PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1230218)

Clipboard (0)
None

Related Articles

1.  The Chitinase-like Proteins Breast Regression Protein-39 and YKL-40 Regulate Hyperoxia-induced Acute Lung Injury 
Rationale: Prolonged exposure to 100% O2 causes hyperoxic acute lung injury (HALI), characterized by alveolar epithelial cell injury and death. We previously demonstrated that the murine chitinase-like protein, breast regression protein (BRP)–39 and its human homolog, YKL-40, inhibit cellular apoptosis. However, the regulation and roles of these molecules in hyperoxia have not been addressed.
Objectives: We hypothesized that BRP-39 and YKL-40 (also called chitinase-3–like 1) play important roles in the pathogenesis of HALI.
Methods: We characterized the regulation of BRP-39 during HALI and the responses induced by hyperoxia in wild-type mice, BRP-39–null (−/−) mice, and BRP-39−/− mice in which YKL-40 was overexpressed in respiratory epithelium. We also compared the levels of tracheal aspirate YKL-40 in premature newborns with respiratory failure.
Measurements and Main Results: These studies demonstrate that hyperoxia inhibits BRP-39 in vivo in the murine lung and in vitro in epithelial cells. They also demonstrate that BRP-39−/− mice have exaggerated permeability, protein leak, oxidation, inflammatory, chemokine, and epithelial apoptosis responses, and experience premature death in 100% O2. Lastly, they demonstrate that YKL-40 ameliorates HALI, prolongs survival in 100% O2, and rescues the exaggerated injury response in BRP-39−/− animals. In accord with these findings, the levels of tracheal aspirate YKL-40 were lower in premature infants treated with hyperoxia for respiratory failure who subsequently experienced bronchopulmonary dysplasia or death compared with those that did not experience these complications.
Conclusions: These studies demonstrate that hyperoxia inhibits BRP-39/YKL-40, and that BRP-39 and YKL-40 are critical regulators of oxidant injury, inflammation, and epithelial apoptosis in the murine and human lung.
doi:10.1164/rccm.200912-1793OC
PMCID: PMC2970863  PMID: 20558631
BRP-39; YKL-40; hyperoxygen; BPD; HALI
2.  Role of Breast Regression Protein–39 in the Pathogenesis of Cigarette Smoke–Induced Inflammation and Emphysema 
The exaggerated expression of chitinase-like protein YKL-40, the human homologue of breast regression protein–39 (BRP-39), was reported in a number of diseases, including chronic obstructive pulmonary disease (COPD). However, the in vivo roles of YKL-40 in normal physiology or in the pathogenesis of specific diseases such as COPD remain poorly understood. We hypothesized that BRP-39/YKL-40 plays an important role in the pathogenesis of cigarette smoke (CS)–induced emphysema. To test this hypothesis, 10-week-old wild-type and BRP-39 null mutant mice (BRP-39−/−) were exposed to room air (RA) and CS for up to 10 months. The expression of BRP-39 was significantly induced in macrophages, airway epithelial cells, and alveolar Type II cells in the lungs of CS-exposed mice compared with RA-exposed mice, at least in part via an IL-18 signaling–dependent pathway. The null mutation of BRP-39 significantly reduced CS-induced bronchoalveolar lavage and tissue inflammation. However, CS-induced epithelial cell apoptosis and alveolar destruction were further enhanced in the absence of BRP-39. Consistent with these findings in mice, the tissue expression of YKL-40 was significantly increased in the lungs of current smokers compared with the lungs of ex-smokers or nonsmokers. In addition, serum concentrations of YKL-40 were significantly higher in smokers with COPD than in nonsmokers or smokers without COPD. These studies demonstrate a novel regulatory role of BRP-39/YKL-40 in CS-induced inflammation and emphysematous destruction. These studies also underscore that maintaining physiologic concentrations of YKL-40 in the lung is therapeutically important in preventing excessive inflammatory responses or emphysematous alveolar destruction.
