluble proteins are normally delivered to lysosomes and degraded. We also found that the cholesterol content of late endosomes/lysosomes is reduced in the mutants. In wild-type worms, cholesterol restriction induces the formation of enlarged late endosomes/lysosomes, as observed in obr quadruple mutants, and increases embryonic lethality upon knockdown of MVB–related genes. Finally, we show that knockdown of ORP1L, a mammalian ORP family member, induces the formation of enlarged MVBs in HeLa cells. Our in vivo findings suggest that the proper cholesterol level of late endosomes/lysosomes generated by ORPs is required for normal MVB formation and MVB–mediated membrane protein degradation.
Author Summary
The multivesicular body (MVB) sorting pathway provides a mechanism for the lysosomal degradation of membrane proteins, such as growth factor receptors. The formation of MVBs is unique in that the curvature is directed toward the lumen of the compartment rather than the cytosol. During MVB formation, the curvature-inducing proteins, such as clathrins, could not be involved in the inward invagination of the endosomal membrane. Under these circumstances, lipids have been assumed to play a role in the membrane invagination step by creating local membrane environments; however, the lipids involved in this step have not been fully elucidated. Here we demonstrate that cholesterol, an essential membrane component in animals, is critical for MVB formation and function. We found that disruption of OSBP–related proteins (ORPs), which have been proposed to function in cellular cholesterol distribution and metabolism, reduces the cholesterol content in late endosomes/lysosomes, leading to impaired MVB function. MVB sorting pathway is known to be involved in many processes, including growth factor receptor down-regulation, exosome secretion, antigen presentation, the budding of enveloped viruses, and cytokinesis. Our findings provide a novel link between cholesterol and these biologically important functions.
doi:10.1371/journal.pgen.1001055
PMCID: PMC2916882  PMID: 20700434
7.  Adenovirus RIDα regulates endosome maturation by mimicking GTP-Rab7 
The Journal of Cell Biology  2007;179(5):965-980.
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are guanosine triphosphate (GTP)–Rab7 effectors that instigate minus end–directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation α (RIDα), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135–144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299–8306). RIDα localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDα compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu2+ binding to RIDα residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDα–RILP interaction and RIDα activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDα activity during an acute adenovirus infection. We conclude that RIDα coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.
doi:10.1083/jcb.200702187
PMCID: PMC2099200  PMID: 18039930
8.  Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning 
The Journal of Cell Biology  2009;185(7):1209-1225.
Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150Glued bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)–LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7–RILP complex to remove p150Glued and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells.
doi:10.1083/jcb.200811005
PMCID: PMC2712958  PMID: 19564404
9.  Characterization of the Sterol and Phosphatidylinositol 4-Phosphate Binding Properties of Golgi-Associated OSBP-Related Protein 9 (ORP9) 
PLoS ONE  2014;9(9):e108368.
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.
doi:10.1371/journal.pone.0108368
PMCID: PMC4177916  PMID: 25255026
10.  Adenovirus RIDα uncovers a novel pathway requiring ORP1L for lipid droplet formation independent of NPC1 
Molecular Biology of the Cell  2013;24(21):3309-3325.
Expression of the adenovirus protein RIDα rescues the cholesterol storage phenotype in NPC1-deficient cells by inducing formation of lipid droplets. The function of RIDα is independent of NPC1 but dependent on NPC2 and the oxysterol-binding protein ORP1L. This study provides the first evidence that ORP1L plays a role in sterol transport and LD formation.
