Search tips
Search criteria

Results 1-25 (614432)

Clipboard (0)

Related Articles

1.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
2.  Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption 
Arthritis Research & Therapy  2005;7(3):R503-R512.
Cartilage destruction in the arthritides is thought to be mediated by two main enzyme families: the matrix metalloproteinases (MMPs) are responsible for cartilage collagen breakdown, and enzymes from the ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) family mediate cartilage aggrecan loss. Many genes subject to transcriptional control are regulated, at least in part, by modifications to chromatin, including acetylation of histones. The aim of this study was to examine the impact of histone deacetylase (HDAC) inhibitors on the expression of metalloproteinase genes in chondrocytes and to explore the potential of these inhibitors as chondroprotective agents. The effects of HDAC inhibitors on cartilage degradation were assessed using a bovine nasal cartilage explant assay. The expression and activity of metalloproteinases was measured using real-time RT-PCR, western blot, gelatin zymography, and collagenase activity assays using both SW1353 chondrosarcoma cells and primary human chondrocytes. The HDAC inhibitors trichostatin A and sodium butyrate potently inhibit cartilage degradation in an explant assay. These compounds decrease the level of collagenolytic enzymes in explant-conditioned culture medium and also the activation of these enzymes. In cell culture, these effects are explained by the ability of HDAC inhibitors to block the induction of key MMPs (e.g. MMP-1 and MMP-13) by proinflammatory cytokines at both the mRNA and protein levels. The induction of aggrecan-degrading enzymes (e.g. ADAMTS4, ADAMTS5, and ADAMTS9) is also inhibited at the mRNA level. HDAC inhibitors may therefore be novel chondroprotective therapeutic agents in arthritis by virtue of their ability to inhibit the expression of destructive metalloproteinases by chondrocytes.
PMCID: PMC1174946  PMID: 15899037
3.  Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes 
Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood.
We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes.
Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities.
Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.
PMCID: PMC3262051  PMID: 22114952
osteoarthritis; chemokine; cartilage degradation; chondrocyte; MMP-3; eotaxin-1
4.  Borrelia burgdorferi-Induced Expression of Matrix Metalloproteinases from Human Chondrocytes Requires Mitogen-Activated Protein Kinase and Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathways  
Infection and Immunity  2004;72(5):2864-2871.
Elevations in matrix metalloproteinase 1 (MMP-1) and MMP-3 have been found in patients with Lyme arthritis and in in vitro models of Lyme arthritis using cartilage explants and chondrocytes. The pathways by which B. burgdorferi, the causative agent of Lyme disease, induces the production of MMP-1 and MMP-3 have not been elucidated. We examined the role of the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways in MMP induction by B. burgdorferi. Infection with B. burgdorferi results in rapid phosphorylation of p38 and JNK within 15 to 30 min. Inhibition of JNK and p38 MAPK significantly reduced B. burgdorferi-induced MMP-1 and MMP-3 expression. Inhibition of ERK1/2 completely inhibited the expression of MMP-3 in human chondrocytes following B. burgdorferi infection but had little effect on the expression of MMP-1. B. burgdorferi infection also induced phosphorylation and nuclear translocation of STAT-3 and STAT-6 in primary human chondrocytes. Expression of MMP-1 and MMP-3 was significantly inhibited by inhibition of JAK3 activity. Induction of MMP-1 and -3 following MAPK and JAK/STAT activation was cycloheximide sensitive, suggesting synthesis of intermediary proteins is required. Inhibition of tumor necrosis factor alpha (TNF-α) significantly reduced MMP-1 but not MMP-3 expression from B. burgdorferi-infected cells; inhibition of interleukin-1β (IL-1β) had no effect. Treatment of B. burgdorferi-infected cells with JAK and MAPK inhibitors significantly inhibited TNF-α induction, consistent with at least a partial role for TNF-α in B. burgdorferi-induced MMP-1 expression in chondrocytes.
PMCID: PMC387916  PMID: 15102798
5.  Cytokine signaling-1 suppressor is inducible by IL-1beta and inhibits the catabolic effects of IL-1beta in chondrocytes: its implication in the paradoxical joint-protective role of IL-1beta 
Arthritis Research & Therapy  2013;15(6):R191.
Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes.
Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes.
SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression.
Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.
PMCID: PMC3979110  PMID: 24238405
6.  Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1α 
Annals of the Rheumatic Diseases  2001;60(3):254-261.
OBJECTIVE—To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1α (IL1α) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes.
METHODS—Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1α or IL1α + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot.
RESULTS—IGF1 can partially inhibit the release of collagen induced by IL1α or IL1α + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1α or IL1α + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes.
CONCLUSION—This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.