doi:10.1165/rcmb.2010-0081OC
PMCID: PMC3135840  PMID: 20656949
YKL-40/BRP-39; COPD; emphysema; cigarette smoke
3.  Role of breast regression protein-39/YKL-40 in asthma and allergic responses 
BRP-39 and its human homolog YKL-40 have been regarded as a prototype of chitinase-like proteins (CLP) in mammals. Exaggerated levels of YKL-40 protein and/or mRNA have been noted in a number of diseases characterized by inflammation, tissue remodeling, and aberrant cell growth. Asthma is an inflammatory disease characterized by airway hyperresponsiveness and airway remodeling. Recently, the novel regulatory role of BRP-39/YKL-40 in the pathogenesis of asthma has been demonstrated both in human studies and allergic animal models. The levels of YKL-40 are increased in the circulation and lungs from asthmatics where they correlate with disease severity, and CHI3L1 polymorphisms correlate with serum YKL-40 levels, asthma and abnormal lung function. Animal studies using BRP-39 null mutant mice demonstrated that BRP-39 was required for optimal allergen sensitization and Th2 inflammation. These studies suggest the potential use of BRP-39 as a biomarker as well as a therapeutic target for asthma and other allergic diseases. Here, we present an overview of chitin/chitinase biology and summarize recent findings on the role of BRP-39 in the pathogenesis of asthma and allergic responses.
doi:10.4168/aair.2010.2.1.20
PMCID: PMC2831605  PMID: 20224674
BRP-39; human CHI3L1 protein; asthma; hypersensitivity
4.  Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation 
Respiratory Research  2011;12(1):39.
Background
While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.
Methods
CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.
Results
Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.
Conclusions
These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.
doi:10.1186/1465-9921-12-39
PMCID: PMC3079621  PMID: 21473774
5.  Exacerbation of Experimental Autoimmune Encephalomyelitis in the Absence of Breast Regression Protein-39/Chitinase 3-like-1 
We previously reported that YKL-40, the human analog of mouse breast regression protein-39 (BRP-39; chitinase 3-like 1), is elevated in the cerebrospinal fluid of patients with a variety of neuroinflammatory conditions, such as multiple sclerosis and traumatic brain injury. YKL-40 expression in the CNS was predominantly associated with reactive astrocytes in the vicinity of inflammatory lesions. Because previous studies have shown that reactive astrocytes play a critical role in limiting immune infiltration in the mouse model of experimental autoimmune encephalomyelitis (EAE), we explored the role of BRP-39 in regulating neuroinflammation in EAE. Using BRP-39-deficient mice (BRP-39−/−), we demonstrate the importance of BRP-39 in modulating the severity of clinical EAE and CNS neuroinflammation. At disease onset, absence of BRP-39 had little effect on clinical disease or lymphocytic infiltrate, but by 14 days post-immunization (dpi), differences in clinical scores were evident. By 28 dpi, BRP-39−/− mice showed more severe and persistent clinical disease than BRP-39+/+ controls. Histopathological evaluation showed that BRP-39−/− mice had more marked lymphocytic and macrophage infiltrates and gliosis vs. BRP-39+/+ mice. These findings support the role of BRP-39 expression in limiting immune cell infiltration into the CNS and offer a new target to modulate neuroinflammation.
doi:10.1097/NEN.0b013e31826eaee7
PMCID: PMC3481009  PMID: 23041842
BRP-39; Chitinase-like proteins; Experimental autoimmune encephalomyelitis; Multiple sclerosis; Neuroimmunology; YKL-40
6.  Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury 
Annual review of physiology  2011;73:10.1146/annurev-physiol-012110-142250.
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
doi:10.1146/annurev-physiol-012110-142250
PMCID: PMC3864643  PMID: 21054166
asthma; fibrosis; BRP-39/YKL-40; AMCase; chitotriosidase
7.  Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma 
Acta Pharmacologica Sinica  2012;33(12):1525-1532.
Aim:
To determine the roles of breast regression protein-39 (BRP-39) in regulating dendritic cell maturation and in pathology of acute asthma.
Methods:
Mouse bone marrow-derived dendritic cells (BMDCs) were prepared, and infected with adenovirus over-expressing BRP-39. Ovalbumin (OVA)-induced murine model of acute asthma was made in female BALB/c mice by sensitizing and challenging with chicken OVA and Imject Alum. The transfected BMDCs were adoptively transferred into OVA-treated mice via intravenous injection. Airway hyperresponsiveness (AHR), inflammation and pulmonary histopathology were characterized.
