Search tips
Search criteria

Results 1-25 (1299861)

Clipboard (0)

Related Articles

1.  The Oxysterol-binding Protein Homologue ORP1L Interacts with Rab7 and Alters Functional Properties of Late Endocytic Compartments 
Molecular Biology of the Cell  2005;16(12):5480-5492.
ORP1L is a member of the human oxysterol-binding protein (OSBP) family. ORP1L localizes to late endosomes (LEs)/lysosomes, colocalizing with the GTPases Rab7 and Rab9 and lysosome-associated membrane protein-1. We demonstrate that ORP1L interacts physically with Rab7, preferentially with its GTP-bound form, and provide evidence that ORP1L stabilizes GTP-bound Rab7 on LEs/lysosomes. The Rab7-binding determinant is mapped to the ankyrin repeat (ANK) region of ORP1L. The pleckstrin homology domain (PHD) of ORP1L binds phosphoinositides with low affinity and specificity. ORP1L ANK- and ANK+PHD fragments induce perinuclear clustering of LE/lysosomes. This is dependent on an intact microtubule network and a functional dynein/dynactin motor complex. The dominant inhibitory Rab7 mutant T22N reverses the LE clustering, suggesting that the effect is dependent on active Rab7. Transport of fluorescent dextran to LEs is inhibited by overexpression of ORP1L. Overexpression of ORP1L, and in particular the N-terminal fragments of ORP1L, inhibits vacuolation of LE caused by Helicobacter pylori toxin VacA, a process also involving Rab7. The present study demonstrates that ORP1L binds to Rab7, modifies its functional cycle, and can interfere with LE/lysosome organization and endocytic membrane trafficking. This is the first report of a direct connection between the OSBP-related protein family and the Rab GTPases.
PMCID: PMC1289395  PMID: 16176980
2.  Characterization of the Sterol and Phosphatidylinositol 4-Phosphate Binding Properties of Golgi-Associated OSBP-Related Protein 9 (ORP9) 
PLoS ONE  2014;9(9):e108368.
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.
PMCID: PMC4177916  PMID: 25255026
3.  Inhibition of HCV Replication by Oxysterol-Binding Protein-Related Protein 4 (ORP4) through Interaction with HCV NS5B and Alteration of Lipid Droplet Formation 
PLoS ONE  2013;8(9):e75648.
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
PMCID: PMC3775767  PMID: 24069433
4.  Multivesicular Body Formation Requires OSBP–Related Proteins and Cholesterol 
PLoS Genetics  2010;6(8):e1001055.
In eukaryotes, different subcellular organelles have distinct cholesterol concentrations, which is thought to be critical for biological functions. Oxysterol-binding protein-related proteins (ORPs) have been assumed to mediate nonvesicular cholesterol trafficking in cells; however, their in vivo functions and therefore the biological significance of cholesterol in each organelle are not fully understood. Here, by generating deletion mutants of ORPs in Caenorhabditis elegans, we show that ORPs are required for the formation and function of multivesicular bodies (MVBs). In an RNAi enhancer screen using obr quadruple mutants (obr-1; -2; -3; -4), we found that MVB–related genes show strong genetic interactions with the obr genes. In obr quadruple mutants, late endosomes/lysosomes are enlarged and membrane protein degradation is retarded, although endocytosed soluble proteins are normally delivered to lysosomes and degraded. We also found that the cholesterol content of late endosomes/lysosomes is reduced in the mutants. In wild-type worms, cholesterol restriction induces the formation of enlarged late endosomes/lysosomes, as observed in obr quadruple mutants, and increases embryonic lethality upon knockdown of MVB–related genes. Finally, we show that knockdown of ORP1L, a mammalian ORP family member, induces the formation of enlarged MVBs in HeLa cells. Our in vivo findings suggest that the proper cholesterol level of late endosomes/lysosomes generated by ORPs is required for normal MVB formation and MVB–mediated membrane protein degradation.