PMCID: PMC1753584  PMID: 11171688
7.  Prostaglandin PGE2 at very low concentrations suppresses collagen cleavage in cultured human osteoarthritic articular cartilage: this involves a decrease in expression of proinflammatory genes, collagenases and COL10A1, a gene linked to chondrocyte hypertrophy 
Suppression of type II collagen (COL2A1) cleavage by transforming growth factor (TGF)-β2 in cultured human osteoarthritic cartilage has been shown to be associated with decreased expression of collagenases, cytokines, genes associated with chondrocyte hypertrophy, and upregulation of prostaglandin (PG)E2 production. This results in a normalization of chondrocyte phenotypic expression. Here we tested the hypothesis that PGE2 is associated with the suppressive effects of TGF-β2 in osteoarthritic (OA) cartilage and is itself capable of downregulating collagen cleavage and hypertrophy in human OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with a wide range of concentrations of exogenous PGE2 (1 pg/ml to 10 ng/ml). COL2A1 cleavage was measured by ELISA. Proteoglycan content was determined by a colorimetric assay. Gene expression studies were performed with real-time PCR. In explants from patients with OA, collagenase-mediated COL2A1 cleavage was frequently downregulated at 10 pg/ml (in the range 1 pg/ml to 10 ng/ml) by PGE2 as well as by 5 ng/ml TGF-β2. In control OA cultures (no additions) there was an inverse relationship between PGE2 concentration (range 0 to 70 pg/ml) and collagen cleavage. None of these concentrations of added PGE2 inhibited the degradation of proteoglycan (aggrecan). Real-time PCR analysis of articular cartilage from five patients with OA revealed that PGE2 at 10 pg/ml suppressed the expression of matrix metalloproteinase (MMP)-13 and to a smaller extent MMP-1, as well as the proinflammatory cytokines IL-1β and TNF-α and type X collagen (COL10A1), the last of these being a marker of chondrocyte hypertrophy. These studies show that PGE2 at concentrations much lower than those generated in inflammation is often chondroprotective in that it is frequently capable of selectively suppressing the excessive collagenase-mediated COL2A1 cleavage found in OA cartilage. The results also show that chondrocyte hypertrophy in OA articular cartilage is functionally linked to this increased cleavage and is often suppressed by these low concentrations of added PGE2. Together these initial observations reveal the importance of very low concentrations of PGE2 in maintaining a more normal chondrocyte phenotype.
PMCID: PMC2206385  PMID: 17683641
8.  Does protein kinase R mediate TNF-α- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism? 
Arthritis Research & Therapy  2003;6(1):R46-R55.
We investigated the role of the proinflammatory cytokine TNF-α, the second messenger C2-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C2-ceramide or TNF-α for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96® assay. C2-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-α treatment. Incubation of explants with 2-aminopurine before TNF-α or C2-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-α and C2-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-α and C2-ceramide, which was found to be regulated by PKR. We have shown that C2-ceramide and TNF-α treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease.
PMCID: PMC400415  PMID: 14979937
articular cartilage; ceramide; matrix metalloproteinase; PKR; TNF-α
9.  Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression 
Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP.
(1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG.
In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP-10, IL-8, IL-1α and IL-6. The effects of GLGPG were weaker than those of RHP, which presumably contains other chondro-protective substances besides GLGPG.
RHP and GLGPG attenuate inflammatory responses in different cellular systems (macrophages, PBLs and chondrocytes). The effects on cytokine production and MMP expression indicate that RHP and its constituent GLGPG down-regulate catabolic processes associated with osteoarthritis (OA) or rheumatoid arthritis (RA). These data provide a molecular and biochemical basis for cartilage protection provided by RHP.
PMCID: PMC3231956  PMID: 22051322
10.  Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study 
Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.
PMCID: PMC2246240  PMID: 18031579
11.  Histone deacetylase 4 alters cartilage homeostasis in human osteoarthritis 
Osteoarthritis (OA) is the most common degenerative joint disorder, and a major cause of pain and disability among the elderly. Histone deacetylase 4 (HDAC4) has been shown to be a key regulator of chondrocyte hypertrophy during skeletogenesis. The aims of present study were to investigate the expression of HDAC4 in normal and OA cartilage and its potential roles during OA pathogenesis.
The knee cartilage specimen (a total of 18, 12 female and 6 male) were obtained from primary OA patients undergoing total knee arthroplasty (TKA) and normal donors. By using immunohistochemistry staining, we detected the expression patterns of HDAC4 in OA cartilage and normal cartilage respectively. To assess the potential roles of HDAC4, HDAC4 expression in human chondrosarcoma cells (SW1353) was down-regulated by transfecting small interference RNA (siRNA), thereafter, cells were treated with IL-1β or TNF-α, and the expressions of several matrix-degrading enzymes and anabolic factors were examined by using quantitative PCR.