Results:
The expression of BRP-39 mRNA and protein was significantly increased in lung tissues of OVA-treated mice. The BMDCs infected with adenovirus BRP-39 exhibited greater maturation and higher activity in vitro. Adoptive transfer of the cells into OVA-treated mice significantly augmented OVA-induced AHR and eosinophilic inflammation. Meanwhile, BRP-39 further enhanced the production of OVA-induced Th2 cytokines IL-4, IL-5 and IL-13, but significantly attenuated OVA-induced IFN-γ production in bronchoalveolar lavage fluid.
Conclusion:
In OVA-induced murine model of acute asthma, BRP-39 is over-expressed in lung tissue and augments Th2 inflammatory response and AHR. BRP-39 promotes dendritic cell maturation in vitro. Therefore, BRP-39 may be a potential therapeutic target of asthma.
doi:10.1038/aps.2012.154
PMCID: PMC4001840  PMID: 23178461
asthma; ovalbumin; bone marrow-derived dendritic cells (BMDCs); breast regression protein-39 (BRP-39); YKL-40; Th2 inflammation; airway hyperresponsiveness; bronchoalveolar lavage fluid
8.  The Chitinase-Like Protein YKL-40 Modulates Cystic Fibrosis Lung Disease 
PLoS ONE  2011;6(9):e24399.
The chitinase-like protein YKL-40 was found to be increased in patients with severe asthma and chronic obstructive pulmonary disease (COPD), two disease conditions featuring neutrophilic infiltrates. Based on these studies and a previous report indicating that neutrophils secrete YKL-40, we hypothesized that YKL-40 plays a key role in cystic fibrosis (CF) lung disease, a prototypic neutrophilic disease. The aim of this study was (i) to analyze YKL-40 levels in human and murine CF lung disease and (ii) to investigate whether YKL-40 single-nucleotide polymorphisms (SNPs) modulate CF lung disease severity. YKL-40 protein levels were quantified in serum and sputum supernatants from CF patients and control individuals. Levels of the murine homologue BRP-39 were analyzed in airway fluids from CF-like βENaC-Tg mice. YKL-40SNPs were analyzed in CF patients. YKL-40 levels were increased in sputum supernatants and in serum from CF patients compared to healthy control individuals. Within CF patients, YKL-40 levels were higher in sputum than in serum. BRP-39 levels were increased in airways fluids from βENaC-Tg mice compared to wild-type littermates. In both CF patients and βENaC-Tg mice, YKL-40/BRP-39 airway levels correlated with the severity of pulmonary obstruction. Two YKL-40 SNPs (rs871799 and rs880633) were found to modulate age-adjusted lung function in CF patients. YKL-40/BRP-39 levelsare increased in human and murine CF airway fluids, correlate with pulmonary function and modulate CF lung disease severity genetically. These findings suggest YKL-40 as a potential biomarker in CF lung disease.
doi:10.1371/journal.pone.0024399
PMCID: PMC3176766  PMID: 21949714
9.  Expression of Osteoarthritis Marker YKL-39 is Stimulated by Transforming Growth Factor Beta (TGF-beta) and IL-4 in Differentiating Macrophages 
Biomarker Insights  2008;3:39-44.
