Search tips
Search criteria

Results 1-25 (618043)

Clipboard (0)

Related Articles

1.  Integrated Consensus Map of Cultivated Peanut and Wild Relatives Reveals Structures of the A and B Genomes of Arachis and Divergence of the Legume Genomes 
The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.
PMCID: PMC3628447  PMID: 23315685
Arachis spp.; comparative genomics; genetic linkage map; integrated consensus map; legume genome
2.  Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid 
BMC Plant Biology  2009;9:103.
Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis.
Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions.
The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.
PMCID: PMC3091533  PMID: 19650911
3.  BAC libraries construction from the ancestral diploid genomes of the allotetraploid cultivated peanut 
BMC Plant Biology  2008;8:14.
Cultivated peanut, Arachis hypogaea is an allotetraploid of recent origin, with an AABB genome. In common with many other polyploids, it seems that a severe genetic bottle-neck was imposed at the species origin, via hybridisation of two wild species and spontaneous chromosome duplication. Therefore, the study of the genome of peanut is hampered both by the crop's low genetic diversity and its polyploidy. In contrast to cultivated peanut, most wild Arachis species are diploid with high genetic diversity. The study of diploid Arachis genomes is therefore attractive, both to simplify the construction of genetic and physical maps, and for the isolation and characterization of wild alleles. The most probable wild ancestors of cultivated peanut are A. duranensis and A. ipaënsis with genome types AA and BB respectively.
We constructed and characterized two large-insert libraries in Bacterial Artificial Chromosome (BAC) vector, one for each of the diploid ancestral species. The libraries (AA and BB) are respectively c. 7.4 and c. 5.3 genome equivalents with low organelle contamination and average insert sizes of 110 and 100 kb. Both libraries were used for the isolation of clones containing genetically mapped legume anchor markers (single copy genes), and resistance gene analogues.
These diploid BAC libraries are important tools for the isolation of wild alleles conferring resistances to biotic stresses, comparisons of orthologous regions of the AA and BB genomes with each other and with other legume species, and will facilitate the construction of a physical map.
PMCID: PMC2254395  PMID: 18230166
4.  Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut 
BMC Genomics  2012;13:608.
Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut.
A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B-genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A- and B-genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution.
Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.
PMCID: PMC3532320  PMID: 23140574
Peanut (Arachis hypogaea); SSR; Genetic linkage map; Intraspecific cross; EST
5.  A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut 
BMC Genomics  2012;13:469.
Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea.
More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago.
The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application for mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii.
PMCID: PMC3542255  PMID: 22967170
6.  In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut 
BMC Plant Biology  2012;12:80.
Peanut (Arachis hypogaea) is an autogamous allotetraploid legume (2n = 4x = 40) that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers.
The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2%) of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs) for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed.
In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (
PMCID: PMC3404960  PMID: 22672714
DNA marker; Genetic linkage map; Peanut (Arachis hypogaea); QTL analysis; Ratio of oleic/linoleic acid (O/L ratio)
7.  A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome 
BMC Plant Biology  2010;10:17.
The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank.
Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea. The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These distorted loci tended to cluster on LG1, LG3, LG4 and LG5. There were only 15 EST-SSR markers mapped due to low polymorphism. By comparison, there were potential synteny, collinear order of some markers and conservation of collinear linkage groups among the maps and with the AA genome but not fully conservative.
A composite linkage map was constructed from three individual mapping populations with 175 SSR markers in 22 composite linkage groups. This composite genetic linkage map is among the first "true" tetraploid peanut maps produced. This map also consists of 47 SSRs that have been used in the published AA genome maps, and could be used in comparative mapping studies. The primers described in this study are PCR-based markers, which are easy to share for genetic mapping in peanuts. All 1044 primer pairs are provided as additional files and the three RIL populations will be made available to public upon request for quantitative trait loci (QTL) analysis and linkage map improvement.
PMCID: PMC2835713  PMID: 20105299
8.  Abundant Microsatellite Diversity and Oil Content in Wild Arachis Species 
PLoS ONE  2012;7(11):e50002.
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.
PMCID: PMC3502184  PMID: 23185514
9.  Identification of candidate genome regions controlling disease resistance in Arachis 
BMC Plant Biology  2009;9:112.
Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.
In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.
Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.
PMCID: PMC2739205  PMID: 19698131
10.  An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes 
BMC Genomics  2009;10:45.
Most agriculturally important legumes fall within two sub-clades of the Papilionoid legumes: the Phaseoloids and Galegoids, which diverged about 50 Mya. The Phaseoloids are mostly tropical and include crops such as common bean and soybean. The Galegoids are mostly temperate and include clover, fava bean and the model legumes Lotus and Medicago (both with substantially sequenced genomes). In contrast, peanut (Arachis hypogaea) falls in the Dalbergioid clade which is more basal in its divergence within the Papilionoids. The aim of this work was to integrate the genetic map of Arachis with Lotus and Medicago and improve our understanding of the Arachis genome and legume genomes in general. To do this we placed on the Arachis map, comparative anchor markers defined using a previously described bioinformatics pipeline. Also we investigated the possible role of transposons in the patterns of synteny that were observed.
The Arachis genetic map was substantially aligned with Lotus and Medicago with most synteny blocks presenting a single main affinity to each genome. This indicates that the last common whole genome duplication within the Papilionoid legumes predated the divergence of Arachis from the Galegoids and Phaseoloids sufficiently that the common ancestral genome was substantially diploidized. The Arachis and model legume genomes comparison made here, together with a previously published comparison of Lotus and Medicago allowed all possible Arachis-Lotus-Medicago species by species comparisons to be made and genome syntenies observed. Distinct conserved synteny blocks and non-conserved regions were present in all genome comparisons, implying that certain legume genomic regions are consistently more stable during evolution than others. We found that in Medicago and possibly also in Lotus, retrotransposons tend to be more frequent in the variable regions. Furthermore, while these variable regions generally have lower densities of single copy genes than the more conserved regions, some harbor high densities of the fast evolving disease resistance genes.
We suggest that gene space in Papilionoids may be divided into two broadly defined components: more conserved regions which tend to have low retrotransposon densities and are relatively stable during evolution; and variable regions that tend to have high retrotransposon densities, and whose frequent restructuring may fuel the evolution of some gene families.
PMCID: PMC2656529  PMID: 19166586
11.  Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea) 
BMC Plant Biology  2007;7:9.
The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species.
Thirteen loci were isolated and characterized using 16 accessions of A. hypogaea. The level of variation found in A. hypogaea using microsatellites was higher than with other markers. Cross-transferability of the markers was also high. Sequencing of the fragments amplified using the primer pair Ah11 from 17 wild Arachis species showed that almost all wild species had similar repeated sequence to the one observed in A. hypogaea. Sequence data suggested that there is no correlation between taxonomic relationship of a wild species to A. hypogaea and the number of repeats found in its microsatellite loci.
These results show that microsatellite primer pairs from A. hypogaea have multiple uses. A higher level of variation among A. hypogaea accessions can be detected using microsatellite markers in comparison to other markers, such as RFLP, RAPD and AFLP. The microsatellite primers of A. hypogaea showed a very high rate of transferability to other species of the genus. These primer pairs provide important tools to evaluate the genetic variability and to assess the mating system in Arachis species.
PMCID: PMC1829157  PMID: 17326826
12.  FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut 
Chromosome Research  2010;18(2):227-246.
In this paper, we describe a Ty3-gypsy retrotransposon from allotetraploid peanut (Arachis hypogaea) and its putative diploid ancestors Arachis duranensis (A-genome) and Arachis ipaënsis (B-genome). The consensus sequence is 11,223 bp. The element, named FIDEL (Fairly long Inter-Dispersed Euchromatic LTR retrotransposon), is more frequent in the A- than in the B-genome, with copy numbers of about 3,000 (±950, A. duranensis), 820 (±480, A. ipaënsis), and 3,900 (±1,500, A. hypogaea) per haploid genome. Phylogenetic analysis of reverse transcriptase sequences showed distinct evolution of FIDEL in the ancestor species. Fluorescent in situ hybridization revealed disperse distribution in euchromatin and absence from centromeres, telomeric regions, and the nucleolar organizer region. Using paired sequences from bacterial artificial chromosomes, we showed that elements appear less likely to insert near conserved ancestral genes than near the fast evolving disease resistance gene homologs. Within the Ty3-gypsy elements, FIDEL is most closely related with the Athila/Calypso group of retrovirus-like retrotransposons. Putative transmembrane domains were identified, supporting the presence of a vestigial envelope gene. The results emphasize the importance of FIDEL in the evolution and divergence of different Arachis genomes and also may serve as an example of the role of retrotransposons in the evolution of legume genomes in general.
