PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1199405)

Clipboard (0)
None

Related Articles

1.  Stress-Dependent Coordination of Transcriptome and Translatome in Yeast 
PLoS Biology  2009;7(5):e1000105.
Cells rapidly alter gene expression in response to environmental stimuli such as nutrients, hormones, and drugs. During the imposed “remodeling” of gene expression, changes in the levels of particular mRNAs do not necessarily correlate with those of the encoded proteins, which could in part rely on the differential recruitment of mRNAs to translating ribosomes. To systematically address this issue, we have established an approach to rapidly access the translational status of each mRNA in the yeast Saccharomyces cerevisiae by affinity purification of endogenously formed ribosomes and the analysis of associated mRNAs with DNA microarrays. Using this method, we compared changes in total mRNA levels (transcriptome) with ribosome associations (translatome) after the application of different conditions of cellular stress. Severe stresses, induced by amino acid depletion or osmotic shock, stimulated highly correlated responses affecting about 15% of both total RNA levels and translatome. Many of the regulated messages code for functionally related proteins, thus reflecting logical responses to the particular stress. In contrast, mild stress provoked by addition of Calcofluor-white and menadione altered the translatome of approximately 1% of messages with only marginal effects on total mRNA, suggesting largely uncorrelated responses of transcriptome and translatome. Among these putative translationally regulated messages were most components of the mitochondrial ATPase. Increased polysome associations of corresponding messages and higher mitochondrial ATPase activities upon treatment confirmed the relevance for regulation of this macromolecular complex. Our results suggest the presence of highly sensitive translational regulatory networks that coordinate functionally related messages. These networks are preferentially activated for rapid adaptation of cells to minor environmental perturbations.
Author Summary
Organisms respond to environmental or physiological changes by altering the amounts and activities of specific proteins that are necessary for their adaptation and survival. Importantly, protein levels can be modulated by changing either the rate of synthesis or the stability of the messenger RNA (mRNA or transcript), or the synthesis or stability of the protein itself. Scientists often measure global mRNA levels upon changing conditions to identify transcripts that are differentially regulated, and often the assumption is made that changes in transcript levels lead to corresponding changes in protein levels. Here, we systematically compared global transcript levels (transcriptome) with global alterations in the levels of ribosome association of transcripts (translatome) when yeast cells are exposed to different stresses to determine how significant the discrepancy between transcript and protein levels can be. We found that changes in the transcriptome correlate well with those in the translatome after application of harsh stresses that arrest cell growth. However, this correlation is generally lost under more mild stresses that do not affect cell growth. In this case, remodeling of gene expression is mainly executed at the translational level by modulating mRNA association with ribosomes. As one example, we show that expression for many components of the mitochondrial ATPase, the major energy production machinery in cells, is translationally but not transcriptionally activated under a specific mild stress condition. Our results therefore show that alteration of protein synthesis can be the dominant mediator of changes of gene expression during adaptation to minor changes in cellular needs.
During cellular adaptation to changing growth conditions, the extent of correlation between changes in transcriptional and translational regulation varies with the severity of the stress.
doi:10.1371/journal.pbio.1000105
PMCID: PMC2675909  PMID: 19419242
2.  Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control 
Combining translating ribosome affinity purification with RNA-seq for cell-specific profiling of translating RNAs in developing flowers.Cell type comparisons of cell type-specific hormone responses, promoter motifs, coexpressed cognate binding factor candidates, and splicing isoforms.Widespread post-transcriptional regulation at both the intron splicing and translational stages.A new class of noncoding RNAs associated with polysomes.
What constitutes a differentiated cell type? How much do cell types differ in their transcription of genes? The development and functions of tissues rely on constant interactions among distinct and nonequivalent cell types. Answering these questions will require quantitative information on transcriptomes, proteomes, protein–protein interactions, protein–nucleic acid interactions, and metabolomes at cellular resolution. The systems approaches emerging in biology promise to explain properties of biological systems based on genome-wide measurements of expression, interaction, regulation, and metabolism. To facilitate a systems approach, it is essential first to capture such components in a global manner, ideally at cellular resolution.
Recently, microarray analysis of transcriptomes has been extended to a cellular level of resolution by using laser microdissection or fluorescence-activated sorting (for review, see Nelson et al, 2008). These methods have been limited by stresses associated with cellular separation and isolation procedures, and biases associated with mandatory RNA amplification steps. A newly developed method, translating ribosome affinity purification (TRAP; Zanetti et al, 2005; Heiman et al, 2008; Mustroph et al, 2009), circumvents these problems by epitopetagging a ribosomal protein in specific cellular domains to selectively purify polysomes. We combined TRAP with deep sequencing, which we term TRAP-seq, to provide cell-level spatiotemporal maps for Arabidopsis early floral development at single-base resolution.
Flower development in Arabidopsis has been studied extensively and is one of the best understood aspects of plant development (for review, see Krizek and Fletcher, 2005). Genetic analysis of homeotic mutants established the ABC model, in which three classes of regulatory genes, A, B and C, work in a combinatorial manner to confer organ identities of four whorls (Coen and Meyerowitz, 1991). Each class of regulatory gene is expressed in a specific and evolutionarily conserved domain, and the action of the class A, B and C genes is necessary for specification of organ identity (Figure 1A).
Using TRAP-seq, we purified cell-specific translating mRNA populations, which we and others call the translatome, from the A, B and C domains of early developing flowers, in which floral patterning and the specification of floral organs is established. To achieve temporal specificity, we used a floral induction system to facilitate collection of early stage flowers (Wellmer et al, 2006). The combination of TRAP-seq with domain-specific promoters and this floral induction system enabled fine spatiotemporal isolation of translating mRNA in specific cellular domains, and at specific developmental stages.