Author Summary
The multivesicular body (MVB) sorting pathway provides a mechanism for the lysosomal degradation of membrane proteins, such as growth factor receptors. The formation of MVBs is unique in that the curvature is directed toward the lumen of the compartment rather than the cytosol. During MVB formation, the curvature-inducing proteins, such as clathrins, could not be involved in the inward invagination of the endosomal membrane. Under these circumstances, lipids have been assumed to play a role in the membrane invagination step by creating local membrane environments; however, the lipids involved in this step have not been fully elucidated. Here we demonstrate that cholesterol, an essential membrane component in animals, is critical for MVB formation and function. We found that disruption of OSBP–related proteins (ORPs), which have been proposed to function in cellular cholesterol distribution and metabolism, reduces the cholesterol content in late endosomes/lysosomes, leading to impaired MVB function. MVB sorting pathway is known to be involved in many processes, including growth factor receptor down-regulation, exosome secretion, antigen presentation, the budding of enveloped viruses, and cytokinesis. Our findings provide a novel link between cholesterol and these biologically important functions.
PMCID: PMC2916882  PMID: 20700434
5.  A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking 
The Journal of Cell Biology  2011;192(1):121-135.
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes.
Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
PMCID: PMC3019559  PMID: 21220512
6.  OSBP-Related Proteins (ORPs) in Human Adipose Depots and Cultured Adipocytes: Evidence for Impacts on the Adipocyte Phenotype 
PLoS ONE  2012;7(9):e45352.
Oxysterol-binding protein (OSBP) homologues, ORPs, are implicated in lipid homeostatic control, vesicle transport, and cell signaling. We analyzed here the quantity of ORP mRNAs in human subcutaneous (s.c.) and visceral adipose depots, as well as in the Simpson-Golabi-Behmel syndrome (SGBS) adipocyte cell model. All of the ORP mRNAs were present in the s.c and visceral adipose tissues, and the two depots shared an almost identical ORP mRNA expression pattern. SGBS adipocytes displayed a similar pattern, suggesting that the adipose tissue ORP expression pattern mainly derives from adipocytes. During SGBS cell adipogenic differentiation, ORP2, ORP3, ORP4, ORP7, and ORP8 mRNAs were down-regulated, while ORP11 was induced. To assess the impacts of ORPs on adipocyte differentiation, ORP3 and ORP8, proteins down-regulated during adipogenesis, were overexpressed in differentiating SGBS adipocytes, while ORP11, a protein induced during adipogenesis, was silenced. ORP8 overexpression resulted in reduced expression of the aP2 mRNA, while down-regulation of adiponectin and aP2 was observed in ORP11 silenced cells. Furthermore, ORP8 overexpression or silencing of ORP11 markedly decreased cellular triglyceride storage. These data identify the patterns of ORP expression in human adipose depots and SGBS adipocytes, and provide the first evidence for a functional impact of ORPs on the adipocyte phenotype.
PMCID: PMC3448648  PMID: 23028956
7.  Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti 
Insect molecular biology  2011;20(4):541-552.
The oxysterol-binding protein (OSBP) and related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expressions were induced by a blood meal. Furthermore, over-expression of AeORPs facilitated [3H]-cholesterol uptake in Aedes aegypti cultured Aag-2 cells.
PMCID: PMC3139008  PMID: 21699592
Oxysterol-binding protein; cholesterol; gene expression; sterol transport
8.  OSBP-Related Protein 8 (ORP8) Regulates Plasma and Liver Tissue Lipid Levels and Interacts with the Nucleoporin Nup62 
PLoS ONE  2011;6(6):e21078.
