PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (408296)

Clipboard (0)
None

Related Articles

1.  Biochemical characterization of the initial steps of the Kennedy pathway in Trypanosoma brucei: the ethanolamine and choline kinases 
Biochemical Journal  2008;415(Pt 1):135-144.
Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (glycerophosphoethanolamine) and GPCho (glycerophosphocholine). Ethanolamine is also found as an integral component of the GPI (glycosylphosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway. Database mining revealed two putative C/EKs (choline/ethanolamine kinases) in the Trypanosoma brucei genome, which were cloned, overexpressed, purified and characterized. TbEK1 (T. brucei ethanolamine kinase 1) was shown to be catalytically active as an ethanolamine-specific kinase, i.e. it had no choline kinase activity. The Km values for ethanolamine and ATP were found to be 18.4±0.9 and 219±29 μM respectively. TbC/EK2 (T. brucei choline/ethanolamine kinase 2), on the other hand, was found to be able to phosphorylate both ethanolamine and choline, even though choline was the preferred substrate, with a Km 80 times lower than that of ethanolamine. The Km values for choline, ethanolamine and ATP were 31.4±2.6 μM, 2.56±0.31 mM and 20.6±1.96 μM respectively. Further substrate specificity analysis revealed that both TbEK1 and TbC/EK2 were able to tolerate various modifications at the amino group, with the exception of a quaternary amine for TbEK1 (choline) and a primary amine for TbC/EK2 (ethanolamine). Both enzymes recognized analogues with substituents on C-2, but substitutions on C-1 and elongations of the carbon chain were not well tolerated.
doi:10.1042/BJ20080435
PMCID: PMC2552378  PMID: 18489261
choline kinase; ethanolamine kinase; Kennedy pathway; Trypanosoma brucei; C/EK, choline/ethanolamine kinase; EK, ethanolamine kinase; GPCho, glycerophosphocholine; GPEtn, glycerophosphoethanolamine; GPI, glycosylphosphatidylinositol; GPSer, glycerophosphoserine; HPTLC, high-performance TLC; LB, Luria–Bertani; MALDI, matrix-assisted laser-desorption ionization; ORF, open reading frame; PtdCho, phosphotidylcholine; PtdEtn, phosphatidylethanolamine; RT, reverse transcription; Tb, Trypanosome brucei; TEV, tobacco etch virus; TOF, time-of-flight; UTR, untranslated region; VSG, variant-surface glycoprotein
2.  Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei 
Parasitology  2010;137(9):1357-1392.
Summary
The biological membranes of Trypanosoma brucei contain a complex array of phospholipids that are synthesized de novo from precursors obtained either directly from the host, or as catabolised endocytosed lipids. This paper describes the use of nanoflow electrospray tandem mass spectrometry and high resolution mass spectrometry in both positive and negative ion modes, allowing the identification of ~500 individual molecular phospholipids species from total lipid extracts of cultured bloodstream and procyclic form T. brucei. Various molecular species of all of the major subclasses of glycerophospholipids were identified including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol as well as phosphatidic acid, phosphatidylglycerol and cardolipin, and the sphingolipids sphingomyelin, inositol phosphoceramide and ethanolamine phosphoceramide. The lipidomic data obtained in this study will aid future biochemical phenotyping of either genetically or chemically manipulated commonly used bloodstream and procyclic strains of Trypanosoma brucei. Hopefully this will allow a greater understanding of the bizarre world of lipids in this important human pathogen.