YKL-39 is a Glyco_18 domain containing chitinase-like protein which is currently recognized as a biomarker for the activation of chondrocytes and the progress of the osteoarthritis in human. YKL-39 was identified as an abundantly secreted protein in primary culture of human articular chondrocytes. Two biological activities of YKL-39 might contribute to the disease progression. One is the induction of autoimmune response and second is the participation in tissue remodeling. Other mammalian chitinase-like proteins including chitotriosidase, SI-CLP, YKL-40 and YM1 are expressed by macrophages in various pathological conditions. In contrast, YKL-39 was never reported to be produced by macrophages. We used in vitro model of human monocyte-derived macrophage differentiation to analyse regulation of YKL-39 expression. Expression of YKL-39 was examined by real-time RT-PCR. CD14+ MACS sorted human monocytes differentiated for 6 days under different stimulations including IFNγ, IL-4, dexamethasone and TGF-β. We found that both IL-4 and TGF-β have weak stimulatory effect on YKL-39 expression in all donors tested (3.2 ± 1.7 fold, p = 0.006 and 6.3 ± 3.1 fold, p = 0.014 respectively). However the combination of IL-4 and TGF-β had strong stimulatory effect on the expression of YKL-39 in all analysed individual macrophage cultures (34 ± 36 fold, p = 0.05). IFN-γ did not show statistically significant effect of YKL-39 mRNA expression. Presence of dexamethasone almost completely abolished the stimulatory effects of IL-4 and TGF-β. In summary, we show here for the first time, that human cells of monocyte origin are able to produce YKL-39. Maturation of monocyte derived macrophages in the presence of Th2 cytokine IL-4 and TGF-β leads to the strong activation of YKL-39 expression. Thus elevated levels of YKL-39 observed during chronic inflammations can not be attributed solely to the activity of chondrocytes. In perspective, YKL-39 might serve as a useful biomarker to detect macrophage-specific response in pathologies like tumour, atherosclerosis and Alzheimer disease.
PMCID: PMC2688341  PMID: 19578492
osteoarthritis; chitinase; YKL-39; macrophage; TGF-beta; IL-4
10.  Establishment of a quantitative PCR system for discriminating chitinase-like proteins: catalytically inactive breast regression protein-39 and Ym1 are constitutive genes in mouse lung 
BMC Molecular Biology  2014;15:23.
Background
Mice and humans produce chitinase-like proteins (CLPs), which are highly homologous to chitinases but lack chitinolytic activity. Mice express primarily three CLPs, including breast regression protein-39 (BRP-39) [chitinase 3-like-1 (Chi3l1) or 38-kDa glycoprotein (gp38k)], Ym1 (Chi3l3) and Ym2 (Chi3l4). Recently, CLPs have attracted considerable attention due to their increased expression in a number of pathological conditions, including asthma, allergies, rheumatoid arthritis and malignant tumors. Although the exact functions of CLPs are largely unknown, the significance of their increased expression levels during pathophysiological states needs to be determined. The quantification of BRP-39, Ym1 and Ym2 is an important step in gaining insight into the in vivo regulation of the CLPs.
Methods
We constructed a standard DNA for quantitative real-time PCR (qPCR) by containing three CLPs target fragments and five reference genes cDNA in a one-to-one ratio. We evaluated this system by analyzing the eight target cDNA sequences. Tissue cDNAs obtained by reverse transcription from total RNA from four embryonic stages and eight adult tissues were analyzed using the qPCR system with the standard DNA.
Results
We established a qPCR system detecting CLPs and comparing their expression levels with those of five reference genes using the same scale in mouse tissues. We found that BRP-39 and Ym1 were abundant in the mouse lung, whereas Ym2 mRNA was abundant in the stomach, followed by lung. The expression levels of BRP-39 and Ym1 in the mouse lung were higher than those of two active chitinases and were comparable to glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene which is constitutively expressed in all tissues.
Conclusion
Our results indicate that catalytically inactive BRP-39 and Ym1 are constitutive genes in normal mouse lung.
doi:10.1186/1471-2199-15-23
PMCID: PMC4195342  PMID: 25294623
BRP-39; Chitinase; Chitinase-like protein; Gene expression analysis; Quantitative real-time PCR system; Ym1; Ym2
11.  BRP, a polysaccharide fraction isolated from Boschniakia rossica, protects against galactosamine and lipopolysaccharide induced hepatic failure in mice 
The aim of this study was to investigate the hepatoprotective effect of BRP, a polysaccharide fraction isolated from Boschniakia rossica, against galactosamine and lipopolysaccharide induced fulminant hepatic failure. Mice were injected with a single dose of galactosamine/lipopolysaccharide with or without pretreatment of BRP. Results showed marked reduction of hepatic necrosis, serum marker enzymes and levels of tumor necrosis factor-α and interleukin-6 in BRP pretreated mice when compared with galactosamine/lipopolysaccharide-challenged mice. Mice pretreated with BRP decreased the activation of caspases-3 and caspase-8, and showed a reduced level of DNA fragmentation of liver cells. BRP also reduced hepatic lipid peroxidation, increased potential of hepatic antioxidative defense system, and reduced hepatic nitric oxide level which was elevated by galactosamine/lipopolysaccharide injection. Immunoblot analysis showed down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 proteins of liver tissues in BRP pretreated group when compared with galactosamine/lipopolysaccharide-challenged group. Furthermore, treatment with galactosamine/lipopolysaccharide markedly increased toll-like receptor 4, nuclear level of nuclear factor-κB, and phosphorylation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in liver tissues. However, these increases were attenuated by pretreatment with BRP. The results suggest that BRP alleviates galactosamine/lipopolysaccharide-induced liver injury by enhancing antioxidative defense system, suppressing inflammatory responses and reducing apoptotic signaling.