Multiple lines of evidence confirmed the specificity of this approach, including detecting the expression in expected domains but not in other domains for well-studied flower marker genes and known physiological functions (Figures 1B–D and 2A–C). Furthermore, we provide numerous examples from flower development in which a spatiotemporal map of rigorously comparable cell-specific translatomes makes possible new views of the properties of cell domains not evident in data obtained from whole organs or tissues, including patterns of transcription and cis-regulation, new physiological differences among cell domains and between flower stages, putative hormone-active centers, and splicing events specific for flower domains (Figure 2A–D). Such findings may provide new targets for reverse genetics studies and may aid in the formulation and validation of interaction and pathway networks.
Beside cellular heterogeneity, the transcriptome is regulated at several steps through the life of mRNA molecules, which are not directly available through traditional transcriptome profiling of total mRNA abundance. By comparing the translatome and transcriptome, we integratively profiled two key posttranscriptional control points, intron splicing and translation state. From our translatome-wide profiling, we (i) confirmed that both posttranscriptional regulation control points were used by a large portion of the transcriptome; (ii) identified a number of cis-acting features within the coding or noncoding sequences that correlate with splicing or translation state; and (iii) revealed correlation between each regulation mechanism and gene function. Our transcriptome-wide surveys have highlighted target genes transcripts of which are probably under extensive posttranscriptional regulation during flower development.
Finally, we reported the finding of a large number of polysome-associated ncRNAs. About one-third of all annotated ncRNA in the Arabidopsis genome were observed co-purified with polysomes. Coding capacity analysis confirmed that most of them are real ncRNA without conserved ORFs. The group of polysome-associated ncRNA reported in this study is a potential new addition to the expanding riboregulator catalog; they could have roles in translational regulation during early flower development.
Determining both the expression levels of mRNA and the regulation of its translation is important in understanding specialized cell functions. In this study, we describe both the expression profiles of cells within spatiotemporal domains of the Arabidopsis thaliana flower and the post-transcriptional regulation of these mRNAs, at nucleotide resolution. We express a tagged ribosomal protein under the promoters of three master regulators of flower development. By precipitating tagged polysomes, we isolated cell type-specific mRNAs that are probably translating, and quantified those mRNAs through deep sequencing. Cell type comparisons identified known cell-specific transcripts and uncovered many new ones, from which we inferred cell type-specific hormone responses, promoter motifs and coexpressed cognate binding factor candidates, and splicing isoforms. By comparing translating mRNAs with steady-state overall transcripts, we found evidence for widespread post-transcriptional regulation at both the intron splicing and translational stages. Sequence analyses identified structural features associated with each step. Finally, we identified a new class of noncoding RNAs associated with polysomes. Findings from our profiling lead to new hypotheses in the understanding of flower development.
doi:10.1038/msb.2010.76
PMCID: PMC2990639  PMID: 20924354
Arabidopsis; flower; intron; transcriptome; translation
3.  The HOG Pathway Dictates the Short-Term Translational Response after Hyperosmotic Shock 
Molecular Biology of the Cell  2010;21(17):3080-3092.
In the global osmoshock translational response in yeast, some gene products were translationally mobilized without transcriptional up-regulation. Conversely, other transcriptionally up-regulated mRNAs were translationally inhibited. Analogous changes occurred on the protein level. These translational responses were strongly dependent on Hog1 and Rck2.
Cellular responses to environmental changes occur on different levels. We investigated the translational response of yeast cells after mild hyperosmotic shock by isolating mRNA associated with multiple ribosomes (polysomes) followed by array analysis. Globally, recruitment of preexisting mRNAs to ribosomes (translational response) is faster than the transcriptional response. Specific functional groups of mRNAs are recruited to ribosomes without any corresponding increase in total mRNA. Among mRNAs under strong translational up-regulation upon shock, transcripts encoding membrane-bound proteins including hexose transporters were enriched. Similarly, numerous mRNAs encoding cytoplasmic ribosomal proteins run counter to the overall trend of down-regulation and are instead translationally mobilized late in the response. Surprisingly, certain transcriptionally induced mRNAs were excluded from ribosomal association after shock. Importantly, we verify, using constructs with intact 5′ and 3′ untranslated regions, that the observed changes in polysomal mRNA are reflected in protein levels, including cases with only translational up-regulation. Interestingly, the translational regulation of the most highly osmostress-regulated mRNAs was more strongly dependent on the stress-activated protein kinases Hog1 and Rck2 than the transcriptional regulation. Our results show the importance of translational control for fine tuning of the adaptive responses.
doi:10.1091/mbc.E10-01-0006
PMCID: PMC2930000  PMID: 20587780
4.  Translational Regulation of Specific mRNAs Controls Feedback Inhibition and Survival during Macrophage Activation 
PLoS Genetics  2014;10(6):e1004368.
For a rapid induction and efficient resolution of the inflammatory response, gene expression in cells of the immune system is tightly regulated at the transcriptional and post-transcriptional level. The control of mRNA translation has emerged as an important determinant of protein levels, yet its role in macrophage activation is not well understood. We systematically analyzed the contribution of translational regulation to the early phase of the macrophage response by polysome fractionation from mouse macrophages stimulated with lipopolysaccharide (LPS). Individual mRNAs whose translation is specifically regulated during macrophage activation were identified by microarray analysis. Stimulation with LPS for 1 h caused translational activation of many feedback inhibitors of the inflammatory response including NF-κB inhibitors (Nfkbid, Nfkbiz, Nr4a1, Ier3), a p38 MAPK antagonist (Dusp1) and post-transcriptional suppressors of cytokine expression (Zfp36 and Zc3h12a). Our analysis showed that their translation is repressed in resting and de-repressed in activated macrophages. Quantification of mRNA levels at a high temporal resolution by RNASeq allowed us to define groups with different expression patterns. Thereby, we were able to distinguish mRNAs whose translation is actively regulated from mRNAs whose polysomal shifts are due to changes in mRNA levels. Active up-regulation of translation was associated with a higher content in AU-rich elements (AREs). For one example, Ier3 mRNA, we show that repression in resting cells as well as de-repression after stimulation depends on the ARE. Bone-marrow derived macrophages from Ier3 knockout mice showed reduced survival upon activation, indicating that IER3 induction protects macrophages from LPS-induced cell death. Taken together, our analysis reveals that translational control during macrophage activation is important for cellular survival as well as the expression of anti-inflammatory feedback inhibitors that promote the resolution of inflammation.