doi:10.1017/S0031182010000715
PMCID: PMC3744936  PMID: 20602846
Phospholipid; Trypanosoma brucei; mass spectrometry; lipidomics
3.  Regulation of Phosphatidylethanolamine Homeostasis—The Critical Role of CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2) 
Phosphatidylethanolamine (PE) is the most abundant lipid on the protoplasmatic leaflet of cellular membranes. It has a pivotal role in cellular processes such as membrane fusion, cell cycle regulation, autophagy, and apoptosis. CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme in de novo biosynthesis of PE from ethanolamine and diacylglycerol by the CDP-ethanolamine Kennedy pathway. The following is a summary of the current state of knowledge on Pcyt2 and how splicing and isoform specific differences could lead to variations in functional properties in this family of enzymes. Results from the most recent studies on Pcyt2 transcriptional regulation, promoter function, autophagy, and cell growth regulation are highlighted. Recent data obtained from Pcyt2 knockout mouse models is also presented, demonstrating the essentiality of this gene in embryonic development as well as the major physiological consequences of deletion of one Pcyt2 allele. Those include development of symptoms of the metabolic syndrome such as elevated lipogenesis and lipoprotein secretion, hypertriglyceridemia, liver steatosis, obesity, and insulin resistance. The objective of this review is to elucidate the nature of Pcyt2 regulation by linking its catalytic function with the regulation of lipid and energy homeostasis.
doi:10.3390/ijms14022529
PMCID: PMC3588000  PMID: 23354482
phosphatidylethanolamine; CTP:phosphoethanolamine cytidylyltransferase; Pcyt2; lipid homeostasis; cell growth; hypertriglyceridemia; liver steatosis; obesity; insulin resistance; metabolic syndrome
4.  The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei 
Molecular Microbiology  2010;76(6):1461-1482.
Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post-Golgi sorting and rate of deposition of newly synthesized GPI-anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre-existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis.
doi:10.1111/j.1365-2958.2010.07151.x
PMCID: PMC2904498  PMID: 20398210
5.  CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae 
Progress in lipid research  2008;47(5):333-339.
CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C.
doi:10.1016/j.plipres.2008.03.004
PMCID: PMC2583782  PMID: 18439916
CTP; CTP synthetase; CDP-diacylglycerol; CDP-choline; CDP-ethanolamine; phospholipid synthesis; phosphorylation
6.  Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae  
CTP:phosphoethanolamine cytidylyltransferase from S. cerevisiae has been expressed, purified and crystallized.
CTP:phosphoethanolamine cytidylyltransferase (ECT) is the enzyme that catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine in the phosphatidylethanolamine-biosynthetic pathway (Kennedy pathway). ECT from Saccharomyces cerevisiae was crystallized by the sitting-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals diffracted X-­rays from a synchrotron-radiation source to 1.88 Å resolution. The space group was assigned as primitive tetragonal, P41212 or P43212, with unit-cell parameters a = b = 66.3, c = 150.8 Å. The crystals contain one ECT molecule in the asymmetric unit (V M = 2.2 Å3 Da−1), with a solvent content of 43%.
doi:10.1107/S1744309106035561
PMCID: PMC2225198  PMID: 17012796
CTP:phosphoethanolamine cytidylyltransferase; phosphatidylethanolamine-biosynthetic pathway; Saccharomyces cerevisiae
7.  Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism* 
The Journal of Biological Chemistry  2013;288(49):35387-35395.
Background: Previous studies have shown that meclizine inhibits respiration in intact cells, but not in isolated mitochondria, via an unknown mechanism.
Results: Meclizine directly inhibits PCYT2 (CTP:phosphoethanolamine cytidylyltransferase).
Conclusion: Meclizine attenuates mitochondrial respiration by directly inhibiting the Kennedy pathway of phosphatidylethanolamine biosynthesis.
Significance: We identified a novel molecular target of meclizine, an over-the-counter antinausea drug, raising possibilities for new clinical applications.
We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.
doi:10.1074/jbc.M113.489237
PMCID: PMC3853286  PMID: 24142790
Energy Metabolism; Metabolomics; Mitochondria; Phosphatidylethanolamine; Respiration; Meclizine; Phosphoethanolamine
8.  Regulation of the Saccharomyces cerevisiae EKI1-encoded Ethanolamine Kinase by Zinc Depletion* 
The Journal of biological chemistry  2006;281(19):13110-13116.