We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum oxysterol-binding protein implicated in cellular lipid homeostasis. We now investigated its action in hepatic cells in vivo and in vitro. Adenoviral overexpression of ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum (−34%, −26%, −37%, respectively) and liver tissue (−40%, −12%, −24%), coinciding with reduction of nuclear (n)SREBP-1 and -2 and mRNA levels of their target genes. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing by RNA interference moderately suppressed or induced the expression of SREBP-1 and SREBP-2 target genes, respectively. In accordance, cholesterol biosynthesis was reduced by ORP8 overexpression and enhanced by ORP8 silencing in [3H]acetate pulse-labeling experiments. ORP8, previously shown to bind 25-hydroxycholesterol, was now shown to bind also cholesterol in vitro. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation analyses revealed the nuclear pore component Nup62 as an interaction partner of ORP8. Co-localization of ORP8 and Nup62 at the nuclear envelope was demonstrated by BiFC and confocal immunofluorescence microscopy. Furthermore, the impact of overexpressed ORP8 on nSREBPs and their target mRNAs was inhibited in cells depleted of Nup62. Our results reveal that ORP8 has the capacity to modulate lipid homeostasis and SREBP activity, probably through an indirect mechanism, and provide clues of an entirely new mode of ORP action.
PMCID: PMC3115989  PMID: 21698267
9.  Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βlll spectrin 
The Journal of Cell Biology  2007;176(4):459-471.
The small GTPase Rab7 controls late endocytic transport by the minus end–directed motor protein complex dynein–dynactin, but how it does this is unclear. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are two effectors of Rab7. We show that GTP-bound Rab7 simultaneously binds RILP and ORP1L to form a RILP–Rab7–ORP1L complex. RILP interacts directly with the C-terminal 25-kD region of the dynactin projecting arm p150Glued, which is required for dynein motor recruitment to late endocytic compartments (LEs). Still, p150Glued recruitment by Rab7–RILP does not suffice to induce dynein-driven minus-end transport of LEs. ORP1L, as well as βIII spectrin, which is the general receptor for dynactin on vesicles, are essential for dynein motor activity. Our results illustrate that the assembly of microtubule motors on endosomes involves a cascade of linked events. First, Rab7 recruits two effectors, RILP and ORP1L, to form a tripartite complex. Next, RILP directly binds to the p150Glued dynactin subunit to recruit the dynein motor. Finally, the specific dynein motor receptor Rab7–RILP is transferred by ORP1L to βIII spectrin. Dynein will initiate translocation of late endosomes to microtubule minus ends only after interacting with βIII spectrin, which requires the activities of Rab7–RILP and ORP1L.
PMCID: PMC2063981  PMID: 17283181
10.  Oxysterol Binding Protein–related Protein 9 (ORP9) Is a Cholesterol Transfer Protein That Regulates Golgi Structure and Function 
Molecular Biology of the Cell  2009;20(5):1388-1399.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.
PMCID: PMC2649274  PMID: 19129476
11.  Orp8 Deficiency in Bone Marrow-Derived Cells Reduces Atherosclerotic Lesion Progression in LDL Receptor Knockout Mice 
PLoS ONE  2014;9(10):e109024.
Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.
Methods and Results
LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.
Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.
PMCID: PMC4209969  PMID: 25347070
12.  150-kD oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. 
Journal of Clinical Investigation  1996;98(8):1930-1941.