Author Summary
When macrophages encounter pathogens, they initiate inflammation by secreting pro-inflammatory factors such as the cytokine TNF. Because a prolonged or overshooting release of these factors is harmful for the organism, their production needs to be tightly controlled and shut off in due time. To ensure a rapid but transient inflammatory response, gene expression is regulated at multiple levels, including transcription, stability and translation of mRNAs. While control of transcription and mRNA stability has been studied extensively, little is known about translational regulation in macrophages. In this study, we measured the translation of all mRNAs expressed in mouse macrophages. Upon activation of macrophages with the bacterial cell wall component lipopolysaccharide, we found that many feedback inhibitors, which are important for dampening the inflammatory response, are translationally up-regulated. Translation of these mRNAs is repressed in resting cells and de-repressed after stimulation. In contrast to feedback inhibitors, most cytokines are primarily regulated by changes in mRNA abundance. Furthermore, we could show that one of the feedback inhibitors, IER3, protects macrophages from cell death during activation. Therefore, regulation at the level of translation is important for the induction of negative feedback loops and cellular survival.
doi:10.1371/journal.pgen.1004368
PMCID: PMC4063670  PMID: 24945926
5.  Polysome profiling reveals broad translatome remodeling during endoplasmic reticulum (ER) stress in the pathogenic fungus Aspergillus fumigatus 
BMC Genomics  2014;15:159.
Background
The unfolded protein response (UPR) is a network of intracellular signaling pathways that supports the ability of the secretory pathway to maintain a balance between the load of proteins entering the endoplasmic reticulum (ER) and the protein folding capacity of the ER lumen. Current evidence indicates that several pathogenic fungi rely heavily on this pathway for virulence, but there is limited understanding of the mechanisms involved. The best known functional output of the UPR is transcriptional upregulation of mRNAs involved in ER homeostasis. However, this does not take into account mechanisms of translational regulation that involve differential loading of ribosomes onto mRNAs. In this study, a global analysis of transcript-specific translational regulation was performed in the pathogenic mold Aspergillus fumigatus to determine the nature and scope of the translational response to ER stress.
Results
ER stress was induced by treating the fungus with dithiothreitol, tunicamycin, or a thermal up-shift. The mRNAs were then fractionated on the basis of ribosome occupancy into an under-translated pool (U) and a well-translated pool (W). The mRNAs were used to interrogate microarrays and the ratio of the hybridization signal (W/U) was used as an indicator of the relative translational efficiency of a mRNA under each condition. The largest category of translationally upregulated mRNAs during ER stress encoded proteins involved in translation. Components of the ergosterol and GPI anchor biosynthetic pathways also showed increased polysome association, suggesting an important role for translational regulation in membrane and cell wall homeostasis. ER stress induced limited remodeling of the secretory pathway translatome. However, a select group of transcription factors was translationally upregulated, providing a link to subsequent modification of the transcriptome. Finally, we provide evidence that one component of the ER stress translatome is a novel mRNA isoform from the yvc1 gene that is induced by ER stress in a UPR-dependent manner.
Conclusions
Together, these findings define a core set of mRNAs subject to translational control during the adaptive response to acute ER stress in A. fumigatus and reveal a remarkable breadth of functions that are needed to resolve ER stress in this organism.
doi:10.1186/1471-2164-15-159
PMCID: PMC3943501  PMID: 24568630
Aspergillus fumigatus; UPR; Unfolded protein response; ER stress; Translational regulation; Polysome profiling; Yvc1
6.  Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA 
PLoS Biology  2009;7(11):e1000238.
A specific microRNA reduces the synthesis of hundreds of proteins via concordant effects on the abundance and translation of the mRNAs that encode them.
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally by interfering with a target mRNA's translation, stability, or both. We sought to dissect the respective contributions of translational inhibition and mRNA decay to microRNA regulation. We identified direct targets of a specific miRNA, miR-124, by virtue of their association with Argonaute proteins, core components of miRNA effector complexes, in response to miR-124 transfection in human tissue culture cells. In parallel, we assessed mRNA levels and obtained translation profiles using a novel global approach to analyze polysomes separated on sucrose gradients. Analysis of translation profiles for ∼8,000 genes in these proliferative human cells revealed that basic features of translation are similar to those previously observed in rapidly growing Saccharomyces cerevisiae. For ∼600 mRNAs specifically recruited to Argonaute proteins by miR-124, we found reductions in both the mRNA abundance and inferred translation rate spanning a large dynamic range. The changes in mRNA levels of these miR-124 targets were larger than the changes in translation, with average decreases of 35% and 12%, respectively. Further, there was no identifiable subgroup of mRNA targets for which the translational response was dominant. Both ribosome occupancy (the fraction of a given gene's transcripts associated with ribosomes) and ribosome density (the average number of ribosomes bound per unit length of coding sequence) were selectively reduced for hundreds of miR-124 targets by the presence of miR-124. Changes in protein abundance inferred from the observed changes in mRNA abundance and translation profiles closely matched changes directly determined by Western analysis for 11 of 12 proteins, suggesting that our assays captured most of miR-124–mediated regulation. These results suggest that miRNAs inhibit translation initiation or stimulate ribosome drop-off preferentially near the start site and are not consistent with inhibition of polypeptide elongation, or nascent polypeptide degradation contributing significantly to miRNA-mediated regulation in proliferating HEK293T cells. The observation of concordant changes in mRNA abundance and translational rate for hundreds of miR-124 targets is consistent with a functional link between these two regulatory outcomes of miRNA targeting, and the well-documented interrelationship between translation and mRNA decay.