Ethanolamine kinase catalyzes the committed step in the synthesis of phosphatidylethanolamine via the CDP-ethanolamine branch of the Kennedy pathway. Regulation of the EKI1-encoded ethanolamine kinase by the essential nutrient zinc was examined in Saccharomyces cerevisiae. The level of ethanolamine kinase activity increased when zinc was depleted from the growth medium. This regulation correlated with increases in the CDP-ethanolamine pathway intermediates phosphoethanolamine and CDP-ethanolamine, and an increase in the methylated derivative of phosphatidylethanolamine, phosphatidylcholine. The β-galactosidase activity driven by the PEKI1-lacZ reporter gene was elevated in zinc-depleted cells, indicating that the increase in ethanolamine kinase activity was attributed to a transcriptional mechanism. The expression level of PEKI1-lacZ reporter gene activity in the zrt1Δzrt2Δ mutant (defective in plasma membrane zinc transport) cells grown with zinc was similar to the activity expressed in wild-type cells grown without zinc. This indicated that EKI1 expression was sensitive to intracellular zinc. The zinc-mediated regulation of EKI1 expression was attenuated in the zap1Δ mutant defective in the zinc-regulated transcription factor Zap1p. Direct interactions between Zap1p and putative zinc-responsive elements in the EKI1 promoter were demonstrated by electrophoretic mobility shift assays. Mutations of these elements to a nonconsensus sequence abolished Zap1p-DNA interactions. Taken together, this work demonstrated that the zinc-mediated regulation of ethanolamine kinase and the synthesis of phospholipids via the CDP-ethanolamine branch of the Kennedy pathway were controlled in part by Zap1p.
doi:10.1074/jbc.M601612200
PMCID: PMC1779367  PMID: 16551612
9.  Developmentally Regulated Sphingolipid Synthesis in African Trypanosomes 
Molecular microbiology  2008;70(2):281-296.
Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labeling confirmed stage specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased >3-fold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian SM synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites.
doi:10.1111/j.1365-2958.2008.06393.x
PMCID: PMC2629665  PMID: 18699867
10.  Pyrimidine Biosynthesis Is Not an Essential Function for Trypanosoma brucei Bloodstream Forms 
PLoS ONE  2013;8(3):e58034.
Background
African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.
Methodology/Principal Findings
Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.
Conclusions/Significance
Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.
doi:10.1371/journal.pone.0058034
PMCID: PMC3591441  PMID: 23505454
11.  Developmental and Metabolic Effects of Disruption of the Mouse CTP:Phosphoethanolamine Cytidylyltransferase Gene (Pcyt2)▿  
Molecular and Cellular Biology  2007;27(9):3327-3336.
The CDP-ethanolamine pathway is responsible for the de novo biosynthesis of ethanolamine phospholipids, where CDP-ethanolamine is coupled with diacylglycerols to form phosphatidylethanolamine. We have disrupted the mouse gene encoding CTP:phosphoethanolamine cytidylyltransferase, Pcyt2, the main regulatory enzyme in this pathway. Intercrossings of Pcyt2+/− animals resulted in small litter sizes and unexpected Mendelian frequencies, with no null mice genotyped. The Pcyt2−/− embryos die after implantation, prior to embryonic day 8.5. Examination of mRNA expression, protein content, and enzyme activity in Pcyt2+/− animals revealed the anticipated 50% decrease due to the gene dosage effect but rather a 20 to 35% decrease. [14C]ethanolamine radiolabeling of hepatocytes, liver, heart, and brain corroborated Pcyt2 gene expression and activity data and showed a decreased rate of phosphatidylethanolamine biosynthesis in heterozygotes. Total phospholipid content was maintained in Pcyt2+/− tissues; however, this was not due to compensatory increases in the decarboxylation of phosphatidylserine. These results establish the necessity of Pcyt2 for murine development and demonstrate that a single Pcyt2 allele in heterozygotes can maintain phospholipid homeostasis.
doi:10.1128/MCB.01527-06
PMCID: PMC1899976  PMID: 17325045
12.  The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol 
Molecular microbiology  2006;61(1):89-105.