The 150-kD oxygen-regulated protein (ORP150) was initially characterized based on its selective expression in astrocytes subjected to oxygen deprivation (Kuwabara, K., M. Matsumoto, J. Ikeda, O. Hori, S. Ogawa, Y. Maeda, K. Kitagawa, N. Imuta, K. Kinoshita, D.M. Stern, et al. 1996. J. Biol. Chem. 279:5025-5032). We have found that exposure of cultured human aortic smooth muscle cells and mononuclear phagocytes (MPs) to hypoxia (pO2 approximately 12-14 torr) induces ORP150 transcripts and production of the antigen, whereas incubation with either hydrogen peroxide, sodium arsenite, heat shock, or 2-deoxyglucose was without effect. Tissue extracts prepared from human atherosclerotic lesions demonstrated expression of ORP150 mRNA and antigen, vs lack of ORP150 in samples from nonatherosclerotic areas. In situ hybridization using ORP150 riboprobes showed the mRNA to be predominantly [correction of predominately] present in macrophages in in atherosclerotic plaques. Furthermore, autoantibody to ORP150 was demonstrated in the serum of patients with severe atherosclerosis, consistent with inducible in vivo expression of ORP150. Introduction of antisense oligonucleotide for ORP150 selectively diminished hypoxia-mediated induction of ORP150 antigen and reduced the viability of hypoxic MPs, especially in the presence of modified (oxidized/acetylated) LDL. In support of a role for ORP150 in the MPs' response to the microenvironment of an atheroma, the presence of oxidized LDL enhanced by approximately 10-fold ORP150 expression in hypoxic cultures. These data indicate that cells of the atherosclerotic vessel wall express ORP150 as part of a protective mechanism, potentially triggered by local hypoxia/hypoxemia and augmented by modified lipoproteins. The presence of antibody to ORP150 in sera of patients with severe atherosclerosis emphasizes the possibility that ORP150 may be a marker of vascular pathology.
PMCID: PMC507633  PMID: 8878445
13.  Adenovirus RIDα uncovers a novel pathway requiring ORP1L for lipid droplet formation independent of NPC1 
Molecular Biology of the Cell  2013;24(21):3309-3325.
Expression of the adenovirus protein RIDα rescues the cholesterol storage phenotype in NPC1-deficient cells by inducing formation of lipid droplets. The function of RIDα is independent of NPC1 but dependent on NPC2 and the oxysterol-binding protein ORP1L. This study provides the first evidence that ORP1L plays a role in sterol transport and LD formation.
Niemann–Pick disease type C (NPC) is caused by mutations in NPC1 or NPC2, which coordinate egress of low-density-lipoprotein (LDL)-cholesterol from late endosomes. We previously reported that the adenovirus-encoded protein RIDα rescues the cholesterol storage phenotype in NPC1-mutant fibroblasts. We show here that RIDα reconstitutes deficient endosome-to-endoplasmic reticulum (ER) transport, allowing excess LDL-cholesterol to be esterified by acyl-CoA:cholesterol acyltransferase and stored in lipid droplets (LDs) in NPC1-deficient cells. Furthermore, the RIDα pathway is regulated by the oxysterol-binding protein ORP1L. Studies have classified ORP1L as a sterol sensor involved in LE positioning downstream of GTP-Rab7. Our data, however, suggest that ORP1L may play a role in transport of LDL-cholesterol to a specific ER pool designated for LD formation. In contrast to NPC1, which is dispensable, the RIDα/ORP1L-dependent route requires functional NPC2. Although NPC1/NPC2 constitutes the major pathway, therapies that amplify minor egress routes for LDL-cholesterol could significantly improve clinical management of patients with loss-of-function NPC1 mutations. The molecular identity of putative alternative pathways, however, is poorly characterized. We propose RIDα as a model system for understanding physiological egress routes that use ORP1L to activate ER feedback responses involved in LD formation.
PMCID: PMC3814149  PMID: 24025716
14.  Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues 
The Journal of Cell Biology  2009;187(6):889-903.
The ORP lipid-binding domain can contact two membranes simultaneously to facilitate sterol extraction or delivery at one membrane in response to the lipid composition of the other.
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.
PMCID: PMC2806323  PMID: 20008566
15.  Crystallization and preliminary X-ray crystallographic analysis of the oxysterol-binding protein Osh3 from Saccharomyces cerevisiae  
The PH domain and ORD of the oxysterol-binding protein Osh3 from S. cerevisae were crystallized and X-ray diffraction data were collected.