Electronic supplementary material
The online version of this article (doi:10.1007/s10577-009-9109-z) contains supplementary material, which is available to authorized users.
PMCID: PMC2844528  PMID: 20127167
peanut; Arachis; retrotransposon; retrovirus-like; fluorescent in situ hybridization
13.  Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome 
BMC Plant Biology  2004;4:11.
The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.
A total of 67 new microsatellite markers (mainly TTG motif) were developed for Arachis. Only three of these markers, however, were polymorphic in cultivated peanut. These three new markers plus five other markers characterized previously were evaluated for number of alleles per locus and gene diversity using 60 accessions of A. hypogaea. Genetic relationships among these 60 accessions and a sample of 36 wild accessions representative of section Arachis were estimated using allelic variation observed in a selected set of 12 SSR markers. Results showed that the Brazilian peanut germplasm collection has considerable levels of genetic diversity detected by SSR markers. Similarity groups for A. hypogaea accessions were established, which is a useful criteria for selecting parental plants for crop improvement. Microsatellite marker transferability was up to 76% for species of the section Arachis, but only 45% for species from the other eight Arachis sections tested. A new marker (Ah-041) presented a 100% transferability and could be used to classify the peanut accessions in AA and non-AA genome carriers.
The level of polymorphism observed among accessions of A. hypogaea analyzed with newly developed microsatellite markers was low, corroborating the accumulated data which show that cultivated peanut presents a relatively reduced variation at the DNA level. A selected panel of SSR markers allowed the classification of A. hypogaea accessions into two major groups. The identification of similarity groups will be useful for the selection of parental plants to be used in breeding programs. Marker transferability is relatively high between accessions of section Arachis. The possibility of using microsatellite markers developed for one species in genetic evaluation of other species greatly reduces the cost of the analysis, since the development of microsatellite markers is still expensive and time consuming. The SSR markers developed in this study could be very useful for genetic analysis of wild species of Arachis, including comparative genome mapping, population genetic structure and phylogenetic inferences among species.
PMCID: PMC491793  PMID: 15253775
14.  Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut 
BMC Research Notes  2012;5:86.
Peanut (Arachis hypogaea L.) is a crop of economic and social importance, mainly in tropical areas, and developing countries. Its molecular breeding has been hindered by a shortage of polymorphic genetic markers due to a very narrow genetic base. Microsatellites (SSRs) are markers of choice in peanut because they are co-dominant, highly transferrable between species and easily applicable in the allotetraploid genome. In spite of substantial effort over the last few years by a number of research groups, the number of SSRs that are polymorphic for A. hypogaea is still limiting for routine application, creating the demand for the discovery of more markers polymorphic within cultivated germplasm.
A plasmid genomic library enriched for TC/AG repeats was constructed and 1401 clones sequenced. From the sequences obtained 146 primer pairs flanking mostly TC microsatellites were developed. The average number of repeat motifs amplified was 23. These 146 markers were characterized on 22 genotypes of cultivated peanut. In total 78 of the markers were polymorphic within cultivated germplasm. Most of those 78 markers were highly informative with an average of 5.4 alleles per locus being amplified. Average gene diversity index (GD) was 0.6, and 66 markers showed a GD of more than 0.5. Genetic relationship analysis was performed and corroborated the current taxonomical classification of A. hypogaea subspecies and varieties.
The microsatellite markers described here are a useful resource for genetics and genomics in Arachis. In particular, the 66 markers that are highly polymorphic in cultivated peanut are a significant step towards routine genetic mapping and marker-assisted selection for the crop.
PMCID: PMC3296580  PMID: 22305491
15.  Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) 
BMC Genomics  2014;15(1):351.
Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly influencing the value of their applications. With advances in next-generation sequencing (NGS) technology, the construction of high-density genetic maps has become more achievable in a cost-effective and rapid manner. The objective of this study was to establish a high-density single nucleotide polymorphism (SNP)-based genetic map for cultivated peanut by analyzing next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) reads.
We constructed reduced representation libraries (RRLs) for two A. hypogaea lines and 166 of their recombinant inbred line (RIL) progenies using the ddRADseq technique. Approximately 175 gigabases of data containing 952,679,665 paired-end reads were obtained following Solexa sequencing. Mining this dataset, 53,257 SNPs were detected between the parents, of which 14,663 SNPs were also detected in the population, and 1,765 of the obtained polymorphic markers met the requirements for use in the construction of a genetic map. Among 50 randomly selected in silico SNPs, 47 were able to be successfully validated. One linkage map was constructed, which was comprised of 1,685 marker loci, including 1,621 SNPs and 64 simple sequence repeat (SSR) markers. The map displayed a distribution of the markers into 20 linkage groups (LGs A01–A10 and B01–B10), spanning a distance of 1,446.7 cM. The alignment of the LGs from this map was shown in comparison with a previously integrated consensus map from peanut.
This study showed that the ddRAD library combined with NGS allowed the rapid discovery of a large number of SNPs in the cultivated peanut. The first high density SNP-based linkage map for A. hypogaea was generated that can serve as a reference map for cultivated Arachis species and will be useful in genetic mapping. Our results contribute to the available molecular marker resources and to the assembly of a reference genome sequence for the peanut.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-351) contains supplementary material, which is available to authorized users.
PMCID: PMC4035077  PMID: 24885639
Cultivated peanut; Linkage map; SNP; ddRADseq
16.  PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics 
BMC Plant Biology  2012;12:94.
The peanut (Arachis hypogaea) is an important crop cultivated worldwide for oil production and food sources. Its complex genetic architecture (e.g., the large and tetraploid genome possibly due to unique cross of wild diploid relatives and subsequent chromosome duplication: 2n = 4x = 40, AABB, 2800 Mb) presents a major challenge for its genome sequencing and makes it a less-studied crop. Without a doubt, transcriptome sequencing is the most effective way to harness the genome structure and gene expression dynamics of this non-model species that has a limited genomic resource.
With the development of next generation sequencing technologies such as 454 pyro-sequencing and Illumina sequencing by synthesis, the transcriptomics data of peanut is rapidly accumulated in both the public databases and private sectors. Integrating 187,636 Sanger reads (103,685,419 bases), 1,165,168 Roche 454 reads (333,862,593 bases) and 57,135,995 Illumina reads (4,073,740,115 bases), we generated the first release of our peanut transcriptome assembly that contains 32,619 contigs. We provided EC, KEGG and GO functional annotations to these contigs and detected SSRs, SNPs and other genetic polymorphisms for each contig. Based on both open-source and our in-house tools, PeanutDB presents many seamlessly integrated web interfaces that allow users to search, filter, navigate and visualize easily the whole transcript assembly, its annotations and detected polymorphisms and simple sequence repeats. For each contig, sequence alignment is presented in both bird’s-eye view and nucleotide level resolution, with colorfully highlighted regions of mismatches, indels and repeats that facilitate close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors.
As a public genomic database that integrates peanut transcriptome data from different sources, PeanutDB ( provides the Peanut research community with an easy-to-use web portal that will definitely facilitate genomics research and molecular breeding in this less-studied crop.
PMCID: PMC3444431  PMID: 22712730
Peanut; Arachis hypogaea; Transcriptome sequencing; Transcriptome assembly; Database; PeanutDB; SNP; SSR; Functional annotation
17.  Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.) 
BMC Plant Biology  2012;12:10.
Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting.
Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton.
The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.
PMCID: PMC3298471  PMID: 22260238
18.  Genetic relationships among seven sections of genus Arachis studied by using SSR markers 
BMC Plant Biology  2010;10:15.