The expression of HDAC4 was observed in the OA cartilage, whereas it was barely detected in the normal cartilage. The extent of HDAC4 expression had a statistically negative correlation with OA severity. We further explored that the reduction of HDAC4 level led to a significant repression of proinflammation cytokines induced up-regulated expressions of matrix-degrading enzymes (MMP1 (Matrix metalloproteinase 1), MMP3 (Matrix metalloproteinase 3) , MMP13 (Matrix metalloproteinase 13), ADAMTS4 (aggrecanase 1) and ADAMTS5 (aggrecanase 2)) in SW1353 in vitro. Moreover, knockdown of HDAC4 inhibited the expression of some anabolic genes (such as aggrecan).
In this study, our findings suggest that the abnormal expression of HDAC4 in osteoarthritic cartilage might be implicated in promoting catabolic activity of chondrocyte, which is associated with OA pathogenesis. Thus, our findings give a new insight into the mechanism of articular cartilage damage, and indicate that HDAC4 might be a potential target for the therapeutic interventions of OA.
PMCID: PMC4300609  PMID: 25515592
Osteoarthritis; HDAC4; Chondrocyte; Catabolism; Homeostasis
12.  Implication of interleukin 18 in production of matrix metalloproteinases in articular chondrocytes in arthritis: direct effect on chondrocytes may not be pivotal 
Annals of the Rheumatic Diseases  2005;64(5):735-742.
Objective: To clarify the effect of interleukin (IL) 18 on cartilage degeneration by studying the profile of IL18 receptor (IL18R) on chondrocytes and the direct effect of IL18 on production of matrix metalloproteinases (MMPs), aggrecanases, and tissue inhibitors of metalloproteinases (TIMPs) in articular chondrocytes.
Methods: Monolayer cultured human articular chondrocytes were isolated from non-arthritic subjects and patients with rheumatoid arthritis or osteoarthritis. Gene expression of IL18, IL18Rα, IL18Rß, MMPs, and aggrecanases was detected by RT-PCR. Protein levels of IL18Rα were analysed by flow cytometry. Protein levels of IL18, MMPs, and TIMPs were measured by ELISA. Aggrecanase-2 mRNA expression was quantitatively analysed by real time RT-PCR. Protein levels of signalling molecules were assayed by western blotting.
Results: IL18 mRNA was constitutively expressed in chondrocytes, and was enhanced by IL1ß stimulation. Flow cytometric analysis showed that IL1ß, tumour necrosis factor α, and IL18 up regulated IL18Rα expression levels. The level of IL18Rß mRNA was much lower than that of IL18Rα, and was slightly up regulated by IL1ß. In chondrocytes responding to IL18, IL18 (1–100 ng/ml) slightly increased the production of MMP-1, MMP-3, and MMP-13, which was blocked by NF-κB inhibitor and p38 mitogen activated protein kinase inhibitor. IL18 up regulated mRNA expression of aggrecanase-2, but not aggrecanase-1. IL18 also slightly stimulated TIMP-1 production?through extracellular signal regulated kinase activation.
Conclusion: IL18 induces production of MMPs from chondrocytes in inflammatory arthritis. Although the direct effect of IL18 on chondrocytes may not be pivotal for the induction of cartilage degeneration, IL18 seems to play some part in the degradation of articular cartilage in arthritis.
PMCID: PMC1755478  PMID: 15834055
13.  1,25-dihydroxyvitamin D3 Activates MMP13 Gene Expression in Chondrocytes through p38 MARK Pathway 
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.
PMCID: PMC3708044  PMID: 23847446
1,25-(OH)2D3; MMP13; Osteoarthritis; p38; Gene expression; Chondrocyte.
14.  Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines 
Annals of the Rheumatic Diseases  2002;61(8):704-713.
Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed.
Methods: IL17 alone, or in combination with IL1, IL6, oncostatin M (OSM), or tumour necrosis factor α (TNFα), was added to bovine nasal cartilage explant cultures. Proteoglycan and collagen release were determined. Collagenolytic activity was determined by bioassay. Chondroprotective effects of IL4, IL13, transforming growth factor ß1 (TGFß1) and insulin-like growth factor-1 (IGF1) were assessed by inclusion in the explant cultures.