Author Summary
The human genome contains directions to regulate the timing and magnitude of expression of its thousands of genes. MicroRNAs are important regulatory RNAs that tune the expression levels of tens to hundreds of specific genes by pairing to complimentary stretches in the messenger RNAs from these genes, thereby reducing their stability and their translation into protein. Although the importance of microRNAs is appreciated, little is known about the relative contributions of degradation or repression of translation of the cognate mRNAs to the overall effects on protein synthesis, or the links between these two regulatory mechanisms. We devised a simple, economical method to systematically measure mRNA translation profiles, then applied this method, in combination with gene expression analysis, to measure the effects of the human microRNA miR-124 on the abundance and apparent translation rate of its mRNA targets. We found that for the ∼600 mRNA targets of miR-124 that were identified by their association with microRNA effector complexes, around three quarters of the reduction in estimated protein synthesis was explained by changes in mRNA abundance. Although the apparent changes in translation efficiencies of the targeted mRNAs were smaller in magnitude, they were highly correlated with changes in the abundance of those RNAs, suggesting a functional link between microRNA-mediated repression of translation and mRNA decay.
doi:10.1371/journal.pbio.1000238
PMCID: PMC2766070  PMID: 19901979
7.  Regulation of the cardiomyocyte transcriptome vs translatome by endothelin-1 and insulin: translational regulation of 5' terminal oligopyrimidine tract (TOP) mRNAs by insulin 
BMC Genomics  2010;11:343.
Background
Changes in cellular phenotype result from underlying changes in mRNA transcription and translation. Endothelin-1 stimulates cardiomyocyte hypertrophy with associated changes in mRNA/protein expression and an increase in the rate of protein synthesis. Insulin also increases the rate of translation but does not promote overt cardiomyocyte hypertrophy. One mechanism of translational regulation is through 5' terminal oligopyrimidine tracts (TOPs) that, in response to growth stimuli, promote mRNA recruitment to polysomes for increased translation. TOP mRNAs include those encoding ribosomal proteins, but the full panoply remains to be established. Here, we used microarrays to compare the effects of endothelin-1 and insulin on the global transcriptome of neonatal rat cardiomyocytes, and on mRNA recruitment to polysomes (i.e. the translatome).
Results
Globally, endothelin-1 and insulin (1 h) promoted >1.5-fold significant (false discovery rate < 0.05) changes in expression of 341 and 38 RNAs, respectively. For these transcripts with this level of change there was little evidence of translational regulation. However, 1336 and 712 RNAs had >1.25-fold significant changes in expression in total and/or polysomal RNA induced by endothelin-1 or insulin, respectively, of which ~35% of endothelin-1-responsive and ~56% of insulin-responsive transcripts were translationally regulated. Of mRNAs for established proteins recruited to polysomes in response to insulin, 49 were known TOP mRNAs with a further 15 probable/possible TOP mRNAs, but 49 had no identifiable TOP sequences or other consistent features in the 5' untranslated region.
Conclusions
Endothelin-1, rather than insulin, substantially affects global transcript expression to promote cardiomyocyte hypertrophy. Effects on RNA recruitment to polysomes are subtle, with differential effects of endothelin-1 and insulin on specific transcripts. Furthermore, although insulin promotes recruitment of TOP mRNAs to cardiomyocyte polysomes, not all recruited mRNAs are TOP mRNAs.
doi:10.1186/1471-2164-11-343
PMCID: PMC2900265  PMID: 20509958
8.  An approach to analyse the specific impact of rapamycin on mRNA-ribosome association 
BMC Medical Genomics  2008;1:33.
Background
Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background.
Methods
We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation.
Results
High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug.
Conclusion
The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.
doi:10.1186/1755-8794-1-33
PMCID: PMC2533349  PMID: 18673536
9.  Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis 
PLoS ONE  2009;4(3):e4900.
Background
In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs).
Methodology/Principal Findings
Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation.
Conclusions/Significance
Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation.
doi:10.1371/journal.pone.0004900
PMCID: PMC2659425  PMID: 19333380
10.  Increased sucrose levels mediate selective mRNA translation in Arabidopsis 
BMC Plant Biology  2014;14(1):306.
Background
Protein synthesis is a highly energy demanding process and is regulated according to cellular energy levels. Light and sugar availability affect mRNA translation in plant cells but the specific roles of these factors remain unclear. In this study, sucrose was applied to Arabidopsis seedlings kept in the light or in the dark, in order to distinguish sucrose and light effects on transcription and translation. These were studied using microarray analysis of steady-state mRNA and mRNA bound to translating ribosomes.
Results
Steady-state mRNA levels were affected differently by sucrose in the light and in the dark but general translation increased to a similar extent in both conditions. For a majority of the transcripts changes of the transcript levels were followed by changes in polysomal mRNA levels. However, for 243 mRNAs, a change in polysomal occupancy (defined as polysomal levels related to steady-state levels of the mRNA) was observed after sucrose treatment in the light, but not in the dark condition. Many of these mRNAs are annotated as encoding ribosomal proteins, supporting specific translational regulation of this group of transcripts. Unexpectedly, the numbers of ribosomes bound to each mRNA decreased for mRNAs with increased polysomal occupancy.