Niemann–Pick disease type C (NPC) is caused by mutations in NPC1 or NPC2, which coordinate egress of low-density-lipoprotein (LDL)-cholesterol from late endosomes. We previously reported that the adenovirus-encoded protein RIDα rescues the cholesterol storage phenotype in NPC1-mutant fibroblasts. We show here that RIDα reconstitutes deficient endosome-to-endoplasmic reticulum (ER) transport, allowing excess LDL-cholesterol to be esterified by acyl-CoA:cholesterol acyltransferase and stored in lipid droplets (LDs) in NPC1-deficient cells. Furthermore, the RIDα pathway is regulated by the oxysterol-binding protein ORP1L. Studies have classified ORP1L as a sterol sensor involved in LE positioning downstream of GTP-Rab7. Our data, however, suggest that ORP1L may play a role in transport of LDL-cholesterol to a specific ER pool designated for LD formation. In contrast to NPC1, which is dispensable, the RIDα/ORP1L-dependent route requires functional NPC2. Although NPC1/NPC2 constitutes the major pathway, therapies that amplify minor egress routes for LDL-cholesterol could significantly improve clinical management of patients with loss-of-function NPC1 mutations. The molecular identity of putative alternative pathways, however, is poorly characterized. We propose RIDα as a model system for understanding physiological egress routes that use ORP1L to activate ER feedback responses involved in LD formation.
doi:10.1091/mbc.E12-10-0760
PMCID: PMC3814149  PMID: 24025716
11.  OSBP-Related Protein 8 (ORP8) Regulates Plasma and Liver Tissue Lipid Levels and Interacts with the Nucleoporin Nup62 
PLoS ONE  2011;6(6):e21078.
We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum oxysterol-binding protein implicated in cellular lipid homeostasis. We now investigated its action in hepatic cells in vivo and in vitro. Adenoviral overexpression of ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum (−34%, −26%, −37%, respectively) and liver tissue (−40%, −12%, −24%), coinciding with reduction of nuclear (n)SREBP-1 and -2 and mRNA levels of their target genes. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing by RNA interference moderately suppressed or induced the expression of SREBP-1 and SREBP-2 target genes, respectively. In accordance, cholesterol biosynthesis was reduced by ORP8 overexpression and enhanced by ORP8 silencing in [3H]acetate pulse-labeling experiments. ORP8, previously shown to bind 25-hydroxycholesterol, was now shown to bind also cholesterol in vitro. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation analyses revealed the nuclear pore component Nup62 as an interaction partner of ORP8. Co-localization of ORP8 and Nup62 at the nuclear envelope was demonstrated by BiFC and confocal immunofluorescence microscopy. Furthermore, the impact of overexpressed ORP8 on nSREBPs and their target mRNAs was inhibited in cells depleted of Nup62. Our results reveal that ORP8 has the capacity to modulate lipid homeostasis and SREBP activity, probably through an indirect mechanism, and provide clues of an entirely new mode of ORP action.
doi:10.1371/journal.pone.0021078
PMCID: PMC3115989  PMID: 21698267
12.  The Diverse Functions of Oxysterol-Binding Proteins 
Oxysterol-binding protein (OSBP)-related proteins (ORPs) are lipid-binding proteins that are conserved from yeast to humans. They are implicated in many cellular processes including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport. All ORPs contain an OSBP-related domain (ORD) that has a hydrophobic pocket that binds a single sterol. ORDs also contain additional membrane binding surfaces, some of which bind phosphoinositides and may regulate sterol binding. Studies in yeast suggest that ORPs function as sterol transporters, perhaps in regions where organelle membranes are closely apposed. Yeast ORPs also participate in vesicular trafficking, although their role is unclear. In mammalian cells, some ORPs function as sterol sensors that regulate the assembly of protein complexes in response to changes in cholesterol levels. This review will summarize recent advances in our understanding of how ORPs bind lipids and membranes and how they function in diverse cellular processes.
doi:10.1146/annurev.cellbio.042308.113334
PMCID: PMC3478074  PMID: 19575662
cholesterol; sterol; phosphoinositides; signaling; lipid transport; membranes; membrane contact sites; lipid transport proteins
13.  Dynamic Changes in the Spatiotemporal Localization of Rab21 in Live RAW264 Cells during Macropinocytosis 
PLoS ONE  2009;4(8):e6689.