Oxysterol-binding protein (OSBP) related proteins (ORPs) are conserved from yeast to humans and are implicated in regulation of sterol homeostasis and in signal transduction pathways. Osh3 of Saccharomyces cerevisiae is a pleckstrin-homology (PH) domain-containing ORP member that regulates phosphoinositide metabolism at endoplasmic reticulum–plasma membrane contact sites. The N-terminal PH domain of Osh3 was purified and crystallized as a lysozyme fusion and the resulting crystal diffracted to 2.3 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 98.03, b = 91.31, c = 84.13 Å, β = 81.41°. With two molecules in the asymmetric unit, the Matthews coefficient was 3.13 Å3 Da−1. Initial attempts to solve the structure by molecular-replacement techniques using T4 lysozyme as a search model were successful. The C-terminal OSBP-related domain (OBD) of Osh3 was crystallized by the vapour-diffusion method and the resulting crystal diffracted to 1.5 Å resolution. The crystal was orthorhombic, belonging to space group P212121, with unit-cell parameters a = 41.57, b = 87.52, c = 100.58 Å. With one molecule in the asymmetric unit, the Matthews coefficient was 2.01 Å3 Da−1. Initial attempts to solve the structure by the single-wavelength anomalous dispersion technique using bromine were successful.
PMCID: PMC3509973  PMID: 23192032
oxysterol-binding protein; Osh3; Saccharomyces cerevisiae
16.  Stress-induced phosphorylation of caveolin-1 and p38, and down-regulation of EGFr and ERK by the dietary lectin jacalin in two human carcinoma cell lines 
Cell Stress & Chaperones  2006;11(2):135-147.
We have examined the A431 (human epidermoid carcinoma) and HT29 (human colorectal carcinoma) cellular responses evoked by lectins of dietary origin, Jacalin of Artocarpus integrifolia (native jacalin; nJacalin), peanut agglutinin (PNA) of Arachis hypogea, and recombinant single-chain jacalin (rJacalin), which has the same protein backbone but ∼100-fold less affinity for carbohydrates than nJacalin. All three lectins (nJacalin, rJacalin, and PNA) are cycotoxic inhibitors of proliferation of A431 cells. However, cells recover once jacalin but not PNA have been removed from the growth medium. Treatment of nJacalin results in morphologically visible cell rounding while retaining the membrane integrity when treated at 40 μg ml−1, but treatment with PNA did not induce such changes. The observed cell rounding was found to be due to stress as the phosphorylation of caveolin-1 (at tyr14), p38 but not c-Jun N-terminal kinase were up-regulated, while PNA did not up-regulate the phosphorylation of the same. Jacalin also down-regulated the phosphorylation of the epidermal growth factor receptor and extracellular signal regulated kinase in contrast to PNA, which failed to down-regulate the same. Confocal microscopic studies reveal that jacalin is not internalized, unlike the lectin of Agaricus bisporous. Analysis of the proteins that bind to an nJacalin-sepharose column revealed the binding of six to eight proteins, and significant among them is a protein at ∼110 kDa, which appears to be oxygen-regulated protein 150 (ORP150) (endoplasmic reticulum chaperone) as identified by its isoelectric point, two-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis and mass spectrometric analysis. This 110-kDa band is detectable with anti-Hsp70 antibody because ORP150 has homology with Hsp70. Confocal microscopic studies reveal the presence of Hsp70-like proteins on the surface of A431 cells as revealed by immunostaining with anti-Hsp70 antibody. Moreover, overexpression of ORP150 in A431 cells has resulted in a dramatic protection of A431 cells against jacalin-induced toxicity, confirming that the jacalin-induced cytotoxicity is mediated through ORP150, and impairment of ORP150 functions with the help of jacalin makes the cells more susceptible to death due to stress. Our studies suggest that the cellular responses, as a consequence of lectin binding, may not be exclusively mediated by carbohydrate binding property alone, but other factors such as protein-protein interactions may also contribute to the observed cellular responses.