Conclusions
Our results suggest that sucrose regulate translation of these 243 mRNAs specifically in the light, through a novel regulatory mechanism. Our data shows that increased polysomal occupancy is not necessarily leading to more ribosomes per transcript, suggesting a mechanism of translational induction not solely dependent on increased translation initiation rates.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0306-3) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0306-3
PMCID: PMC4252027  PMID: 25403240
Arabidopsis; Protein synthesis; Sugar signaling; Translational regulation
11.  Distinct glucose-dependent stress responses revealed by translational profiling in pancreatic β-cells 
The Journal of endocrinology  2007;192(1):179-187.
In pancreatic β-cells, following an acute (within 1 h) increase in glucose concentration, there are rapid changes in the expression of a large subset of proteins. The change in the expression of many of these proteins is mediated by a post-transcriptional mechanism through either increases or decreases in the rate of translation from pre-existing transcripts. These proteins, whose synthesis is rapidly up- or down-regulated in response to glucose, are likely important in mounting the correct response to changes in plasma glucose concentrations. However, the vast majority of these proteins remain unidentified. Therefore, in order to identify these proteins, we analysed changes in the levels of mRNAs associated with polysomes (i.e. actively translating mRNAs) isolated from mouse insulinoma 6 cells incubated at either 0·5 or 20 mM glucose for 1 h. Changes in the levels of polysomal mRNAs in response to glucose were analysed using affymetrix oligonucleotide microarrays (translational profiling). This work revealed that, in response to a change in glucose concentration, the abundance of 313 transcripts associated with polysomes changed by more than 1·5-fold, of which the abundance of 37 changed by more than twofold. The majority of these transcripts encoded proteins associated with metabolism or gene expression. More detailed analysis showed that a number of mRNAs encoding proteins associated with the induction of oxidative stress, including thioredoxin-2 and thioredoxin-interacting protein were rapidly redistributed onto heavier polysomes at high glucose concentration, indicating an increase in their expression. At low glucose concentration, when the general rate of protein synthesis is low, a number of mRNAs encoding integrated stress response proteins, including ATF4 and CHOP10, associate with heavier polysomes, indicating that their expression is up-regulated. In conclusion, translational profiling has revealed that, at either low or at high glucose concentration, β-cells rapidly increase the synthesis of a specific subset of proteins that are likely important in maintaining β-cell integrity and survival during conditions of nutritional stress.
doi:10.1677/joe.1.06898
PMCID: PMC1831533  PMID: 17210755
12.  Distinct glucose-dependent stress responses revealed by translational profiling in pancreatic β-cells 
The Journal of Endocrinology  2007;192(1):179-187.
In pancreatic β-cells, following an acute (within 1 h) increase in glucose concentration, there are rapid changes in the expression of a large subset of proteins. The change in the expression of many of these proteins is mediated by a post-transcriptional mechanism through either increases or decreases in the rate of translation from pre-existing transcripts. These proteins, whose synthesis is rapidly up- or down-regulated in response to glucose, are likely important in mounting the correct response to changes in plasma glucose concentrations. However, the vast majority of these proteins remain unidentified. Therefore, in order to identify these proteins, we analysed changes in the levels of mRNAs associated with polysomes (i.e. actively translating mRNAs) isolated from mouse insulinoma 6 cells incubated at either 0·5 or 20 mM glucose for 1 h. Changes in the levels of polysomal mRNAs in response to glucose were analysed using affymetrix oligonucleotide microarrays (translational profiling). This work revealed that, in response to a change in glucose concentration, the abundance of 313 transcripts associated with polysomes changed by more than 1·5-fold, of which the abundance of 37 changed by more than twofold. The majority of these transcripts encoded proteins associated with metabolism or gene expression. More detailed analysis showed that a number of mRNAs encoding proteins associated with the induction of oxidative stress, including thioredoxin-2 and thioredoxin-interacting protein were rapidly redistributed onto heavier polysomes at high glucose concentration, indicating an increase in their expression. At low glucose concentration, when the general rate of protein synthesis is low, a number of mRNAs encoding integrated stress response proteins, including ATF4 and CHOP10, associate with heavier polysomes, indicating that their expression is up-regulated. In conclusion, translational profiling has revealed that, at either low or at high glucose concentration, β-cells rapidly increase the synthesis of a specific subset of proteins that are likely important in maintaining β-cell integrity and survival during conditions of nutritional stress.
doi:10.1677/joe.1.06898
PMCID: PMC1831533  PMID: 17210755
13.  Genome-wide Analysis of Transcript Abundance and Translation in Arabidopsis Seedlings Subjected to Oxygen Deprivation 
Annals of Botany  2005;96(4):647-660.
• Background and Aims DNA microarrays allow comprehensive estimation of total cellular mRNA levels but are also amenable to studies of other mRNA populations, such as mRNAs in translation complexes (polysomes). The aim of this study was to evaluate the role of translational regulation in response to oxygen deprivation (hypoxia).
• Methods Alterations in total cellular and large polysome (≥ five ribosomes per mRNA) mRNA levels were monitored in response to 12 h of hypoxia stress in seedlings of Arabidopsis thaliana with a full-genome oligonucleotide microarray.
• Key Results Comparison of two mRNA populations revealed considerable modulation of mRNA accumulation and diversity in translation in response to hypoxia. Consistent with the global decrease in protein synthesis, hypoxia reduced the average proportion of individual mRNA species in large polysome complexes from 56·1 % to 32·1 %. A significant decrease in the association with translational complexes was observed for 77 % of the mRNAs, including a subset of known hypoxia-induced gene transcripts. The examination of mRNA levels of nine genes in polysomes fractionated through sucrose density gradients corroborated the microarray data. Gene cluster analysis was used to identify mRNAs that displayed co-ordinated regulation. Fewer than half of the highly induced mRNAs circumvented the global depression of translation. Moreover, a large number of mRNAs displayed a significant decrease in polysome association without a concomitant decrease in steady-state accumulation. The abundant mRNAs that encode the ribosomal proteins behaved in this manner. By contrast, a small group of abiotic and biotic stress-induced mRNAs showed a significant increase in polysome association, without a change in abundance. Evaluation of quantitative features of mRNA sequences demonstrated that a low GC nucleotide content of the 5′-untranslated region provides a selective advantage for translation under hypoxia.