Summary
In bloodstream-form Trypanosoma brucei (the causative agent of African sleeping sickness) the glycosylphosphatidylinositol (GPI) anchor biosynthetic pathway has been validated genetically and chemically as a drug target. The conundrum that GPI anchors could not be in vivo labelled with [3H]-inositol led us to hypothesize that de novo synthesis was responsible for supplying myo-inositol for phosphatidylinositol (PI) destined for GPI synthesis. The rate-limiting step of the de novo synthesis is the isomerization of glucose 6-phosphate to 1-d-myo-inositol-3-phosphate, catalysed by a 1-d-myo-inositol-3-phosphate synthase (INO1). When grown under non-permissive conditions, a conditional double knockout demonstrated that INO1 is an essential gene in bloodstream-form T. brucei. It also showed that the de novo synthesized myo-inositol is utilized to form PI, which is preferentially used in GPI biosynthesis. We also show for the first time that extracellular myo-inositol can in fact be used in GPI formation although to a limited extent. Despite this, extracellular inositol cannot compensate for the deletion of INO1. Supporting these results, there was no change in PI levels in the conditional double knockout cells grown under non-permissive conditions, showing that perturbation of growth is due to a specific lack of de novo synthesized myo-inositol and not a general inositol-less death. These results suggest that there is a distinction between de novo synthesized myo-inositol and that from the extracellular environment.
doi:10.1111/j.1365-2958.2006.05216.x
PMCID: PMC3793301  PMID: 16824097
13.  Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2 
Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH), the endogenous activator of the liver X receptor (LXR), significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy) pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2). In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.
doi:10.1155/2008/801849
PMCID: PMC3005827  PMID: 22820672
14.  Adenosine Kinase of Trypanosoma brucei and Its Role in Susceptibility to Adenosine Antimetabolites▿ †  
Antimicrobial Agents and Chemotherapy  2007;51(11):3895-3901.
Trypanosoma brucei cannot synthesize purines de novo and relies on purine salvage from its hosts to build nucleic acids. With adenosine being a preferred purine source of bloodstream-form trypanosomes, adenosine kinase (AK; EC 2.7.1.20) is likely to be a key player in purine salvage. Adenosine kinase is also of high pharmacological interest, since for many adenosine antimetabolites, phosphorylation is a prerequisite for activity. Here, we cloned and functionally characterized adenosine kinase from T. brucei (TbAK). TbAK is a tandem gene, expressed in both procyclic- and bloodstream-form trypanosomes, whose product localized to the cytosol of the parasites. The RNA interference-mediated silencing of TbAK suggested that the gene is nonessential under standard growth conditions. Inhibition or downregulation of TbAK rendered the trypanosomes resistant to cordycepin (3′-deoxyadenosine), demonstrating a role for TbAK in the activation of adenosine antimetabolites. The expression of TbAK in Saccharomyces cerevisiae complemented a null mutation in the adenosine kinase gene ado1. The concomitant expression of TbAK with the T. brucei adenosine transporter gene TbAT1 allowed S. cerevisiae ado1 ade2 double mutants to grow on adenosine as the sole purine source and, at the same time, sensitized them to adenosine antimetabolites. The coexpression of TbAK and TbAT1 in S. cerevisiae ado1 ade2 double mutants proved to be a convenient tool for testing nucleoside analogues for uptake and activation by T. brucei adenosine salvage enzymes.
doi:10.1128/AAC.00458-07
PMCID: PMC2151413  PMID: 17698621
15.  Regulated Expression of an Essential Allosteric Activator of Polyamine Biosynthesis in African Trypanosomes 
PLoS Pathogens  2008;4(10):e1000183.
Trypanosoma brucei is the causative agent of African sleeping sickness. The polyamine biosynthetic pathway has the distinction of being the target of the only clinically proven anti-trypanosomal drug with a known mechanism of action. Polyamines are essential for cell growth, and their metabolism is extensively regulated. However, trypanosomatids appear to lack the regulatory control mechanisms described in other eukaryotic cells. In T. brucei, S-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC) are required for the synthesis of polyamines and also for the unique redox-cofactor trypanothione. Further, trypanosomatid AdoMetDC is activated by heterodimer formation with a catalytically dead homolog termed prozyme, found only in these species. To study polyamine regulation in T. brucei, we generated inducible AdoMetDC RNAi and prozyme conditional knockouts in the mammalian blood form stage. Depletion of either protein led to a reduction in spermidine and trypanothione and to parasite death, demonstrating that prozyme activation of AdoMetDC is essential. Under typical growth conditions, prozyme concentration is limiting in comparison to AdoMetDC. However, both prozyme and ODC protein levels were significantly increased relative to stable transcript levels by knockdown of AdoMetDC or its chemical inhibition. Changes in protein stability do not appear to account for the increased steady-state protein levels, as both enzymes are stable in the presence of cycloheximide. These observations suggest that prozyme and ODC are translationally regulated in response to perturbations in the pathway. In conclusion, we describe the first evidence for regulation of polyamine biosynthesis in T. brucei and we demonstrate that the unique regulatory subunit of AdoMetDC is a key component of this regulation. The data support ODC and AdoMetDC as the key control points in the pathway and the likely rate-limiting steps in polyamine biosynthesis.