Rab21, a member of the Rab GTPase family, is known to be involved in membrane trafficking, but its implication in macropinocytosis is unclear. We analyzed the spatiotemporal localization of Rab21 in M-CSF-stimulated RAW264 macrophages by the live-cell imaging of fluorescent protein-fused Rab21. It was demonstrated that wild-type Rab21 was transiently associated with macropinosomes. Rab21 was recruited to the macropinosomes after a decrease in PI(4,5)P2 and PI(3,4,5)P3 levels. Although Rab21 was largely colocalized with Rab5, the recruitment of Rab21 to the macropinosomes lagged a minute behind that of Rab5, and preceded that of Rab7. Then, Rab21 was dissociated from the macropinosomes prior to the accumulation of Lamp1, a late endosomal/lysosomal marker. Our analysis of Rab21 mutants revealed that the GTP-bound mutant, Rab21-Q78L, was recruited to the macropinosomes, similarly to wild-type Rab21. However, the GDP-bound mutant, Rab21-T33N, did not localize on the formed macropinosomes, suggesting that the binding of GTP to Rab21 is required for the proper recruitment of Rab21 onto the macropinosomes. However, neither mutation of Rab21 significantly affected the rate of macropinosome formation. These data indicate that Rab21 is a transient component of early and intermediate stages of macropinocytosis, and probably functions in macropinosome maturation before fusing with lysosomal compartments.
doi:10.1371/journal.pone.0006689
PMCID: PMC2726762  PMID: 19693279
14.  Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti 
Insect molecular biology  2011;20(4):541-552.
The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells.
doi:10.1111/j.1365-2583.2011.01087.x
PMCID: PMC3139008  PMID: 21699592
Oxysterol-binding protein; cholesterol; gene expression; sterol transport
15.  Rab7 Activation by Growth Factor Withdrawal Contributes to the Induction of Apoptosis 
Molecular Biology of the Cell  2009;20(12):2831-2840.
The Rab7 GTPase promotes membrane fusion reactions between late endosomes and lysosomes. In previous studies, we demonstrated that Rab7 inactivation blocks growth factor withdrawal-induced cell death. These results led us to hypothesize that growth factor withdrawal activates Rab7. Here, we show that growth factor deprivation increased both the fraction of Rab7 that was associated with cellular membranes and the percentage of Rab7 bound to guanosine triphosphate (GTP). Moreover, expressing a constitutively GTP-bound mutant of Rab7, Rab7-Q67L, was sufficient to trigger cell death even in the presence of growth factors. This activated Rab7 mutant was also able to reverse the growth factor-independent cell survival conferred by protein kinase C (PKC) δ inhibition. PKCδ is one of the most highly induced proteins after growth factor withdrawal and contributes to the induction of apoptosis. To evaluate whether PKCδ regulates Rab7, we first examined lysosomal morphology in cells with reduced PKCδ activity. Consistent with a potential role as a Rab7 activator, blocking PKCδ function caused profound lysosomal fragmentation comparable to that observed when Rab7 was directly inhibited. Interestingly, PKCδ inhibition fragmented the lysosome without decreasing Rab7-GTP levels. Taken together, these results suggest that Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis and that Rab7-dependent fusion reactions may be targeted by signaling pathways that limit growth factor-independent cell survival.
doi:10.1091/mbc.E08-09-0911
PMCID: PMC2695791  PMID: 19386765
16.  AMPylation Is Critical for Rab1 Localization to Vacuoles Containing Legionella pneumophila 
mBio  2014;5(1):e01035-13.