PMCID: PMC1484514  PMID: 16817319
17.  Identification of Novel Host Cell Binding Partners of Oas1b, the Protein Conferring Resistance to Flavivirus-Induced Disease in Mice 
Journal of Virology  2012;86(15):7953-7963.
Oas1b was previously identified as the product of the Flvr allele that confers flavivirus-specific resistance to virus-induced disease in mice by an uncharacterized, RNase L-independent mechanism. To gain insights about the mechanism by which Oas1b specifically reduces the efficiency of flavivirus replication, cellular protein interaction partners were identified and their involvement in the Oas1b-mediated flavivirus resistance mechanism was analyzed. Initial difficulties in getting the two-hybrid assay to work with full-length Oas1b led to the discovery that this Oas protein uniquely has a C-terminal transmembrane domain that targets it to the endoplasmic reticulum (ER). Two peptides matching to oxysterol binding protein-related protein 1L (ORP1L) and ATP binding cassette protein 3, subfamily F (ABCF3), were identified as Oas1b interaction partners in yeast two-hybrid assays, and both in vitro-transcribed/translated peptides and full-length proteins in mammalian cell lysates coimmunoprecipitated with Oas1b. Knockdown of a partner involved in Oas1b-mediated antiflavivirus activity would be expected to increase flavivirus replication but not that of other types of viruses. However, RNA interference (RNAi) knockdown of ORP1L decreased the replication of the flavivirus West Nile virus (WNV) as well as that of other types of RNA viruses. This virus-nonspecific effect may be due to the recently reported dysregulation of late endosome movement by ORP1L knockdown. Knockdown of ABCF3 protein levels increased the replication of WNV but not that of other types of RNA viruses, and this effect on WNV replication was observed only in Oas1b-expressing cells. The results suggest that Oas1b is part of a complex located in the ER and that ABCF3 is a component of the Flvr-mediated resistance mechanism.
PMCID: PMC3421638  PMID: 22623793
18.  Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning 
The Journal of Cell Biology  2009;185(7):1209-1225.
Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150Glued bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)–LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7–RILP complex to remove p150Glued and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells.
PMCID: PMC2712958  PMID: 19564404
19.  Adenovirus RIDα regulates endosome maturation by mimicking GTP-Rab7 
The Journal of Cell Biology  2007;179(5):965-980.
The small guanosine triphosphatase Rab7 regulates late endocytic trafficking. Rab7-interacting lysosomal protein (RILP) and oxysterol-binding protein–related protein 1L (ORP1L) are guanosine triphosphate (GTP)–Rab7 effectors that instigate minus end–directed microtubule transport. We demonstrate that RILP and ORP1L both interact with the group C adenovirus protein known as receptor internalization and degradation α (RIDα), which was previously shown to clear the cell surface of several membrane proteins, including the epidermal growth factor receptor and Fas (Carlin, C.R., A.E. Tollefson, H.A. Brady, B.L. Hoffman, and W.S. Wold. 1989. Cell. 57:135–144; Shisler, J., C. Yang, B. Walter, C.F. Ware, and L.R. Gooding. 1997. J. Virol. 71:8299–8306). RIDα localizes to endocytic vesicles but is not homologous to Rab7 and is not catalytically active. We show that RIDα compensates for reduced Rab7 or dominant-negative (DN) Rab7(T22N) expression. In vitro, Cu2+ binding to RIDα residues His75 and His76 facilitates the RILP interaction. Site-directed mutagenesis of these His residues results in the loss of RIDα–RILP interaction and RIDα activity in cells. Additionally, expression of the RILP DN C-terminal region hinders RIDα activity during an acute adenovirus infection. We conclude that RIDα coordinates recruitment of these GTP-Rab7 effectors to compartments that would ordinarily be perceived as early endosomes, thereby promoting the degradation of selected cargo.
PMCID: PMC2099200  PMID: 18039930
20.  The Anaerobe-Specific Orange Protein Complex of Desulfovibrio vulgaris Hildenborough Is Encoded by Two Divergent Operons Coregulated by σ54 and a Cognate Transcriptional Regulator▿† 
Journal of Bacteriology  2011;193(13):3207-3219.
Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the σ54-RNA polymerase. We further demonstrate that the σ54-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with σ54-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the σ70-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed.
PMCID: PMC3133258  PMID: 21531797
21.  OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism 
Analysis of variants in three genes encoding oxysterol-binding protein (OSBP) homologues (OSBPL2, OSBPL9, OSBPL10) in Finnish families with familial low high-density lipoprotein (HDL) levels (N = 426) or familial combined hyperlipidemia (N = 684) revealed suggestive linkage of OSBPL10 single-nucleotide polymorphisms (SNPs) with extreme end high triglyceride (TG; >90th percentile) trait. Prompted by this initial finding, we carried out association analysis in a metabolic syndrome subcohort (Genmets) of Health2000 examination survey (N = 2,138), revealing association of multiple OSBPL10 SNPs with high serum TG levels (>95th percentile). To investigate whether OSBPL10 could be the gene underlying the observed linkage and association, we carried out functional experiments in the human hepatoma cell line Huh7. Silencing of OSBPL10 increased the incorporation of [3H]acetate into cholesterol and both [3H]acetate and [3H]oleate into triglycerides and enhanced the accumulation of secreted apolipoprotein B100 in growth medium, suggesting that the encoded protein ORP10 suppresses hepatic lipogenesis and very-low-density lipoprotein production. ORP10 was shown to associate dynamically with microtubules, consistent with its involvement in intracellular transport or organelle positioning. The data introduces OSBPL10 as a gene whose variation may contribute to high triglyceride levels in dyslipidemic Finnish subjects and provides evidence for ORP10 as a regulator of cellular lipid metabolism.
Electronic supplementary material
The online version of this article (doi:10.1007/s00109-009-0490-z) contains supplementary material, which is available to authorized users.
PMCID: PMC2707950  PMID: 19554302
Cholesterol; High-density lipoprotein; Microtubule; Oxysterol-binding protein; Single-nucleotide polymorphism; Triglyceride
22.  Structural mechanism for sterol sensing and transport by OSBP-related proteins 
Nature  2005;437(7055):154-158.
The oxysterol binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to man 1,2 and are implicated in regulation of sterol pathways 3,4 and in signal transduction 5. The structure of the full-length yeast ORP Osh4 was determined at 1.5–1.9 Å resolution in complexes with ergosterol, cholesterol, and 7-, 20-, and 25-hydroxycholesterol. A single sterol molecule binds in a hydrophobic tunnel in a manner consistent with a transport function for ORPs. The entrance is blocked by a flexible N-terminal lid and surrounded by functionally critical basic residues. The structure of the open state of a lid-truncated form of Osh4 was determined at 2.5 Å resolution. Structural analysis and limited proteolysis show that sterol binding closes the lid and stabilizes a conformation favoring transport across aqueous barriers and transmitting signals. The unliganded structure exposes potential phospholipid-binding sites that are positioned for membrane docking and sterol exchange. Based on these observations we propose a model in which sterol and membrane binding promote reciprocal conformational changes that facilitate a sterol transfer and signaling cycle.
PMCID: PMC1431608  PMID: 16136145
23.  The Diverse Functions of Oxysterol-Binding Proteins 
Oxysterol-binding protein (OSBP)-related proteins (ORPs) are lipid-binding proteins that are conserved from yeast to humans. They are implicated in many cellular processes including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport. All ORPs contain an OSBP-related domain (ORD) that has a hydrophobic pocket that binds a single sterol. ORDs also contain additional membrane binding surfaces, some of which bind phosphoinositides and may regulate sterol binding. Studies in yeast suggest that ORPs function as sterol transporters, perhaps in regions where organelle membranes are closely apposed. Yeast ORPs also participate in vesicular trafficking, although their role is unclear. In mammalian cells, some ORPs function as sterol sensors that regulate the assembly of protein complexes in response to changes in cholesterol levels. This review will summarize recent advances in our understanding of how ORPs bind lipids and membranes and how they function in diverse cellular processes.