Results: IL17 alone stimulated a dose dependent release of proteoglycan and type II collagen from bovine nasal cartilage explants. Suboptimal doses of IL17 synergised potently with TNFα, IL1, OSM, and IL6 to promote collagen degradation. This collagen release was completely inhibited by tissue inhibitor of metalloproteinase-1 and BB-94 (a synthetic metalloproteinase inhibitor), and was significantly reduced by IL4, IL13, TGFß1, and IGF1. In IL17 treated chondrocytes, mRNA expression for matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 was detected. Moreover, a synergistic induction of these MMPs was seen when IL17 was combined with other proinflammatory cytokines.
Conclusions: IL17 can, alone and synergistically in combination with other proinflammatory cytokines, promote chondrocyte mediated MMP dependent type II collagen release from cartilage. Because levels of all these proinflammatory cytokines are raised in rheumatoid synovial fluids, this study suggests that IL17 may act as a potent upstream mediator of cartilage collagen breakdown in inflammatory joint diseases.
PMCID: PMC1754191  PMID: 12117676
15.  Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes 
WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes.
The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed.
WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic acid or mangiferin in IL-1β-stimulated chondrocytes.
WIN-34B is potentially valuable as a treatment for OA by virtue of its suppression of MMPs, ADAMTSs, and inflammatory mediators, and it’s up-regulation of TIMP-1 and TIMP-3 involved in the MAPK pathway.
PMCID: PMC3559294  PMID: 23241445
WIN-34B; Standard compounds; Cartilage protection; Matrix proteinases; Inflammatory mediators
16.  Esculetin inhibits cartilage resorption induced by interleukin 1α in combination with oncostatin M 
Annals of the Rheumatic Diseases  2001;60(2):158-165.
OBJECTIVE—To determine if a new inhibitor, esculetin (EST), can block resorption of cartilage.
METHODS—Interleukin 1α (IL1α, 0.04-5 ng/ml) and oncostatin M (OSM, 0.4-50 ng/ml) were used to stimulate the release of proteoglycan and collagen from bovine nasal cartilage and human articular cartilage in explant culture. Proteoglycan and collagen loss were assessed by dimethylmethylene blue and hydroxyproline assays, respectively. Collagenase levels were measured by assay of bioactivity and by enzyme linked immunosorbent assay (ELISA). The effects of EST on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the transformed human chondrocyte cell line T/C28a4 were assessed by northern blot analysis. TIMP-1 protein levels were assayed by ELISA. The effect of EST on the MMP-1 promoter was assessed using a promoter-luciferase construct in transient transfection studies.
RESULTS—EST inhibited proteoglycan and collagen resorption in a dose dependent manner with significant decreases seen at 66 µM and 100 µM EST, respectively. Collagenolytic activity was significantly decreased in bovine nasal cartilage cultures. In human articular cartilage, EST also inhibited IL1α + OSM stimulated resorption and decreased MMP-1 levels. TIMP-1 levels were not altered compared with controls. In T/C28a4 chondrocytes the IL1α + OSM induced expression of MMP-1, MMP-3, and MMP-13 mRNA was reduced to control levels by 250 µM EST. TIMP-1 mRNA levels were unaffected by EST treatment. All cytokine stimulation of an MMP-1 luciferase-promoter construct was lost in the presence of the inhibitor.
CONCLUSION—EST inhibits degradation of bovine nasal cartilage and human articular cartilage stimulated to resorb with IL1α + OSM.

PMCID: PMC1753478  PMID: 11156550
17.  Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-α and matrix metalloproteinase-13 in human chondrocytes 
The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFα and MMP-13 in human OA chondrocytes.
Human chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFα and MMP-13 was measured by quantitative RT-PCR. TNFα protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-κB. DNA binding activity of NF-κB p65 was determined using a highly sensitive and specific ELISA. IκB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography.
EGCG significantly decreased AGE-stimulated gene expression and production of TNFα and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFα and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKβ kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm.
These novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE-mediated activation and the catabolic response in human chondrocytes.
PMCID: PMC2714117  PMID: 19445683
18.  Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes 
Genes & Nutrition  2011;7(2):307-318.