ABSTRACT
Legionella pneumophila is an intracellular pathogen that resides within a membrane-bound compartment that is derived from vesicles exiting the endoplasmic reticulum (ER). To create this compartment, these bacteria use a type IV secretion system to deliver effector proteins that subvert host cell functions. Several Legionella effector proteins modulate the function of the host protein Rab1, which is a GTPase that is recruited to the Legionella-containing vacuole (LCV). Here, we examined which of the Rab1-directed enzymatic activities displayed by Legionella effectors are important for localizing the Rab1 protein to the LCV membrane. The guanine nucleotide exchange factor (GEF) domain in the effector protein DrrA (SidM) was essential for Rab1 recruitment to the LCV and Rab1 AMPylation by the nucleotidyltransferase domain in DrrA was important for Rab1 retention. Legionella organisms producing mutant DrrA proteins that were severely attenuated for GEF activity in vitro retained the ability to localize Rab1 to the LCV. Rab1 localization to the LCV mediated by these GEF-defective mutants required AMPylation. Importantly, we found that efficient localization of Rab1 to the LCV occurred when Rab1 GEF activity and Rab1 AMPylation activity were provided by separate proteins. Rab1 phosphocholination (PCylation) by the effector protein AnkX, however, was unable to substitute for Rab1 AMPylation. Lastly, the defect in Rab1 localization to the LCV in AMPylation-deficient strains of Legionella was partially suppressed if the GTPase-activating protein (GAP) LepB was eliminated. Thus, our data indicate that AMPylation of Rab1 is an effective strategy to maintain this GTPase on the LCV membrane.
IMPORTANCE
Activities that enable the intracellular pathogen Legionella pneumophila to subvert the function of the host protein Rab1 were investigated. Our data show that a posttranslational modification called AMPylation is critical for maintaining a pool of Rab1 on the LCV membrane. AMPylation of Rab1 led to the accumulation of GTP-bound Rab1 on the LCV membrane by protecting the protein from inactivation by GAPs. Importantly, PCylation of Rab1 by the Legionella effector protein AnkX was neither necessary nor sufficient to maintain Rab1 on the LCV, indicating that AMPylation and PCylation represent functionally distinct activities. We conclude that modification of Rab1 by AMPylation is an effective strategy to spatially and temporally regulate the function of this GTPase on a membrane-bound organelle.
doi:10.1128/mBio.01035-13
PMCID: PMC3950522  PMID: 24520063
17.  Inhibition of HCV Replication by Oxysterol-Binding Protein-Related Protein 4 (ORP4) through Interaction with HCV NS5B and Alteration of Lipid Droplet Formation 
PLoS ONE  2013;8(9):e75648.
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
doi:10.1371/journal.pone.0075648
PMCID: PMC3775767  PMID: 24069433
18.  Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues 
The Journal of Cell Biology  2009;187(6):889-903.
The ORP lipid-binding domain can contact two membranes simultaneously to facilitate sterol extraction or delivery at one membrane in response to the lipid composition of the other.
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.
doi:10.1083/jcb.200905007
PMCID: PMC2806323  PMID: 20008566
19.  Functional Cross-Talk between Rab14 and Rab4 through a Dual Effector, RUFY1/Rabip4 
Molecular Biology of the Cell  2010;21(15):2746-2755.
Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. We suggest that Rab14 and Rab4 act sequentially; Rab14 is required for recruitment of RUFY1 onto endosomes and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion.
The small GTPase Rab14 localizes to early endosomes and the trans-Golgi network, but its cellular functions on endosomes and its functional relationship with other endosomal Rab proteins are poorly understood. Here, we report that Rab14 binds in a GTP-dependent manner to RUFY1/Rabip4, which had been originally identified as a Rab4 effector. Rab14 colocalizes well with Rab4 on peripheral endosomes. Depletion of Rab14, but not Rab4, causes dissociation of RUFY1 from endosomal membranes. Coexpression of RUFY1 with either Rab14 or Rab4 induces clustering and enlargement of endosomes, whereas a RUFY1 mutant lacking the Rab4-binding region does not induce a significant morphological change in the endosomal structures even when coexpressed with Rab14 or Rab4. These findings suggest that Rab14 and Rab4 act sequentially, together with RUFY1; Rab14 is required for recruitment of RUFY1 onto endosomal membranes, and subsequent RUFY1 interaction with Rab4 may allow endosomal tethering and fusion. Depletion of Rab14 or RUFY1, as well as Rab4, inhibits efficient recycling of endocytosed transferrin, suggesting that Rab14 and Rab4 regulate endosomal functions through cooperative interactions with their dual effector, RUFY1.