Author Summary
Human African trypanosomiasis (HAT) is an important vector-borne pathogen. The World Health Organization estimates that more than 50 million people are at risk for the disease, which occurs focally, in remote regions, and periodically reaches epidemic levels. Untreated HAT is always fatal, and the available drugs compromise toxicity and emerging resistance. The only safe treatment for late-stage disease is an inhibitor of an essential metabolic pathway that is involved in the synthesis of small organic cations termed polyamines. In this paper, we use genetic approaches to demonstrate how the parasite regulates this essential metabolic pathway. By modulating the protein levels of a trypanosome-specific activator of polyamine biosynthesis, the parasite has developed a mechanism to regulate pathway output. We also demonstrate that this pathway activator is essential to parasite growth. Our data strengthen the genetic and chemical validation of a key enzyme in this pathway as a drug target in the parasite, and they provide new insight into parasite-specific approaches that could be used to design novel drugs against this deadly disease.
doi:10.1371/journal.ppat.1000183
PMCID: PMC2562514  PMID: 18949025
16.  Chemical, genetic and structural assessment of pyridoxal kinase as a drug target in the African trypanosome 
Molecular Microbiology  2012;86(1):51-64.
Pyridoxal-5′-phosphate (vitamin B6) is an essential cofactor for many important enzymatic reactions such as transamination and decarboxylation. African trypanosomes are unable to synthesise vitamin B6de novo and rely on uptake of B6 vitamers such as pyridoxal and pyridoxamine from their hosts, which are subsequently phosphorylated by pyridoxal kinase (PdxK). A conditional null mutant of PdxK was generated in Trypanosoma brucei bloodstream forms showing that this enzyme is essential for growth of the parasite in vitro and for infectivity in mice. Activity of recombinant T. brucei PdxK was comparable to previously published work having a specific activity of 327 ± 13 mU mg−1 and a Kmapp with respect to pyridoxal of 29.6 ± 3.9 µM. A coupled assay was developed demonstrating that the enzyme has equivalent catalytic efficiency with pyridoxal, pyridoxamine and pyridoxine, and that ginkgotoxin is an effective pseudo substrate. A high resolution structure of PdxK in complex with ATP revealed important structural differences with the human enzyme. These findings suggest that pyridoxal kinase is an essential and druggable target that could lead to much needed alternative treatments for this devastating disease.
doi:10.1111/j.1365-2958.2012.08189.x
PMCID: PMC3470933  PMID: 22857512
17.  The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly 
Parasites & Vectors  2012;5:109.
Background
The tsetse-transmitted African trypanosomes cause diseases of importance to the health of both humans and livestock. The life cycles of these trypanosomes in the fly were described in the last century, but comparatively few details are available for Trypanosoma (Nannomonas) congolense, despite the fact that it is probably the most prevalent and widespread pathogenic species for livestock in tropical Africa. When the fly takes up bloodstream form trypanosomes, the initial establishment of midgut infection and invasion of the proventriculus is much the same in T. congolense and T. brucei. However, the developmental pathways subsequently diverge, with production of infective metacyclics in the proboscis for T. congolense and in the salivary glands for T. brucei. Whereas events during migration from the proventriculus are understood for T. brucei, knowledge of the corresponding developmental pathway in T. congolense is rudimentary. The recent publication of the genome sequence makes it timely to re-investigate the life cycle of T. congolense.