• Conclusions Alterations in transcript abundance and translation contribute to the differential regulation of gene expression in response to oxygen deprivation.
doi:10.1093/aob/mci217
PMCID: PMC4247032  PMID: 16081496
Hypoxia; DNA microarray; polysome; translational control; mRNA sequence features; Arabidopsis thaliana
14.  Tuberous Sclerosis Complex Proteins 1 and 2 Control Serum-Dependent Translation in a TOP-Dependent and -Independent Manner▿ †  
Molecular and Cellular Biology  2007;27(16):5746-5764.
The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs). In contrast, these responses are defective in Tsc1−/− or Tsc2−/− MEFs. Microarray analysis of polysome- and subpolysome-associated mRNAs uncovered specific mRNAs that are translationally regulated by serum, 90% of which are TSC1 and TSC2 dependent. Surprisingly, the mTORC1 inhibitor, rapamycin, abolished mTORC1 activity but only affected ∼40% of the serum-regulated mRNAs. Serum-dependent signaling through mTORC1 and polysome redistribution of global and individual mRNAs were restored upon re-expression of TSC1 and TSC2. Serum-responsive mRNAs that are sensitive to inhibition by rapamycin are highly enriched for terminal oligopyrimidine and for very short 5′ and 3′ untranslated regions. These data demonstrate that the TSC1/TSC2 complex regulates protein translation through mainly mTORC1-dependent mechanisms and implicates a discrete profile of deregulated mRNA translation in tuberous sclerosis pathology.
doi:10.1128/MCB.02136-06
PMCID: PMC1952130  PMID: 17562867
15.  Translational control analysis by translationally active RNA capture/microarray analysis (TrIP–Chip) 
Nucleic Acids Research  2010;38(9):e104.
We have developed a new approach to systematically study post-transcriptional regulation in a small number of cells. Actively translating mRNAs are associated with polysomes and the newly synthesized peptide chains are closely associated with molecular chaperones such as hsp70s, which assist in the proper folding of nascent polypeptides into higher ordered structures. These chaperones provide an anchor with which to separate actively translating mRNAs associated with polysomes from free mRNAs. Affinity capture beads were developed to capture hsp70 chaperones associated with the polysome complexes. The isolated actively translating mRNAs were used for high-throughput expression profiling analysis. Feasibility was demonstrated using an in vitro translation system with known translationally regulated mRNA transcript thymidylate synthase (TS). We further developed the approach using HCT-116 colon cancer cells with both TS and p53 as positive controls. The steady-state levels of TS and p53 mRNAs were unaltered after 5-fluorouracil treatment as assessed by real-time qRT-PCR analysis. In contrast, the protein expression and polysome-associated mRNA levels of both genes were increased. These differences in translational rate were revealed with our new approach from 500 cells. This technology has the potential to make investigation of translational control feasible with limited quantities of clinical specimens.
doi:10.1093/nar/gkq024
PMCID: PMC2875024  PMID: 20123731
16.  Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein 
Genome Biology  2014;15(1):R4.
Background
Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown.
Results
To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes.
Conclusions
Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.
doi:10.1186/gb-2014-15-1-r4
PMCID: PMC4053848  PMID: 24393533
17.  Coordinate translational regulation in the syntheses of elongation factor 1 alpha and ribosomal proteins in Xenopus laevis. 
Nucleic Acids Research  1993;21(20):4721-4725.
The regulation of the synthesis of elongation factor 1 alpha (EF-1 alpha) in Xenopus laevis has been analyzed from the point of view of translational control. The 5' end of EF-1 alpha mRNA, examined by primer extension, revealed the presence of a terminal pyrimidine tract that is characteristic of ribosomal protein mRNAs (rp-mRNAs). We have then compared the translation pattern of EF-1 alpha and rp-mRNAs during Xenopus embryogenesis and in Xenopus cultured cells during growth rate changes. In Xenopus embryos EF-1 alpha transcripts, that appear after midblastula transition, are initially mostly localized on mRNP and translationally inactive. Only later in embryogenesis, together with rp-mRNAs, they are gradually recruited on polysomes. Also in Xenopus cells B 3.2, EF-1 alpha mRNA shows a distribution change similar to an rp-mRNA: part of it moves from polysomes to mRNP during serum deprivation and goes back on polysomes after restitution of serum to the culture. Moreover EF-1 alpha mRNA, similarly to rp-mRNAs, is always localized on mRNP or fully loaded on polysomes but never on small polysomes. Therefore EF-1 alpha mRNA for structural features and translation behavior can be included in the 'regulatory' group of rp-mRNAs.
Images
PMCID: PMC331496  PMID: 8233819
18.  On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation 
Genome Biology  2007;8(4):R60.
Reporter transgene assays and comparative polysome-microarray analysis reveal that the intact h subunit of Arabidopsis eIF3 contributes to efficient translation initiation on mRNA leader sequences harbouring multiple uORFs.
Background
The eukaryotic translation initiation factor 3 (eIF3) has multiple roles during the initiation of translation of cytoplasmic mRNAs. How individual subunits of eIF3 contribute to the translation of specific mRNAs remains poorly understood, however. This is true in particular for those subunits that are not conserved in budding yeast, such as eIF3h.