doi:10.3164/jcbn.13-105
PMCID: PMC4042147  PMID: 24895481
Boschniakia rossica; polysaccharide; hepatic failure; mice
12.  Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype 
Mediators of Inflammation  2013;2013:457189.
Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2) studies. For in vivo studies, wild-type (WT) and BRP-39−/− mice received continuous exposure to 21% O2 (control mice) or 100% O2 from postnatal (PN) 1 to PN7 days, along with intranasal lipopolysaccharide (LPS) administered on alternate days (PN2, -4, and -6). Lung histology, bronchoalveolar lavage (BAL) cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.
doi:10.1155/2013/457189
PMCID: PMC3855965  PMID: 24347826
13.  BrpA Is Involved in Regulation of Cell Envelope Stress Responses in Streptococcus mutans 
Previous studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation by Streptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression of brpA is regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In a Galleria mellonella (wax worm) model, BrpA deficiency was shown to diminish the virulence of S. mutans OMZ175, which, unlike S. mutans UA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain of S. mutans.
doi:10.1128/AEM.07823-11
PMCID: PMC3318800  PMID: 22327589
14.  Antibody Directed against Human YKL-40 Increases Tumor Volume in a Human Melanoma Xenograft Model in Scid Mice 
PLoS ONE  2014;9(4):e95822.
Induced overexpression of the secretory protein YKL-40 promotes tumor growth in xenograft experiments. We investigated if targeting YKL-40 with a monoclonal antibody could inhibit tumor growth. YKL-40 expressing human melanoma cells (LOX) were injected subcutenously in Balb/c scid mice. Animals were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls (0.42 g). The effect of anti-YKL-40 on the increase of tumor volume started within hours after injection and was dose dependent. Intratumoral hemorrhage was observed in the treated animals. The strong effect on tumor size indicates important roles for YKL-40 in melanoma growth and argues for a careful evaluation of antibody therapy directed against YKL-40.
doi:10.1371/journal.pone.0095822
PMCID: PMC3994147  PMID: 24752554
15.  Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties 
The Biochemical journal  2012;446(1):149-157.
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.
doi:10.1042/BJ20120377
PMCID: PMC3513709  PMID: 22742450
chitinase; chitinase-like proteins; glycan; glycan array; glycobiology; protein structure; lectin; X-ray crystallography
16.  Airway, but not serum or urinary, levels of YKL-40 reflect inflammation in early cystic fibrosis lung disease 
Background
Cystic fibrosis (CF) lung disease begins in early life and is progressive with the major risk factor being an exaggerated inflammatory response. Currently, assessment of neutrophilic inflammation in early cystic fibrosis (CF) lung disease relies on bronchoalveolar lavage (BAL). The chitinase-like protein YKL-40 is raised in sputum and serum of adults with CF. We investigated YKL-40 in BAL, serum and urine to determine whether this reflected inflammation and infection in young children with CF.
Methods
YKL-40 was measured in matched samples of BAL, serum and urine obtained from 36 infants and young children with CF participating in an early surveillance program. Levels were compared to clinical data and markers of inflammation detected in the lung.
Results
YKL-40 in BAL correlated with pulmonary infection [β=1.30 (SE 0.34), p < 0.001] and BAL markers of inflammation [macrophage number: r2 = 0.34, p < 0.001; neutrophil number: r2 = 0.74, p < 0.001; neutrophil elastase: r2 = 0.47, p < 0.001; CXCL8: r2 = 0.45, p < 0.001; IL-β: r2 = 0.62, p < 0.001]. YKL-40 was detectable in serum but levels did not correlate with BAL levels in the same individuals (r2 = 0.04, p = 0.14) or with inflammatory markers. YKL-40 was below the limit of detection in urine (30 pg/ml).