PMCID: PMC3478074  PMID: 19575662
cholesterol; sterol; phosphoinositides; signaling; lipid transport; membranes; membrane contact sites; lipid transport proteins
24.  Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. 
Molecular and Cellular Biology  1987;7(2):875-886.
The adenovirus origin of DNA replication contains three functionally distinct sequence domains (A, B, and C) that are essential for initiation of DNA synthesis. Previous studies have shown that domain B contains the recognition site for nuclear factor I (NF-I), a cellular protein that is required for optimal initiation. In the studies reported here, we used highly purified NF-I, prepared by DNA recognition site affinity chromatography (P. J. Rosenfeld and T. J. Kelly, Jr., J. Biol. Chem. 261:1398-1408, 1986), to investigate the cellular protein requirements for initiation of viral DNA replication. Our data demonstrate that while NF-I is essential for efficient initiation in vitro, other cellular factors are required as well. A fraction derived from HeLa cell nuclear extract (BR-FT fraction) was shown to contain all the additional cellular proteins required for the complete reconstitution of the initiation reaction. Analysis of this complementing fraction by a gel electrophoresis DNA-binding assay revealed the presence of two site-specific DNA-binding proteins, ORP-A and ORP-C, that recognized sequences in domains A and C, respectively, of the viral origin. Both proteins were purified by DNA recognition site affinity chromatography, and the boundaries of their binding sites were defined by DNase I footprint analysis. Additional characterization of the recognition sequences of ORP-A, NF-I, and ORP-C was accomplished by determining the affinity of the proteins for viral origins containing deletion and base substitution mutations. ORP-C recognized a sequence between nucleotides 41 and 51 of the adenovirus genome, and analysis of mutant origins indicated that efficient initiation of replication is dependent on the presence of a high-affinity ORP-C-binding site. The ORP-A recognition site was localized to the first 12 base pairs of the viral genome within the minimal origin of replication. These data provide evidence that the initiation of adenovirus DNA replication involves multiple protein-DNA interactions at the origin.
PMCID: PMC365146  PMID: 3821731
25.  IHF Is Required for the Transcriptional Regulation of the Desulfovibrio vulgaris Hildenborough orp Operons 
PLoS ONE  2014;9(1):e86507.
Transcriptional activation of σ54-dependent promoters is usually tightly regulated in response to environmental cues. The high abundance of potential σ54-dependent promoters in the anaerobe bacteria, Desulfovibrio vulgaris Hildenborough, reflects the high versatility of this bacteria suggesting that σ54 factor is the nexus of a large regulatory network. Understanding the key players of σ54-regulation in this organism is therefore essential to gain insights into the adaptation to anaerobiosis. Recently, the D. vulgaris orp genes, specifically found in anaerobe bacteria, have been shown to be transcribed by the RNA polymerase coupled to the σ54 alternative sigma factor. In this study, using in vitro binding experiments and in vivo reporter fusion assays in the Escherichia coli heterologous host, we showed that the expression of the divergent orp promoters is strongly dependent on the integration host factor IHF. Bioinformatic and mutational analysis coupled to reporter fusion activities and mobility shift assays identified two functional IHF binding site sequences located between the orp1 and orp2 promoters. We further determined that the D. vulgaris DVU0396 (IHFα) and DVU1864 (IHFβ) subunits are required to control the expression of the orp operons suggesting that they form a functionally active IHF heterodimer. Interestingly results obtained from the in vivo inactivation of DVU0396, which is required for orp operons transcription, suggest that several functionally IHF active homodimer or heterodimer are present in D. vulgaris.
PMCID: PMC3897727  PMID: 24466126

Results 1-25 (1299861)