Results
Working with stable reporter transgenes in Arabidopsis thaliana mutants, it was demonstrated that the h subunit of eIF3 contributes to the efficient translation initiation of mRNAs harboring upstream open reading frames (uORFs) in their 5' leader sequence. uORFs, which can function as devices for translational regulation, are present in over 30% of Arabidopsis mRNAs, and are enriched among mRNAs for transcriptional regulators and protein modifying enzymes. Microarray comparisons of polysome loading in wild-type and eif3h mutant seedlings revealed that eIF3h generally helps to maintain efficient polysome loading of mRNAs harboring multiple uORFs. In addition, however, eIF3h also boosted the polysome loading of mRNAs with long leaders or coding sequences. Moreover, the relative polysome loading of certain functional groups of mRNAs, including ribosomal proteins, was actually increased in the eif3h mutant, suggesting that regulons of translational control can be revealed by mutations in generic translation initiation factors.
Conclusion
The intact eIF3h protein contributes to efficient translation initiation on 5' leader sequences harboring multiple uORFs, although mRNA features independent of uORFs are also implicated.
doi:10.1186/gb-2007-8-4-r60
PMCID: PMC1896003  PMID: 17439654
19.  The Transacting Factor CBF-A/Hnrnpab Binds to the A2RE/RTS Element of Protamine 2 mRNA and Contributes to Its Translational Regulation during Mouse Spermatogenesis 
PLoS Genetics  2013;9(10):e1003858.
During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We found that CBF-A co-localizes with the Prm2 mRNA during spermatogenesis, directly binding to the A2RE/RTS element in the 3′ UTR. Although both p37 and p42 CBF-A isoforms interacted with RTS, they associated with translationally repressed and de-repressed Prm2 mRNA, respectively. Only p42 was found to interact with the 5′cap complex, and to co-sediment with the Prm2 mRNA in polysomes. In CBF-A knockout mice, expression of protamine 2 (PRM2) was reduced and the Prm2 mRNA was prematurely translated in a subset of elongating spermatids. Moreover, a high percentage of sperm from the CBF-A knockout mouse showed abnormal DNA morphology. We suggest that CBF-A plays an important role in spermatogenesis by regulating stage-specific translation of testicular mRNAs.
Author Summary
During eukaryotic gene expression, a fraction of newly exported mRNA molecules is transported to the cellular periphery for translation. The underlying mechanisms are not fully understood even though they likely affect specialized functions in many cell types including oligodendrocyets, neurons and germ cells. We discovered that the heterogeneous nuclear ribonucleoprotein CBF-A, interacts with a conserved sequence, the RNA trafficking sequence (RTS), located in the untranslated region of transported mRNAs. This interaction facilitates transport of myelin basic protein mRNA and dendritic mRNAs in oligodendrocytes and neurons, respectively. Here we investigated whether RTS-recognition by CBF-A coordinates transport and localized translation of the Protamine 2 mRNA in spermatogenic cells. During spermatogenesis the Protamine 2 mRNAs is synthesized and kept in a silent form to be translated at later stages. We show that by interacting with the RTS of the Protamine 2 mRNA both CBF-A isoforms contribute to regulate the transcript at the translational level. In a CBF-A knockout mouse model, we demonstrate that the interplay between the CBF-A isoforms in translation regulation of the Protamine 2 mRNA and other testicular transcripts has an impact on spermatogenesis.
doi:10.1371/journal.pgen.1003858
PMCID: PMC3798277  PMID: 24146628
20.  Different Mechanisms Preserve Translation of Programmed Cell Death 8 (PDCD8) and JunB in Virus-Infected Endothelial Cells 
Objective
Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRES). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (EC) is unknown.
Methods and Results
We performed microarray analysis of polyribosomal mRNA from EC to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eIF4G cleavage, and decreased protein synthesis. 87.4% of mRNAs were dissociated from polysomes in virus-infected EC. 12% of mRNAs remained associated with polysomes and 0.6% were enriched ≥2-fold in polysome fractions from infected EC. Quantitative RT-PCR confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of PDCD8 and JunB mRNA resulted in increased protein expression in PV-infected EC. The presence of IRES in the 5’UTR of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis.
Conclusions
We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected EC successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.
doi:10.1161/ATVBAHA.112.245324
PMCID: PMC3310396  PMID: 22328780
IRES; microarray; poliovirus; PDCD8; JunB
21.  Post-transcriptional regulation in the myo1Δ mutant of Saccharomyces cerevisiae 
BMC Genomics  2010;11:690.
Background
Saccharomyces cerevisiae myosin type II-deficient (myo1Δ) strains remain viable and divide, despite the absence of a cytokinetic ring, by activation of the PKC1-dependent cell wall integrity pathway (CWIP). Since the myo1Δ transcriptional fingerprint is a subset of the CWIP fingerprint, the myo1Δ strain may provide a simplified paradigm for cell wall stress survival.
Results
To explore the post-transcriptional regulation of the myo1Δ stress response, 1,301 differentially regulated ribosome-bound mRNAs were identified by microarray analysis of which 204 were co-regulated by transcription and translation. Four categories of mRNA were significantly affected - protein biosynthesis, metabolism, carbohydrate metabolism, and unknown functions. Nine genes of the 20 CWIP fingerprint genes were post-transcriptionally regulated. Down and up regulation of selected ribosomal protein and cell wall biosynthesis mRNAs was validated by their distribution in polysomes from wild type and myo1Δ strains. Western blot analysis revealed accumulation of the phosphorylated form of eukaryotic translation initiation factor 2 (eIF2α-P) and a reduction in the steady state levels of the translation initiation factor eIF4Gp in myo1Δ strains. Deletion of GCN2 in myo1Δ abolished eIF2αp phosphorylation, and showed a severe growth defect. The presence of P-bodies in myo1Δ strains suggests that the process of mRNA sequestration is active, however, the three representative down regulated RP mRNAs, RPS8A, RPL3 and RPL7B were present at equivalent levels in Dcp2p-mCh-positive immunoprecipitated fractions from myo1Δ and wild type cells. These same RP mRNAs were also selectively co-precipitated with eIF2α-P in myo1Δ strains.