Exacerbated production of matrix metalloproteinases (MMPs) is a key event in the progression of osteoarthritis (OA) and represents a promising target for the management of OA with nutraceuticals. In this study, we sought to determine the MMP-inhibitory activity of an ethanolic Caesalpinia sappan extract (CSE) in human OA chondrocytes. Thus, human articular chondrocytes isolated from OA cartilage and SW1353 chondrocytes were stimulated with Interleukin-1beta (IL1β), without or with pretreatment with CSE. Following viability assays, the production of MMP-2 and MMP-13 was assessed using ELISA, whereas mRNA levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13 and TIMP-1, TIMP-2, TIMP-3 were quantified using RT-qPCR assays. Chondrocytes were co-transfected with a MMP-13 luciferase reporter construct and NF-kB p50 and p65 expression vectors in the presence or absence of CSE. In addition, the direct effect of CSE on the proteolytic activities of MMP-2 was evaluated using gelatin zymography. We found that CSE significantly suppressed IL1β-mediated upregulation of MMP-13 mRNA and protein levels via abrogation of the NF-kB(p65/p50)-driven MMP-13 promoter activation. We further observed that the levels of IL1β-induced MMP-1, MMP-3, MMP-7, and MMP-9 mRNA, but not TIMP mRNA levels, were down-regulated in chondrocytes in response to CSE. Zymographic results suggested that CSE did not directly interfere with the proteolytic activity of MMP-2. In summary, this study provides evidence for the MMP-inhibitory potential of CSE or CSE-derived compounds in human OA chondrocytes. The data indicate that the mechanism of this inhibition might, at least in part, involve targeting of NF-kB-mediated promoter activation.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-011-0244-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3316743  PMID: 21850498
Chondrocytes; Osteoarthritis; Caesalpinia sappan; Matrix metalloproteinase; Tissue inhibitors of MMP; NFkB
19.  Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion 
Arthritis Research  1999;2(1):65-74.
Mast cell (MC) activation in the rheumatoid lesion provides numerous mediators that contribute to inflammatory and degradative processes, especially at sites of cartilage erosion. MC activation in rheumatoid synovial tissue has often been associated with tumour necrosis factor (TNF)-α and interleukin (IL)-1β production by adjacent cell types. By contrast, our in situ and in vitro studies have shown that the production of IL-15 was independent of MC activation, and was not related to TNF-α and IL-1β expression. Primary cultures of dissociated rheumatoid synovial cells produced all three proinflammatory cytokines, with production of IL-1β exceeding that of TNF-α, which in turn exceeded that of IL-15. In vitro cultures of synovial macrophages, synovial fibroblasts and articular chondrocytes all produced detectable amounts of free IL-15, macrophages being the most effective.
Increased numbers of mast cells (MCs) are found in the synovial tissues and fluids of patients with rheumatoid arthritis (RA), and at sites of cartilage erosion. MC activation has been reported for a significant proportion of rheumatoid specimens. Because the MC contains potent mediators, including histamine, heparin, proteinases, leukotrienes and multifunctional cytokines, its potential contributions to the processes of inflammation and matrix degradation have recently become evident.
Proinflammatory cytokines are important mediators of inflammation, immunity, proteolysis, cell recruitment and proliferation. Tumour necrosis factor (TNF) reportedly plays a pivotal role in the pathogenesis of RA, especially its ability to regulate interleukin (IL)-1β expression, this being important for the induction of prostanoid and matrix metalloproteinase production by synovial fibroblasts and chondrocytes. IL-15 has been assigned numerous biological effects and has been implicated as an important factor in TNF-α expression by monocyte/macrophages. Some in vitro studies have placed IL-15 upstream from TNF-α in the cytokine cascade, suggesting an interdependence between TNF, IL-1 and IL-15 for the promotion of proinflammatory cytokine expression in the rheumatoid joint.
To examine the in situ relationships of TNF-α, IL-1β and IL-15 in relation to MC activation in rheumatoid tissues by use of immunolocalization techniques; and to compare quantitatively the proinflammatory cytokine production by specific cell cultures and rheumatoid synovial explants with and without exposure to a MC secretagogue.
Materials and methods:
Samples of rheumatoid synovial tissue and cartilage–pannus junction were obtained from patients (n = 15) with classic late-stage RA. Tissue sections were immunostained for MC (tryptase) and the proinflammatory cytokines IL-1, TNF-α and IL-15. Rheumatoid synovial tissue explants were cultured in Dulbecco's modified Eagles medium (DMEM) containing either the MC secretagogue rabbit antihuman immunoglobulin (Ig)E, or control rabbit IgG. Primary rheumatoid synovial cell cultures, human articular chondrocytes, synovial fibroblasts and synovial macrophages were prepared as described in the full article. Conditioned culture media from these cultures were collected and assayed for IL-1β, TNF-α and IL-15 using enzyme-linked immunosorbent assay methodology.
Immunohistological studies of rheumatoid synovial tissues have demonstrated local concentrations of MCs in most specimens of the rheumatoid lesion. Sites of MC activation were associated with localized oedema, and TNF-α, IL-1α and IL-1β production by a proportion of mononuclear inflammatory cells. By contrast, no evidence was found for IL-15 production in tissue sites containing either intact or activated MCs, and IL-15 expression, when observed, bore no relation to tissue sites where TNF-α and IL-1β were evident. The immunodetection of IL-15 was restricted to microfocal sites and was not typical of most junctional specimens, but was associated with a proportion of articular chondrocytes in a minority of junctional specimens.