The genus Arachis, originated in South America, is divided into nine taxonomical sections comprising of 80 species. Most of the Arachis species are diploids (2n = 2x = 20) and the tetraploid species (2n = 2x = 40) are found in sections Arachis, Extranervosae and Rhizomatosae. Diploid species have great potential to be used as resistance sources for agronomic traits like pests and diseases, drought related traits and different life cycle spans. Understanding of genetic relationships among wild species and between wild and cultivated species will be useful for enhanced utilization of wild species in improving cultivated germplasm. The present study was undertaken to evaluate genetic relationships among species (96 accessions) belonging to seven sections of Arachis by using simple sequence repeat (SSR) markers developed from Arachis hypogaea genomic library and gene sequences from related genera of Arachis.
The average transferability rate of 101 SSR markers tested to section Arachis and six other sections was 81% and 59% respectively. Five markers (IPAHM 164, IPAHM 165, IPAHM 407a, IPAHM 409, and IPAHM 659) showed 100% transferability. Cluster analysis of allelic data from a subset of 32 SSR markers on 85 wild and 11 cultivated accessions grouped accessions according to their genome composition, sections and species to which they belong. A total of 109 species specific alleles were detected in different wild species, Arachis pusilla exhibited largest number of species specific alleles (15). Based on genetic distance analysis, the A-genome accession ICG 8200 (A. duranensis) and the B-genome accession ICG 8206 (A. ipaënsis) were found most closely related to A. hypogaea.
A set of cross species and cross section transferable SSR markers has been identified that will be useful for genetic studies of wild species of Arachis, including comparative genome mapping, germplasm analysis, population genetic structure and phylogenetic inferences among species. The present study provides strong support based on both genomic and genic markers, probably for the first time, on relationships of A. monticola and A. hypogaea as well as on the most probable donor of A and B-genomes of cultivated groundnut.
PMCID: PMC2826335  PMID: 20089171
19.  A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers 
Annals of Botany  2012;111(1):113-126.
Background and Aims
The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components.
Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses.
Key Results
Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general.
The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.
PMCID: PMC3523650  PMID: 23131301
Arachis; peanut; groundnut; intron sequences; single-copy genes; molecular phylogeny; microsatellites; genetic relationships; speciation rates; genome donors; molecular dating
20.  Identification and annotation of abiotic stress responsive candidate genes in peanut ESTs 
Bioinformation  2012;8(24):1211-1219.
Peanut (Arachis hypogaea L.) ranks fifth among the world oil crops and is widely grown in India and neighbouring countries. Due to its large and unknown genome size, studies on genomics and genetic modification of peanut are still scanty as compared to other model crops like Arabidopsis, rice, cotton and soybean. Because of its favourable cultivation in semi-arid regions, study on abiotic stress responsive genes and its regulation in peanut is very much important. Therefore, we aim to identify and annotate the abiotic stress responsive candidate genes in peanut ESTs. Expression data of drought stress responsive corresponding genes and EST sequences were screened from dot blot experiments shown as heat maps and supplementary tables, respectively as reported by Govind et al. (2009). Some of the screened genes having no information about their ESTs in above mentioned supplementary tables were retrieved from NCBI. A phylogenetic analysis was performed to find a group of utmost similar ESTs for each selected gene. Individual EST of the said group were further searched in peanut ESTs (1,78,490 whole EST sequences) using stand alone BLAST. For the prediction as well as annotation of abiotic stress responsive selected genes, various tools (like Vec-Screen, Repeat Masker, EST-Trimmer, DNA Baser, WISE2 and I-TASSER) were used. Here we report the predicted result of Contigs, domain as well as 3D structure for HSP 17.3KDa protein, DnaJ protein and Type 2 Metallothionein protein.
PMCID: PMC3530874  PMID: 23275722
Arachis hypogaea; EST; Gene annotation; Stress; Contigs
21.  The Use of SNP Markers for Linkage Mapping in Diploid and Tetraploid Peanuts 
G3: Genes|Genomes|Genetics  2013;4(1):89-96.
Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)4×]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.
PMCID: PMC3887543  PMID: 24212082
Arachis; breeding; genotyping; markers; wild
22.  Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachishypogaea L.) 