Conclusions
Quantitative analysis of ribosome-associated mRNAs and their polyribosome distributions suggests selective regulation of mRNA translation efficiency in myo1Δ strains. Inhibition of translation initiation factor eIF2α (eIF2α-P) in these strains was by Gcn2p-dependent phosphorylation. The increase in the levels of eIF2α-P; the genetic interaction between GCN2 and MYO1; and the reduced levels of eIF4Gp suggest that other signaling pathways, in addition to the CWIP, may be important for myo1Δ strain survival. Selective co-immunoprecipitation of RP mRNAs with eIF2α-P in myo1Δ strains suggests a novel mode of translational regulation. These results indicate that post-transcriptional control is important in the myo1Δ stress response and possibly other stresses in yeast.
doi:10.1186/1471-2164-11-690
PMCID: PMC3017085  PMID: 21126371
22.  Drosophila patterning is established by differential association of mRNAs with P bodies 
Nature cell biology  2012;14(12):1305-1313.
The primary embryonic axes in flies, frogs and fish are formed through translational regulation of localized transcripts before fertilization1. In Drosophila, the axes are established through the transport and translational regulation of gurken (grk) and bicoid (bcd) messenger RNA (mRNA) in the oocyte and embryo1. bcd and grk mRNA are both translationally silent while being localized within the oocyte along microtubules by cytoplasmic Dynein1-4. Once localized, grk is translated at the dorsoanterior of the oocyte to send a TGF-alpha signal to the overlying somatic cells5. In contrast, bcd is translationally repressed in the oocyte until its activation in early embryos to form an anteroposterior morphogenetic gradient6. How this differential translational regulation is achieved is not fully understood. Here, we address this question using ultrastructural analysis, super-resolution microscopy and live cell imaging. We show that grk and bcd ribonucleoprotein (RNP) complexes associate with electron dense bodies that lack ribosomes and contain translational repressors, characteristic of Processing bodies (P bodies), which are regions of cytoplasm where translational decisions are made. Endogenous grk mRNA forms dynamic RNP particles that become docked and translated at the periphery of P bodies, where we show that the translational activator Orb/CEPB and the anchoring factor Squid (Sqd) are also enriched. In contrast, an excess of grk mRNA becomes localized inside the P bodies, where endogenous bcd mRNA is localized and translationally repressed. Interestingly, bcd mRNA dissociates from P bodies in embryos following egg activation, when it is known to become translationally active. We propose a general principle of translational regulation during axis specification involving remodeling of transport RNPs and dynamic partitioning of different transcripts between the translationally active edge of P bodies and their silent core.
doi:10.1038/ncb2627
PMCID: PMC4066581  PMID: 23178881
23.  Selective translational regulation of ribosomal protein gene expression during early development of Drosophila melanogaster. 
Molecular and Cellular Biology  1985;5(12):3583-3592.
We have previously characterized a cloned cDNA coding for a developmentally regulated mRNA in Drosophila melanogaster whose expression is selectively regulated at the translational level during oogenesis and embryogenesis. In this report we show that this translationally regulated mRNA (rpA1) codes for an acidic ribosomal protein. Furthermore, our results indicate that most ribosomal protein mRNAs are regulated similarly to rpA1 mRNA. This conclusion is based on cell-free translation of mRNAs derived from polysomes and postpolysomal supernatants as well as in vivo labeling experiments. Thus, the translation of many ribosomal protein mRNAs appears to be temporally related to the synthesis of rRNA during D. melanogaster development. The relationship between rRNA transcription and ribosomal protein mRNA translation was further investigated by genetically reducing rRNA synthesis with the use of bobbed mutants. Unexpectedly, neither ribosomal protein mRNA abundance nor translation was altered in these mutants.
Images
PMCID: PMC369189  PMID: 3939320
24.  Functional Overlap between eIF4G Isoforms in Saccharomyces cerevisiae 
PLoS ONE  2010;5(2):e9114.
Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.
doi:10.1371/journal.pone.0009114
PMCID: PMC2817733  PMID: 20161741
25.  Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells 
Genome Biology  2008;9(1):R19.
Transcript profiling of HepaRG cells shows that translational regulation is the main genomic event associated with hepatocytic differentiation.
Background
We investigated the molecular events associated with the differentiation of liver progenitor cells into functional and polarized hepatocytes, using human HepaRG cells that display potent hepatocytic differentiation-inducible properties and share some features with liver progenitor cells.
Results
Profiling of total and of polysome-bound transcripts isolated from HepaRG cells undergoing hepatocytic differentiation was performed. A group of 3,071 probe sets was reproducibly regulated by at least 2-fold in total or in polysome-bound RNA populations, upon differentiation. The fold changes in the total and the polysome-bound RNA populations for these 3,071 probe sets were poorly correlated (R = 0.38). Moreover, while the majority of the regulated polysome-bound RNA probe sets were up-regulated upon differentiation, the majority of the regulated probe sets selected from the total RNA population was down-regulated. Genes translationally up-regulated were associated with cell cycle inhibition, increased susceptibility to apoptosis and innate immunity. In contrast, genes transcriptionally up-regulated during differentiation corresponded in the majority to liver-enriched transcripts involved in lipid homeostasis and drug metabolism. Finally, several epithelial and hepato-specific transcripts were strongly induced in the total RNA population but were translationally repressed.
Conclusion
Translational regulation is the main genomic event associated with hepatocytic differentiation of liver progenitor cells in vitro and targets genes critical for moderating hepatocellular growth, cell death and susceptibility to pathogens. Transcriptional regulation targets specifically liver-enriched transcripts vital for establishing normal hepatic energy homeostasis, cell morphology and polarization. The hepatocytic differentiation is also accompanied by a reduction of the transcript content complexity.
doi:10.1186/gb-2008-9-1-r19
PMCID: PMC2395229  PMID: 18221535

Results 1-25 (1199405)