doi:10.1091/mbc.E10-01-0074
PMCID: PMC2912359  PMID: 20534812
20.  Rabring7, a Novel Rab7 Target Protein with a RING Finger Motif 
Molecular Biology of the Cell  2003;14(9):3741-3752.
Rab7, a member of the Rab family small G proteins, has been shown to regulate intracellular vesicle traffic to late endosome/lysosome and lysosome biogenesis, but the exact roles of Rab7 are still undetermined. Accumulating evidence suggests that each Rab protein has multiple target proteins that function in the exocytic/endocytic pathway. We have isolated a new Rab7 target protein, Rabring7 (Rab7-interacting RING finger protein), using a CytoTrap system. It contains an H2 type RING finger motif at the C termini. Rabring7 shows no homology with RILP, which has been reported as another Rab7 target protein. GST pull-down and coimmunoprecipitation assays demonstrate that Rabring7 specifically binds the GTP-bound form of Rab7 at the N-terminal portion. Rabring7 is found mainly in the cytosol and is recruited efficiently to late endosomes/lysosomes by the GTP-bound form of Rab7 in BHK cells. Overexpression of Rabring7 not only affects epidermal growth factor degradation but also causes the perinuclear aggregation of lysosomes, in which the accumulation of the acidotropic probe LysoTracker is remarkably enhanced. These results suggest that Rabring7 plays crucial roles as a Rab7 target protein in vesicle traffic to late endosome/lysosome and lysosome biogenesis.
doi:10.1091/mbc.E02-08-0495
PMCID: PMC196564  PMID: 12972561
21.  Structural Insights into a Unique Legionella pneumophila Effector LidA Recognizing Both GDP and GTP Bound Rab1 in Their Active State 
PLoS Pathogens  2012;8(3):e1002528.
The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.
Author Summary
Legionella pneumophila delivers 275 validated substrates into the host cytosol by its Dot/Icm type IV secretion system. Several substrates including SidM/DrrA and LidA directly interact with the host Rab GTPases and interfere with the vesicle secretion pathway. SidM/DrrA is necessary for Rab1 recruitment, function as a Rab1 specific GDI displacement factor and guanine nucleotide exchange factor. LidA has the auxiliary activity for Rab1 recruitment, whereas it is more important for the formation of the replication vacuole compared with SidM/DrrA. LidA is predicted to be the first substrate secreted by the Dot/Icm system and is critical for maintaining the integrity of the bacterial cell. Moreover, it expresses throughout the intracellular growth phase, localizes to early secretory compartments, and interacts with several members of Rab family. Here we present the crystal structures of LidA coiled-coil domain in complex with two different states of Rab1, GDP- and GTP-bound. The GDP-bound Rab1 in the complex surprisingly has the same conformation with the GTP-bound Rab1, revealing that LidA can retain Rab1 persistently in its active state. Our structures add a new insight into the regulation of the host Rab1 membrane cycle by pathogen-secreted coiled-coil effector.
doi:10.1371/journal.ppat.1002528
PMCID: PMC3295573  PMID: 22416225
22.  Natural products reveal cancer cell dependence on oxysterol-binding proteins 
Nature chemical biology  2011;7(9):639-647.