MC activation within synovial explant cultures was induced by the addition of polyclonal antibody to human IgE. MC activation significantly reduced the levels of TNF-α and IL1β released into the medium, this representing approximately 33% of control values. By contrast, MC activation had little effect on the levels of IL-15 released into the culture medium, the average value being very low in relation to the release of TNF-α and IL-1β . Thus, induced MC activation brings about changes in the amounts of released tryptase, TNF-α and IL-1β , but not of IL-15.
Four preparations of primary rheumatoid synovial cell cultures produced more IL-1β than TNF-α, with only modest values for IL-15 production, indicating that all three cytokines are produced and released as free ligands by these cultures. Of specific cell types that produced IL-15 in vitro, macrophages produced more than fibroblasts, which in turn produced more than chondrocytes. This demonstrates that all three cell types have the potential to produce IL-15 in situ.
The biological consequences of MC activation in vivo are extremely complex, and in all probability relate to the release of various combinations of soluble and granular factors, as well as to the expression of appropriate receptors by neighbouring cells. The subsequent synthesis and release of cytokines such as TNF-α and IL-1 may well follow at specific stages after activation, or may be an induced cytokine response by adjacent macrophagic or fibroblastic cells. However, because no IL-15 was detectable either in or around activated or intact MCs, and the induced MC activation explant study showed no change in IL-15 production, it seems unlikely that the expression of this cytokine is regulated by MCs. The immunohistochemistry (IHC) demonstration of IL-15 at sites of cartilage erosion, and especially by some chondrocytes of articular cartilage, showed no spatial relationship with either T cells or neutrophils, and suggests other functional properties in these locations. The lack of evidence for an in situ association of IL-15 with TNF and IL-1 does not support a role for IL-15 in a proinflammatory cytokine 'cascade', as proposed by other in vitro experiments. We believe that sufficient evidence is available, however, to suggest that MC activation makes a significant contribution to the pathophysiological processes of the rheumatoid lesion.
PMCID: PMC17805  PMID: 11219391
interleukin-15; interleukin-1β; mast cells; rheumatoid arthritis; tumour necrosis factor-α
20.  Adiponectin is a potential catabolic mediator in osteoarthritis cartilage 
Arthritis Research & Therapy  2010;12(6):R231.
Adiponectin has been implicated in the pathogenesis of osteoarthritis (OA). We studied the effects of adiponectin on the OA cartilage homeostasis.
Immunohistochemical analysis was performed to evaluate differential expression of adiponectin receptors (AdipoRs) in nonlesional and lesional areas of OA cartilage. Cartilage and chondrocytes from the knee joints of primary OA patients were cultured in the presence of adiponectin (0~30 μg/ml). The levels of total nitric oxide (NO), matrix metalloproteinase (MMP)-1, -3, and -13, and tissue inhibitor of metalloproteinase (TIMP)-1 were measured in the conditioned media. The levels of inducible NO synthase (iNOS) and MMPs were determined with the quantitative real-time reverse transcription-polymerase chain reaction. The concentrations of collagenase-cleaved type II collagen neoepitope (C1-2C) were determined in the supernatant of adiponectin-stimulated OA cartilage explants. The effects of kinase and NOS inhibitors were evaluated in the adiponectin-stimulated chondrocytes.
The expression levels of both AdipoR1 and AdipoR2 were significantly higher in lesional than in nonlesional areas of OA cartilage. The increased rate of AdipoR1-positive chondrocytes was twice that of AdipoR2-positive chondrocytes when compared between nonlesional and lesional areas. Adiponectin-stimulated OA chondrocytes showed increased total NO and MMP-1, -3, and -13 levels compared with nonstimulated cells. The TIMP-1 level was not affected. The C1-2C levels were increased by adiponectin in OA cartilage explant culture. AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK) inhibitors (compound C and SP600125) significantly suppressed adiponectin-induced production of total NO and MMP-1, -3, and -13. Inducible NOS inhibitors enhanced the expression of the adiponectin-induced MMPs.
Adiponectin causes matrix degradation in OA cartilage and increases MMPs and iNOS expression via the AMPK and JNK pathways in human OA chondrocytes. The catabolic effects of adiponectin may be counteracted by NO.
PMCID: PMC3046544  PMID: 21194467
21.  Punica granatum L. Extract Inhibits IL-1β–Induced Expression of Matrix Metalloproteinases by Inhibiting the Activation of MAP Kinases and NF-κB in Human Chondrocytes In Vitro1 
The Journal of nutrition  2005;135(9):2096-2102.