Methods
Experimental tsetse flies were fed an initial bloodmeal containing T. congolense strain 1/148 and dissected 2 to 78 days later. Trypanosomes recovered from the midgut, proventriculus, proboscis and cibarium were fixed and stained for digital image analysis. Trypanosomes contained in spit samples from individually caged flies were analysed similarly. Mensural data from individual trypanosomes were subjected to principal components analysis.
Results
Flies were more susceptible to infection with T. congolense than T. brucei; a high proportion of flies infected with T. congolense established a midgut and subsequent proboscis infection, whereas many T. brucei infections were lost in the migration from foregut to salivary glands. In T. congolense, trypomastigotes ceased division in the proventriculus and became uniform in size. The trypanosomes retained trypomastigote morphology during migration via the foregut to the mouthparts and we confirmed that the trypomastigote-epimastigote transition occurred in the proboscis. We found no equivalent to the asymmetric division stage in T. brucei that mediates transition of proventricular trypomastigotes to epimastigotes. In T. congolense extremely long epimastigotes with remarkably elongated posterior ends were observed in both the proboscis and cibarium; no difference was found in the developmental stages in these two organs. Dividing trypomastigotes and epimastigotes were recovered from the proboscis, some of which were in transition from trypomastigote to epimastigote and vice versa. It remains uncertain whether these morphological transitions are mediated by cell division, since we also found non-dividing cells with a variously positioned, juxta-nuclear kinetoplast.
Conclusions
We have presented a detailed description of the life cycle of T. congolense in its tsetse fly vector. During development in the fly T. congolense shares a common migratory pathway with its close relative T. brucei, culminating in the production of small metacyclic trypanosomes that can be inoculated with the saliva. Despite this outward similarity in life cycle, the transitional developmental stages in the foregut and mouthparts are remarkably different in the two trypanosome species.
doi:10.1186/1756-3305-5-109
PMCID: PMC3384477  PMID: 22676292
18.  Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies 
Molecular microbiology  2008;68(1):37-50.
Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosyn-thetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite Trypanosoma brucei through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream-form T. brucei did not inhibit growth in normal medium, but profoundly retarded growth in pyrimidine-depleted media or in the presence of the known pyrimidine uptake antagonist 5-fluoruracil (5-FU). These results have significant implications for the development of therapeutics to combat T. brucei infection. Specifically, a combination therapy including a T. brucei-specific DHODH inhibitor plus 5-FU may prove to be an effective therapeutic strategy. We also show that this trypanosomal enzyme is inhibited by known inhibitors of bacterial Class 1A DHODH, in distinction to the sensitivity of DHODH from human and other higher eukaryotes. This selectivity is supported by the crystal structure of the T. brucei enzyme, which is reported here at a resolution of 1.95 Å. Additional research, guided by the crystal structure described herein, is needed to identify potent inhibitors of T. brucei DHODH.
doi:10.1111/j.1365-2958.2008.06131.x
PMCID: PMC2877593  PMID: 18312275
flavoprotein; pyrimidine biosynthesis; gene knockdown; kinetoplastid; RNAi
19.  Identification and Functional Characterisation of CRK12:CYC9, a Novel Cyclin-Dependent Kinase (CDK)-Cyclin Complex in Trypanosoma brucei 
PLoS ONE  2013;8(6):e67327.
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively.
doi:10.1371/journal.pone.0067327
PMCID: PMC3689728  PMID: 23805309
20.  Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation 
Background
The essential purine salvage pathway of Trypanosoma brucei bears interesting catalytic enzymes for chemotherapeutic intervention of Human African Trypanosomiasis. Unlike mammalian cells, trypanosomes lack de novo purine synthesis and completely rely on salvage from their hosts. One of the key enzymes is adenosine kinase which catalyzes the phosphorylation of ingested adenosine to form adenosine monophosphate (AMP) utilizing adenosine triphosphate (ATP) as the preferred phosphoryl donor.
Methods and Findings
Here, we present the first structures of Trypanosoma brucei rhodesiense adenosine kinase (TbrAK): the structure of TbrAK in complex with the bisubstrate inhibitor P1,P5-di(adenosine-5′)-pentaphosphate (AP5A) at 1.55 Å, and TbrAK complexed with the recently discovered activator 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) at 2.8 Å resolution.