Cephalostatin 1, OSW-1, ritterazine B and schweinfurthin A are natural products that potently, and in some cases selectively, inhibit the growth of cultured human cancer cell lines. The cellular targets of these small molecules have yet to be identified. We have discovered that these molecules target oxysterol binding protein (OSBP) and its closest paralog, OSBP-related protein 4L (ORP4L)—proteins not known to be involved in cancer cell survival. OSBP and the ORPs constitute an evolutionarily conserved protein superfamily, members of which have been implicated in signal transduction, lipid transport and lipid metabolism. The functions of OSBP and the ORPs, however, remain largely enigmatic. Based on our findings, we have named the aforementioned natural products ORPphilins. Here we used ORPphilins to reveal new cellular activities of OSBP. The ORPphilins are powerful probes of OSBP and ORP4L that will be useful in uncovering their cellular functions and their roles in human diseases.
doi:10.1038/nchembio.625
PMCID: PMC3158287  PMID: 21822274
23.  MICAL-like1 mediates epidermal growth factor receptor endocytosis 
Molecular Biology of the Cell  2011;22(18):3431-3441.
MICAL-like1 (MICAL-L1), a Rab13 effector, is associated with late endosomes and regulates epidermal growth factor receptor trafficking. The N-terminal calponin (CH) domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction and may induce a conformational change in MICAL-L1, promoting its activation.
Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways.
doi:10.1091/mbc.E11-01-0030
PMCID: PMC3172267  PMID: 21795389
24.  Rab41 Is a Novel Regulator of Golgi Apparatus Organization That Is Needed for ER-To-Golgi Trafficking and Cell Growth 
PLoS ONE  2013;8(8):e71886.
Background
The 60+ members of the mammalian Rab protein family group into subfamilies postulated to share common functionality. The Rab VI subfamily contains 5 Rab proteins, Rab6a/a’, Rab6b, Rab6c and Rab41. High-level knockdown of Rab6a/a’ has little effect on the tightly organized Golgi ribbon in HeLa cells as seen by fluorescence microscopy. In striking contrast, we found Rab41 was strongly required for normal Golgi ribbon organization.
Methods/Results
Treatment of HeLa cells with Rab41 siRNAs scattered the Golgi ribbon into clustered, punctate Golgi elements. Overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a similar Golgi phenotype. By electron microscopy, Rab41 depletion produced short, isolated Golgi stacks. Golgi-associated vesicles accumulated. At low expression levels, wild type and GTP-locked Rab41 showed little concentration in the Golgi region, but puncta were observed and most were in ruffled regions at the cell periphery. There was 25% co-localization of GTP-locked Rab41 with the ER marker, Sec61p. GDP-locked Rab41, as expected, displayed an entirely diffuse cytoplasmic distribution. Depletion of Rab41 or overexpression of GDP-locked Rab41 partially inhibited ER-to-Golgi transport of VSV-G protein. However, Rab41 knockdown had little, if any, effect on endosome-to-Golgi transport of SLTB. Additionally, after a 2-day delay, treatment with Rab41 siRNA inhibited cell growth, while overexpression of GDP-locked Rab41, but not wild type or GTP-locked Rab41, produced a rapid, progressive cell loss. In double knockdown experiments with Rab6, the Golgi ribbon was fragmented, a result consistent with Rab41 and Rab6 acting in parallel.
Conclusion
We provide the first evidence for distinctive Rab41 effects on Golgi organization, ER-to-Golgi trafficking and cell growth. When combined with the evidence that Rab6a/a’ and Rab6b have diverse roles in Golgi function, while Rab6c regulates mitotic function, our data indicate that Rab VI subfamily members, although related by homology and structure, share limited functional conservation.
doi:10.1371/journal.pone.0071886
PMCID: PMC3735572  PMID: 23936529
25.  Important relationships between Rab and MICAL proteins in endocytic trafficking 
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.
doi:10.4331/wjbc.v1.i8.254
PMCID: PMC3083971  PMID: 21537482
Rab; MICAL; Eps15 homology; Endosomes; Endocytosis; Trafficking; Cytoskeleton

Results 1-25 (756027)