Interleukin (IL)-1β induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage resorption and joint degradation in osteoarthritis (OA). Pomegranate fruit extract (PFE) was recently shown to exert anti-inflammatory effects in different disease models. However, no studies have been undertaken to investigate whether PFE constituents protect articular cartilage. In the present studies, OA chondrocytes or cartilage explants were pretreated with PFE and then stimulated with IL-1β at different time points in vitro. The amounts of proteoglycan released were measured by a colorimetric assay. The expression of MMPs, phosphorylation of the inhibitor of κBα (IκBα) and mitogen-activated protein kinases (MAPKs) was determined by Western immunoblotting. Expression of mRNA was quantified by real-time PCR. MAPK enzyme activity was assayed by in vitro kinase assay. Activation of nuclear factor-κB (NF-κB) was determined by electrophoretic mobility shift assay. PFE inhibited the IL-1β–induced proteoglycan breakdown in cartilage explants in vitro. At the cellular level, PFE (6.25–25 mg/L) inhibited the IL-1β–induced expression of MMP-1, -3, and -13 protein in the medium (P < 0.05) and this correlated with the inhibition of mRNA expression. IL-1β–induced phosphorylation of p38-MAPK, but not that of c-Jun-N-terminal kinase or extracellular regulated kinase, was most susceptible to inhibition by low doses of PFE, and the addition of PFE blocked the activity of p38-MAPK in a kinase activity assay. PFE also inhibited the IL-1β–induced phosphorylation of IκBα and the DNA binding activity of the transcription factor NF-κB in OA chondrocytes. Taken together, these novel results indicate that PFE or compounds derived from it may inhibit cartilage degradation in OA and may also be a useful nutritive supplement for maintaining joint integrity and function.
PMCID: PMC1315308  PMID: 16140882
osteoarthritis; pomegranate; signal transduction; cartilage
22.  In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors 
International Journal of Oncology  2013;43(6):1787-1798.
The highly aggressive adult sarcomas are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9, which play crucial roles in tumor invasion and metastasis by degradation of the extracellular membrane leading to cancer cell spread to distal organs. We examined the effect of cytokines, mitogens, inducers and inhibitors on MMP-2 and MMP-9 secretion in chondrosarcoma (SW-1353), fibrosarcoma (HT-1080), liposarcoma (SW-872) and synovial sarcoma (SW-982) cell lines. The selected compounds included natural cytokines and growth factors, as well as chemical compounds applied in therapy of sarcoma and natural compounds that have demonstrated anticancer therapeutic potential. MMP-2 and MMP-9 secretions were analyzed by gelatinase zymography following 24-h exposure to the tested agents and quantitated by densitometry. Fibrosarcoma, chondrosarcoma, liposarcoma and synovial sarcoma showed bands corresponding to MMP-2 and MMP-9 with dose-dependent enhancement of MMP-9 with phorbol 12-myristate 13-acetate (PMA) treatment. In chondrosarcoma cells, tumor necrosis factor (TNF)-α had a stimulatory effect on MMP-9 and insignificant effect on MMP-2 and interleukin (IL)-1β stimulated MMP-9 and MMP-2. In fibrosarcoma and liposarcoma cells, TNF-α had a profound stimulatory effect on MMP-9, but no effect on MMP-2 and in synovial sarcoma an inhibitory effect on MMP-2 and no effect on MMP-9. IL-1β had a slight inhibitory effect on fibrosarcoma, liposarcoma and synovial sarcoma MMP-2 and MMP-9 except for MMP-9 in synovial sarcoma which showed slight stimulation. Lipopolysaccharide (LPS) stimulated expression of MMP-2 in fibrosarcoma and chondrosarcoma while inhibited it in liposarcoma. Doxycycline, epigallocatechin gallate and the nutrient mixture inhibited MMP-2 and MMP-9 in all cell lines. Actinomycin-D, cyclohexamide, retinoic acid, and dexamethasone inhibited MMP-2 and -9 in chondrosarcoma and fibrosarcoma cells. Our results show that cytokines, mitogens, inducers and inhibitors have an up or down regulatory effect on MMP-2 and MMP-9 expression in adult sarcoma cell lines, suggesting these agents may be effective strategies to treat these cancers.
PMCID: PMC3834263  PMID: 24085323
matrix metalloproteinases; chondrosarcoma; fibrosarcoma; liposarcoma; synovial sarcoma; cytokines; inducers; inhibitors
23.  Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes 
AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.
We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.
Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.
LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.