Cultivated groundnut or peanut (Arachis hypogaea L.), an allotetraploid (2n = 4x = 40), is a self pollinated and widely grown crop in the semi-arid regions of the world. Improvement of drought tolerance is an important area of research for groundnut breeding programmes. Therefore, for the identification of candidate QTLs for drought tolerance, a comprehensive and refined genetic map containing 191 SSR loci based on a single mapping population (TAG 24 × ICGV 86031), segregating for drought and surrogate traits was developed. Genotyping data and phenotyping data collected for more than ten drought related traits in 2–3 seasons were analyzed in detail for identification of main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) using QTL Cartographer, QTLNetwork and Genotype Matrix Mapping (GMM) programmes. A total of 105 M-QTLs with 3.48–33.36% phenotypic variation explained (PVE) were identified using QTL Cartographer, while only 65 M-QTLs with 1.3–15.01% PVE were identified using QTLNetwork. A total of 53 M-QTLs were such which were identified using both programmes. On the other hand, GMM identified 186 (8.54–44.72% PVE) and 63 (7.11–21.13% PVE), three and two loci interactions, whereas only 8 E-QTL interactions with 1.7–8.34% PVE were identified through QTLNetwork. Interestingly a number of co-localized QTLs controlling 2–9 traits were also identified. The identification of few major, many minor M-QTLs and QTL × QTL interactions during the present study confirmed the complex and quantitative nature of drought tolerance in groundnut. This study suggests deployment of modern approaches like marker-assisted recurrent selection or genomic selection instead of marker-assisted backcrossing approach for breeding for drought tolerance in groundnut.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-010-1517-0) contains supplementary material, which is available to authorized users.
PMCID: PMC3057011  PMID: 21191568
Peanut; Drought tolerance; Genetic map; Molecular markers; Main-effect QTLs; Epistatic QTLs; Molecular breeding
23.  TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.) 
BMC Plant Biology  2011;11:81.
Allergic reactions to peanuts (Arachis hypogaea L.) can cause severe symptoms and in some cases can be fatal, but avoidance is difficult due to the prevalence of peanut-derived products in processed foods. One strategy of reducing the allergenicity of peanuts is to alter or eliminate the allergenic proteins through mutagenesis. Other seed quality traits could be improved by altering biosynthetic enzyme activities. Targeting Induced Local Lesions in Genomes (TILLING), a reverse-genetics approach, was used to identify mutations affecting seed traits in peanut.
Two similar copies of a major allergen gene, Ara h 1, have been identified in tetraploid peanut, one in each subgenome. The same situation has been shown for major allergen Ara h 2. Due to the challenge of discriminating between homeologous genes in allotetraploid peanut, nested PCR was employed, in which both gene copies were amplified using unlabeled primers. This was followed by a second PCR using gene-specific labeled primers, heteroduplex formation, CEL1 nuclease digestion, and electrophoretic detection of labeled fragments. Using ethyl methanesulfonate (EMS) as a mutagen, a mutation frequency of 1 SNP/967 kb (3,420 M2 individuals screened) was observed. The most significant mutations identified were a disrupted start codon in Ara h 2.02 and a premature stop codon in Ara h 1.02. Homozygous individuals were recovered in succeeding generations for each of these mutations, and elimination of Ara h 2.02 protein was confirmed. Several Ara h 1 protein isoforms were eliminated or reduced according to 2D gel analyses. TILLING also was used to identify mutations in fatty acid desaturase AhFAD2 (also present in two copies), a gene which controls the ratio of oleic to linoleic acid in the seed. A frameshift mutation was identified, resulting in truncation and inactivation of AhFAD2B protein. A mutation in AhFAD2A was predicted to restore function to the normally inactive enzyme.
This work represents the first steps toward the goal of creating a peanut cultivar with reduced allergenicity. TILLING in peanut can be extended to virtually any gene, and could be used to modify other traits such as nutritional properties of the seed, as shown in this study.
PMCID: PMC3113929  PMID: 21569438
24.  Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection 
BMC Genomics  2012;13:387.
Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development.
Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR.
This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.
PMCID: PMC3496627  PMID: 22888963
25.  Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea) 
BMC Plant Biology  2008;8:55.
Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut.
A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters.
Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be very useful for germplasm analysis, linkage mapping, diversity studies and phylogenetic relationships in cultivated groundnut as well as related Arachis species.
PMCID: PMC2416452  PMID: 18482440

Results 1-25 (618043)