Conclusions
This study demonstrates that levels of the chitinase-like protein YKL-40 reflect airway inflammation and infection in early CF lung disease. The lack of increased YKL-40 in serum in the absence of systemic inflammation limits the benefit of this potential biomarker in early disease.
doi:10.1186/1471-2466-14-28
PMCID: PMC3946043  PMID: 24576297
Cystic fibrosis; YKL-40; Biomarker; Lung disease
17.  Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation 
The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp69). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp69 AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (sytKD) in wildtype (wt), brp69 and rab3 null mutants (rab3rup), where Brp is concentrated at a small number of AZs. At wt and rab3rup synapses, sytKD lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, sytKD did not alter EPSC amplitude at brp69 synapses, but shortened delay and rise time. In fact, following sytKD, these kinetic properties were strikingly similar in wt and brp69, which supports the notion that Syt protracts release at brp69synapses. To gain insight into this surprising role of Syt at brp69 AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At ‘tonic’ type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after sytKD. Notably, sytKD boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that sytKD increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt.
doi:10.3389/fncel.2015.00029
PMCID: PMC4318344
Bruchpilot; active zone; neurotransmitter release; synaptic delay; presynaptic differentiation; synaptotagmin; dSTORM
18.  Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis 
Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI-CLP in tumor angiogenesis and lymphangiogenesis remains to be investigated.
doi:10.3389/fphys.2014.00075
PMCID: PMC3942647  PMID: 24634660
tumor-associated macrophages; TIE2 receptor; VEGF; LYVE-1; stabilin-1; chitinase-like protein
19.  Resveratrol represses YKL-40 expression in human glioma U87 cells 
BMC Cancer  2010;10:593.
Background
Glioblastoma multiforme (GBM) is the most malignant intracranial tumour that develops in both adults and children. Microarray gene analyses have confirmed that the human YKL-40 gene is one of the most over-expressed genes in these tumours but not in normal brain tissue. Clinical studies have shown that serum YKL-40 levels are positively correlated with tumour burden in addition to being an independent prognostic factor of a short relapse-free interval as well as short overall survival in patients with various cancers. Our previous study revealed that YKL-40 was closely correlated with the pathological grades of human primary astrocytomas and played a crucial role in glioma cell proliferation. Hence, YKL-40 could be an attractive target in the design of anti-cancer therapies.
Methods
Cell viability and invasion assays were performed to detect the cell proliferation and invasive ability of U87 cells induced by resveratrol (3, 5, 4'-trihydroxystilbene; Res) or YKL-40 small-interfering RNAs (siRNAs). In addition, the luciferase assay, real-time RT-PCR, western blotting, and ELISA were used to measure YKL-40 promoter activity, mRNA, and protein expression, respectively. The expressions of phosphor-ERK1/2 and ERK1/2 were determined by western blotting.
Results
Res inhibited U87 cell proliferation and invasion in vitro and repressed YKL-40 in U87 cells by decreasing the activity of its promoter and reducing mRNA transcription and protein expression in vitro. YKL-40 siRNA treatment also impaired the invasiveness of U87 cells. When U87 cells were cultured with 20 μM PD98059 (an ERK1/2 inhibitor) alone, with 20 μM PD98059 and 100 μM Res, or with 100 μM Res alone for 48 h, YKL-40 protein expression decreased most significantly in the Res-treated group. PD98059 partially reversed the decrease of YKL-40 protein expression induced by Res. Furthermore, phosphor-ERK1/2 expression was reduced by Res treatment in a time-dependent manner.
Conclusions
We demonstrated for the first time that Res represses YKL-40 expression in vitro; in addition, the ERK1/2 pathway is involved in this repression. This finding could extend the prospective use of Res in glioma research and enlarge the armamentarium for treating gliomas.
doi:10.1186/1471-2407-10-593
PMCID: PMC2988030  PMID: 21029458
20.  Expression of the Chitinase Family Glycoprotein YKL-40 in Undifferentiated, Differentiated and Trans-Differentiated Mesenchymal Stem Cells 
PLoS ONE  2013;8(5):e62491.