Conclusions
The structural details and their comparison give new insights into substrate and activator binding to TbrAK at the molecular level. Further structure-activity relationship analyses of a series of derivatives of compound 1 support the observed binding mode of the activator and provide a possible mechanism of action with respect to their activating effect towards TbrAK.
Author Summary
Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) and its derivatives exhibit specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. We found that compound 1 would target the parasite adenosine kinase (TbrAK), an important enzyme of the purine salvage pathway, by acting via hyperactivation of the enzyme. This represents a novel and hitherto unexplored strategy for the development of trypanocides. These findings prompted us to investigate the mechanism of action at the molecular level. The present study reports the first three-dimensional crystal structures of TbrAK in complex with the bisubstrate inhibitor AP5A, and in complex with the activator (compound 1). The subsequent structural analysis sheds light on substrate and activator binding, and gives insight into the possible mechanism leading to hyperactivation. Further structure-activity relationships in terms of TbrAK activation properties support the observed binding mode of compound 1 in the crystal structure and may open the field for subsequent optimization of this compound series.
doi:10.1371/journal.pntd.0001164
PMCID: PMC3101181  PMID: 21629723
21.  Identification of Compounds with Anti-Proliferative Activity against Trypanosoma brucei brucei Strain 427 by a Whole Cell Viability Based HTS Campaign 
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill.
Author Summary
Human African Sleeping Sickness (HAT) is a disease caused by sub-species of Trypanosoma. The disease affects developing countries within Africa, mainly occurring in rural regions that lack resources to purchase drugs for treatment. Drugs that are currently available have significant side effects, and treatment regimes are lengthy and not always transferrable to the field. In consideration of these factors, new drugs are urgently needed for the treatment of HAT. To discover compounds suitable for drug discovery, cultured trypanosomes can be tested against libraries of compounds to identify candidates for further biological analysis. We have utilised a 384-well format, Alamar Blue viability assay to screen a large non-proprietary compound collection against Trypanosoma brucei brucei bloodstream form lister 427. The assay was shown to be reproducible, with reference compounds exhibiting activity in agreement with previously published results. Primary screening hits were retested against T.b. brucei and HEK293 mammalian cells in order to assess selectivity against the parasite. Selective hits were characterised by chemical analysis, taking into consideration drug-like properties amenable to further progression. Priority compounds were tested against a panel of protozoan parasites, including Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Five new compound classes were discovered that are amenable to progression in the drug discovery process for HAT.
doi:10.1371/journal.pntd.0001896
PMCID: PMC3510080  PMID: 23209849
22.  The Major Sites of Cellular Phospholipid Synthesis and Molecular Determinants of Fatty Acid and Lipid Head Group Specificity 
Molecular Biology of the Cell  2002;13(9):3148-3161.
Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ∼50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase α, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase α is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase α to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214–228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.
doi:10.1091/mbc.01-11-0540
PMCID: PMC124149  PMID: 12221122
23.  Posttranscriptional regulation of cytochrome c expression during the developmental cycle of Trypanosoma brucei. 
Molecular and Cellular Biology  1988;8(11):4625-4633.
We examined the expression of a nucleus-encoded mitochondrial protein, cytochrome c, during the life cycle of Trypanosoma brucei. The bloodstream forms of T. brucei, the long slender and short stumpy trypanosomes, have inactive mitochondria with no detectable cytochrome-mediated respiration. The insect form of T. brucei, the procyclic trypanosomes, has fully functional mitochondria. Cytochrome c is spectrally undetectable in the bloodstream forms of trypanosomes, but during differentiation to the procyclic form, spectrally detected holo-cytochrome c accumulates rapidly. We have purified T. brucei cytochrome c and raised antibodies that react to both holo- and apo-cytochrome c. In addition, we isolated a partial cDNA to trypanosome cytochrome c. An examination of protein expression and steady-state mRNA levels in T. brucei indicated that bloodstream trypanosomes did not express cytochrome c but maintained significant steady-state levels of cytochrome c mRNA. The results suggest that in T. brucei, cytochrome c is developmentally regulated by a posttranscriptional mechanism which prevents either translation or accumulation of cytochrome c in the bloodstream trypanosomes.