PMCID: PMC3979085  PMID: 23883619
osteoarthritis; cartilage; aging; MMP-3; nitric oxide
24.  Decreased metalloproteinase production as a response to mechanical pressure in human cartilage: a mechanism for homeostatic regulation 
Articular cartilage is optimised for bearing mechanical loads. Chondrocytes are the only cells present in mature cartilage and are responsible for the synthesis and integrity of the extracellular matrix. Appropriate joint loads stimulate chondrocytes to maintain healthy cartilage with a concrete protein composition according to loading demands. In contrast, inappropriate loads alter the composition of cartilage, leading to osteoarthritis (OA). Matrix metalloproteinases (MMPs) are involved in degradation of cartilage matrix components and have been implicated in OA, but their role in loading response is unclear. With this study, we aimed to elucidate the role of MMP-1 and MMP-3 in cartilage composition in response to mechanical load and to analyse the differences in aggrecan and type II collagen content in articular cartilage from maximum- and minimum-weight-bearing regions of human healthy and OA hips. In parallel, we analyse the apoptosis of chondrocytes in maximal and minimal load areas. Because human femoral heads are subjected to different loads at defined sites, both areas were obtained from the same hip and subsequently evaluated for differences in aggrecan, type II collagen, MMP-1, and MMP-3 content (enzyme-linked immunosorbent assay) and gene expression (real-time polymerase chain reaction) and for chondrocyte apoptosis (flow cytometry, bcl-2 Western blot, and mitochondrial membrane potential analysis). The results showed that the load reduced the MMP-1 and MMP-3 synthesis (p < 0.05) in healthy but not in OA cartilage. No significant differences between pressure areas were found for aggrecan and type II collagen gene expression levels. However, a trend toward significance, in the aggrecan/collagen II ratio, was found for healthy hips (p = 0.057) upon comparison of pressure areas (loaded areas > non-loaded areas). Moreover, compared with normal cartilage, OA cartilage showed a 10- to 20-fold lower ratio of aggrecan to type II collagen, suggesting that the balance between the major structural proteins is crucial to the integrity and function of the tissue. Alternatively, no differences in apoptosis levels between loading areas were found – evidence that mechanical load regulates cartilage matrix composition but does not affect chondrocyte viability. The results suggest that MMPs play a key role in regulating the balance of structural proteins of the articular cartilage matrix according to local mechanical demands.
PMCID: PMC1779454  PMID: 16972994
25.  NADPH-oxidase-driven oxygen radical production determines chondrocyte death and partly regulates metalloproteinase-mediated cartilage matrix degradation during interferon-γ-stimulated immune complex arthritis 
Arthritis Research & Therapy  2005;7(4):R885-R895.
In previous studies we have found that FcγRI determines chondrocyte death and matrix metalloproteinase (MMP)-mediated cartilage destruction during IFN-γ-regulated immune complex arthritis (ICA). Binding of immune complexes (ICs) to FcγRI leads to the prominent production of oxygen radicals. In the present study we investigated the contribution of NADPH-oxidase-driven oxygen radicals to cartilage destruction by using p47phox-/- mice lacking a functional NADPH oxidase complex. Induction of a passive ICA in the knee joints of p47phox-/- mice resulted in a significant elevation of joint inflammation at day 3 when compared with wild-type (WT) controls as studied by histology. However, when IFN-γ was overexpressed by injection of adenoviral IFN-γ in the knee joint before ICA induction, a similar influx of inflammatory cells was found at days 3 and 7, comprising mainly macrophages in both mouse strains. Proteoglycan depletion from the cartilage layers of the knee joints in both groups was similar at days 3 and 7. Aggrecan breakdown in cartilage caused by MMPs was further studied by immunolocalisation of MMP-mediated neoepitopes (VDIPEN). VDIPEN expression in the cartilage layers of arthritic knee joints was markedly lower (between 30 and 60%) in IFN-γ-stimulated arthritic p47phox-/- mice at day 7 than in WT controls, despite significant upregulation of mRNA levels of various MMPs such as MMP-3, MMP-9, MMP-12 and MMP-13 in synovia and MMP-13 in cartilage layers as measured with quantitative RT-PCR. The latter observation suggests that oxygen radicals are involved in the activation of latent MMPs. Chondrocyte death, determined as the percentage of empty lacunae in articular cartilage, ranged between 20 and 60% at day 3 and between 30 and 80% at day 7 in WT mice, and was completely blocked in p47phox-/- mice at both time points. FcγRI mRNA expression was significantly lower, and FcγRII and FcγRIII were higher, in p47phox-/- mice than in controls. NADPH-oxidase-driven oxygen radical production determines chondrocyte death and aggravates MMP-mediated cartilage destruction during IFN-γ-stimulated IC-mediated arthritis. Upregulation of FcγRI by oxygen radicals may contribute to cartilage destruction.
PMCID: PMC1175041  PMID: 15987491

Results 1-25 (614432)