The glycoprotein YKL-40 (CHI3L1) is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs) can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and trans-differentiated phenotypes.
doi:10.1371/journal.pone.0062491
PMCID: PMC3650021  PMID: 23671604
21.  YKL-40 - an emerging biomarker in cardiovascular disease and diabetes 
Several inflammatory cytokines are involved in vascular inflammation resulting in endothelial dysfunction which is the earliest event in the atherosclerotic process leading to manifest cardiovascular disease. YKL-40 is an inflammatory glycoprotein involved in endothelial dysfunction by promoting chemotaxis, cell attachment and migration, reorganization and tissue remodelling as a response to endothelial damage. YKL-40 protein expression is seen in macrophages and smooth muscle cells in atherosclerotic plaques with the highest expression seen in macrophages in the early lesion of atherosclerosis. Several studies demonstrate, that elevated serum YKL-levels are independently associated with the presence and extent of coronary artery disease and even higher YKL-40 levels are documented in patients with myocardial infarction. Moreover, elevated serum YKL-40 levels have also been found to be associated with all-cause as well as cardiovascular mortality. Finally, YKL-40 levels are elevated both in patients with type 1 and type 2 diabetes, known to be at high risk for the development of cardiovascular diseases, when compared to non-diabetic persons. A positive association between elevated circulating YKL-40 levels and increasing levels of albuminuria have been described in patients with type 1 diabetes indicating a role of YKL-40 in the progressing vascular damage resulting in microvascular disease.
This review describes the present knowledge about YKL-40 and discusses its relation to endothelial dysfunction, atherosclerosis, cardiovascular disease and diabetes and look ahead on future perspectives of YKL-40 research.
doi:10.1186/1475-2840-8-61
PMCID: PMC2789050  PMID: 19930630
22.  A YKL-40 neutralizing antibody blocks tumor angiogenesis and progression: a potential therapeutic agent in cancers 
Molecular cancer therapeutics  2011;10(5):742-751.
Accumulating evidence has indicated that expression levels of YKL-40, a secreted glycoprotein, were elevated in multiple advanced human cancers. Recently, we have identified an angiogenic role of YKL-40 in cancer development. However, blockade of the function of YKL-40, which implicates therapeutic value, has not been explored yet. Our current study sought to establish a monoclonal anti-YKL-40 antibody as a neutralizing antibody for the purpose of blocking tumor angiogenesis and metastasis. A mouse monoclonal anti-YKL-40 antibody (mAY) exhibited specific binding with recombinant YKL-40 and with YKL-40 secreted from osteoblastoma cells MG-63 and brain tumor cells U87. In the functional analysis, we found that mAY inhibited tube formation of microvascular endothelial cells in Matrigel induced by conditioned medium of MG-63 and U87 cells, as well as recombinant YKL-40. mAY also abolished YKL-40-induced activation of membrane receptor VEGF receptor 2 (Flk-1/KDR) and intracellular signaling MAP kinase Erk 1 and Erk 2. In addition, mAY enhanced cell death response of U87 line to γ-irradiation through decreased expression of pAKT and AKT, and accordingly abrogated angiogenesis induced by the conditioned medium of U87 cells in which YKL-40 levels were elevated by treatment with γ-irradiation. Furthermore, treatment of xenografted tumor mice with mAY restrained tumor growth, angiogenesis, and progression. Taken together, this study has demonstrated the therapeutic utility for the mAY in treatment of tumor angiogenesis and metastasis.