Images
PMCID: PMC365551  PMID: 2850466
24.  Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity☆ 
Graphical abstract
Highlights
•African trypanosomes possess two distinct adenine phosphoribosyltransferases.•Trypanosoma brucei TbAPRT1 is cytosolic, TbAPRT2 localizes to the glycosome.•Aprt1,2 null mutants are viable but do not incorporate adenine into nucleotides.•Aprt1,2 null mutants are resistant to aminopurinol but still sensitive to adenine.•Aminopurinol is a trypanocide with submicromolar activity against T. brucei.
African trypanosomes, like all obligate parasitic protozoa, cannot synthesize purines de novo and import purines from their hosts to build nucleic acids. The purine salvage pathways of Trypanosoma brucei being redundant, none of the involved enzymes is likely to be essential. Nevertheless they can be of pharmacological interest due to their role in activation of purine nucleobase or nucleoside analogues, which only become toxic when converted to nucleotides. Aminopurine antimetabolites, in particular, are potent trypanocides and even adenine itself is toxic to trypanosomes at elevated concentrations. Here we report on the T. brucei adenine phosphoribosyltransferases TbAPRT1 and TbAPRT2, encoded by the two genes Tb927.7.1780 and Tb927.7.1790, located in tandem on chromosome seven. The duplication is syntenic in all available Trypanosoma genomes but not in Leishmania. While TbAPRT1 is cytosolic, TbAPRT2 possesses a glycosomal targeting signal and co-localizes with the glycosomal marker aldolase. Interestingly, the distribution of glycosomal targeting signals among trypanosomatid adenine phosphoribosyltransferases is not consistent with their phylogeny, indicating that the acquisition of adenine salvage to the glycosome happened after the radiation of Trypanosoma. Double null mutant T. brucei Δtbaprt1,2 exhibited no growth phenotype but no longer incorporated exogenous adenine into the nucleotide pool. This, however, did not reduce their sensitivity to adenine. The Δtbaprt1,2 trypanosomes were resistant to the adenine isomer aminopurinol, indicating that it is activated by phosphoribosyl transfer. Aminopurinol was about 1000-fold more toxic to bloodstream-form T. brucei than the corresponding hypoxanthine isomer allopurinol. Aminopurinol uptake was not dependent on the aminopurine permease P2 that has been implicated in drug resistance.
doi:10.1016/j.ijpddr.2013.12.001
PMCID: PMC3940079  PMID: 24596669
Adenine phosphoribosyltransferase; African trypanosomes; Purine salvage; Aminopurinol
25.  The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei 
Molecular Microbiology  2012;84(2):340-351.
Summary
The sugar nucleotide GDP-mannose is essential for Trypanosoma brucei. Phosphomannose isomerase occupies a key position on the de novo pathway to GDP-mannose from glucose, just before intersection with the salvage pathway from free mannose. We identified the parasite phosphomannose isomerase gene, confirmed that it encodes phosphomannose isomerase activity and localized the endogenous enzyme to the glycosome. We also created a bloodstream-form conditional null mutant of phosphomannose isomerase to assess the relative roles of the de novo and salvage pathways of GDP-mannose biosynthesis. Phosphomannose isomerase was found to be essential for parasite growth. However, supplementation of the medium with low concentrations of mannose, including that found in human plasma, relieved this dependence. Therefore, we do not consider phosphomannose isomerase to be a viable drug target. We further established culture conditions where we can control glucose and mannose concentrations and perform steady-state [U-13C]-d-glucose labelling. Analysis of the isotopic sugar composition of the parasites variant surface glycoprotein synthesized in cells incubated in 5 mM [U-13C]-d-glucose in the presence and absence of unlabelled mannose showed that, under physiological conditions, about 80% of GDP-mannose synthesis comes from the de novo pathway and 20% from the salvage pathway.
doi:10.1111/j.1365-2958.2012.08026.x
PMCID: PMC3412276  PMID: 22375793

Results 1-25 (408296)