doi:10.1158/1535-7163.MCT-10-0868
PMCID: PMC3091949  PMID: 21357475
YKL-40; a neutralizing antibody; tumor angiogenesis; tumor metastasis; γ-irradiation; signaling pathways
23.  Human Cartilage Chitinase 3-like Protein 2: Cloning, Expression, and Production of Polyclonal and Monoclonal Antibodies for Osteoarthritis Detection and Identification of Potential Binding Partners 
Human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39) is a member of family-18 glycosyl hydrolases that lacks chitinase activity. YKL-39 is known as a potential marker for the activation of chondrocytes and the progression of osteoarthritis. In this study, we cloned and expressed a functional form of human YKL-39 in the bacterial system. The Escherichia coli expressed YKL-30 was used as immugen for production of anti YKL-39 polyclonal and monoclonal antibodies. Both antibody types were highly selective, reacting only with YKL-39. Isotype mapping identified two hybridoma clones (so called clones 6H11 and 8H3) to be IgM isotype. Dot blot assay showed that the monoclonal antibody was strongly active with the synovial fluid of an osteoarthritis patient, human monocyte, and T lymphocyte cell lines. Database search for protein binding partners gave high hits with several glycoproteins that play particular roles in cartilage tissue scaffolding, connective tissue formation, and cell-cell interactions. In conclusion, anti YKL-39 polyclonal and monoclonal antibodies were raised and tested to be suitable for immunological applications, such as the investigation of the YKL-39 regulating pathway and the development of an immunosensing tool for sensitive detection of cartilage tissue destruction.
doi:10.1089/mab.2013.0016
PMCID: PMC3798240  PMID: 24111862
24.  Chemical genetic dissection of brassinosteroid-ethylene interaction 
Molecular plant  2008;1(2):368-379.
We undertook a chemical genetics screen to identify chemical inhibitors of brassinosteroid (BR) action. From a chemical library of 10,000 small molecules, one compound was found to inhibit hypocotyl length and activate the expression of a BR-repressed reportergene (CPD-GUS) in Arabidopsis, and it was named brassinopride (BRP). These effects of BRP could be reversed by co-treatment with brassinolide, suggesting that BRP either directly or indirectly inhibits BR biosynthesis. Interestingly, the compound causes exaggerated apical hooks, similar to that caused by ethylene treatment. The BRP-induced apical hook phenotype can be blocked by a chemical inhibitor of ethylene perception or an ethylene insensitive mutant, suggesting that, in addition to inhibiting BR, BRP activates ethylene response. Analysis of BRP analogs provided clues about structural features important for its effects on two separate targets in the BR and ethylene pathways. Analyses of the responses of various BR and ethylene mutants to BRP, ethylene, and BR treatments revealed modes of crosstalk between ethylene and BR in dark-grown seedlings. Our results suggest that active downstream BR signaling, but not BR synthesis or a BR gradient, is required for ethylene-induced apical hook formation. The BRP-related compounds can be useful tools for manipulating plant growth and studying hormone interactions.
doi:10.1093/mp/ssn005
PMCID: PMC2975526  PMID: 19825546
25.  YKL-40 acts as an angiogenic factor to promote tumor angiogenesis 
A secreted glycoprotein YKL-40 also named chitinase-3-like-1 is normally expressed by multiple cell types such as macrophages, chondrocytes, and vascular smooth muscle cells. However, a prominently high level of YKL-40 was found in a wide spectrum of human diseases including cancers and chronic inflammatory diseases where it was strongly expressed by cancerous cells and infiltrating macrophages. Here, we summarized recent important findings of YKL-40 derived from cancerous cells and smooth muscle cells during tumor angiogenesis and development. YKL-40 is a potent angiogenic factor capable of stimulating tumor vascularization mediated by endothelial cells and maintaining vascular integrity supported by smooth muscle cells. In addition, YKL-40 induces FAK-MAPK signaling and up-regulates VEGF receptor 2 in endothelial cells; but a neutralizing antibody (mAY) against YKL-40 inhibits its angiogenic activity. While YKL-40 is essential for angiogenesis, little is known about its functional role in tumor-associated macrophage (TAM)-mediated tumor development. Therefore, significant efforts are urgently needed to identify pathophysiological function of YKL-40 in the dynamic interaction between tumor cells and TAMs in the tumor microenvironment, which may offer substantial mechanistic insights into tumor angiogenesis and metastasis, and also point to a therapeutic target for treatment of cancers and other diseases.
doi:10.3389/fphys.2013.00122
PMCID: PMC3664773  PMID: 23755018
YKL-40; angiogenesis; VEGF; tumor cells; vascular endothelial cells; tumor-associated macrophages; tumor microenvironment; neutralizing anti-YKL-40 antibody

Results 1-25 (1230218)